[1]
|
Genovese, A. and Butler, M.G. (2020) Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). International Journal of Molecular Sciences, 21, Article 4726. https://doi.org/10.3390/ijms21134726
|
[2]
|
Lord, C., Brugha, T.S., Charman, T., Cusack, J., Dumas, G., Frazier, T., et al. (2020) Autism Spectrum Disorder. Nature Reviews Disease Primers, 6, Article No. 5. https://doi.org/10.1038/s41572-019-0138-4
|
[3]
|
Zhao, X., Zhang, R. and Yu, S. (2020) Mutation Screening of the UBE3A Gene in Chinese Han Population with Autism. BMC Psychiatry, 20, Article No. 589. https://doi.org/10.1186/s12888-020-03000-5
|
[4]
|
白烨. SHANK2基因多态性与儿童孤独症谱系障碍易感性的遗传关联性研究[D]: [硕士学位论文]. 长春: 吉林大学, 2018.
|
[5]
|
Wu, X., Li, W. and Zheng, Y. (2020) Recent Progress on Relevant MicroRNAs in Autism Spectrum Disorders. International Journal of Molecular Sciences, 21, Article 5904. https://doi.org/10.3390/ijms21165904
|
[6]
|
Hoffmann, A. and Spengler, D. (2021) Single-Cell Transcriptomics Supports a Role of CHD8 in Autism. International Journal of Molecular Sciences, 22, Article 3261. https://doi.org/10.3390/ijms22063261
|
[7]
|
Jansen, A., Dieleman, G.C., Smit, A.B., Verhage, M., Verhulst, F.C., Polderman, T.J.C., et al. (2017) Gene-Set Analysis Shows Association between FMRP Targets and Autism Spectrum Disorder. European Journal of Human Genetics, 25, 863-868. https://doi.org/10.1038/ejhg.2017.55
|
[8]
|
Strathearn, L., Momany, A., Kovács, E.H., Guiler, W. and Ladd-Acosta, C. (2023) The Intersection of Genome, Epigenome and Social Experience in Autism Spectrum Disorder: Exploring Modifiable Pathways for Intervention. Neurobiology of Learning and Memory, 202, Article 107761. https://doi.org/10.1016/j.nlm.2023.107761
|
[9]
|
Bahado-Singh, R.O., Vishweswaraiah, S., Aydas, B. and Radhakrishna, U. (2021) Placental DNA Methylation Changes and the Early Prediction of Autism in Full-Term Newborns. PLOS ONE, 16, e0253340. https://doi.org/10.1371/journal.pone.0253340 https://pmc.ncbi.nlm.nih.gov/articles/PMC8279352/#sec014
|
[10]
|
Steinman, G. (2020) The Putative Etiology and Prevention of Autism. In: Progress in Molecular Biology and Translational Science, Elsevier, 1-34. https://doi.org/10.1016/bs.pmbts.2020.04.013
|
[11]
|
Steinman, G. and Mankuta, D. (2019) Molecular Biology of Autism’s Etiology—An Alternative Mechanism. Medical Hypotheses, 130, Article 109272. https://doi.org/10.1016/j.mehy.2019.109272
|
[12]
|
Cataldo, I., Azhari, A. and Esposito, G. (2018) A Review of Oxytocin and Arginine-Vasopressin Receptors and Their Modulation of Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 11, Article ID: 12. https://doi.org/10.3389/fnmol.2018.00027
|
[13]
|
Numakawa, T., Odaka, H. and Adachi, N. (2017) Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis. International Journal of Molecular Sciences, 18, Article 2312. https://doi.org/10.3390/ijms18112312
|
[14]
|
Zhao, D., Huo, Y., Zheng, N., Zhu, X., Yang, D., Zhou, Y., et al. (2025) Mdga2 Deficiency Leads to an Aberrant Activation of BDNF/TrkB Signaling That Underlies Autism-Relevant Synaptic and Behavioral Changes in Mice. PLOS Biology, 23, e3003047. https://doi.org/10.1371/journal.pbio.3003047 https://pubmed.ncbi.nlm.nih.gov/40168357/
|
[15]
|
Goh, S. and Peterson, B.S. (2012) Imaging Evidence for Disturbances in Multiple Learning and Memory Systems in Persons with Autism Spectrum Disorders. Developmental Medicine & Child Neurology, 54, 208-213. https://doi.org/10.1111/j.1469-8749.2011.04153.x
|
[16]
|
Banker, S.M., Gu, X., Schiller, D. and Foss-Feig, J.H. (2021) Hippocampal Contributions to Social and Cognitive Deficits in Autism Spectrum Disorder. Trends in Neurosciences, 44, 793-807. https://doi.org/10.1016/j.tins.2021.08.005
|
[17]
|
Liu, C., Liu, J., Gong, H., Liu, T., Li, X. and Fan, X. (2023) Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Current Neuropharmacology, 21, 2266-2282. https://doi.org/10.2174/1570159x21666221220155455
|
[18]
|
Hoxha, B., Hoxha, M., Domi, E., Gervasoni, J., Persichilli, S., Malaj, V., et al. (2021) Folic Acid and Autism: A Systematic Review of the Current State of Knowledge. Cells, 10, Article 1976. https://doi.org/10.3390/cells10081976
|
[19]
|
Wang, Z., Zhang, B., Mu, C., Qiao, D., Chen, H., Zhao, Y., et al. (2024) Androgen Levels in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 15, Article ID: 1371148. https://doi.org/10.3389/fendo.2024.1371148
|
[20]
|
de Assis, G.G., de Sousa, M.B.C. and Murawska-Ciałowicz, E. (2025) Sex Steroids and Brain-Derived Neurotrophic Factor Interactions in the Nervous System: A Comprehensive Review of Scientific Data. International Journal of Molecular Sciences, 26, Article 2532. https://doi.org/10.3390/ijms26062532
|
[21]
|
Dwyer, C.M. (2014) Maternal Behaviour and Lamb Survival: From Neuroendocrinology to Practical Application. Animal, 8, 102-112. https://doi.org/10.1017/s1751731113001614
|
[22]
|
Xu, X., Shou, X., Li, J., Jia, M., Zhang, J., Guo, Y., et al. (2013) Mothers of Autistic Children: Lower Plasma Levels of Oxytocin and Arg-Vasopressin and a Higher Level of Testosterone. PLOS ONE, 8, e74849. https://doi.org/10.1371/journal.pone.0074849 https://pubmed.ncbi.nlm.nih.gov/24086383
|
[23]
|
Karvat, G. and Kimchi, T. (2013) Acetylcholine Elevation Relieves Cognitive Rigidity and Social Deficiency in a Mouse Model of Autism. Neuropsychopharmacology, 39, 831-840. https://doi.org/10.1038/npp.2013.274
|
[24]
|
Wang, Z., Ding, R. and Wang, J. (2020) The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients, 13, Article 86. https://doi.org/10.3390/nu13010086
|
[25]
|
Zhang, M., Wu, Y., Lu, Z., Song, M., Huang, X., Mi, L., et al. (2023) Effects of Vitamin D Supplementation on Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Clinical Psychopharmacology and Neuroscience, 21, 240-251. https://doi.org/10.9758/cpn.2023.21.2.240
|
[26]
|
Principi, N. and Esposito, S. (2020) Vitamin D Deficiency during Pregnancy and Autism Spectrum Disorders Development. Frontiers in Psychiatry, 10, Article ID: 987. https://doi.org/10.3389/fpsyt.2019.00987
|
[27]
|
Cannell, J.J. (2017) Vitamin D and Autism, What’s New? Reviews in Endocrine and Metabolic Disorders, 18, 183-193. https://doi.org/10.1007/s11154-017-9409-0
|
[28]
|
Pizzarelli, R. and Cherubini, E. (2013) Developmental Regulation of GABAergic Signalling in the Hippocampus of Neuroligin 3 R451C Knock-In Mice: An Animal Model of Autism. Frontiers in Cellular Neuroscience, 7, Article ID: 85. https://doi.org/10.3389/fncel.2013.00085
|
[29]
|
Kılınç, K., Türkoğlu, S., Kocabaş, R., Güler, H.A., Yılmaz, Ç. and Büyükateş, A. (2025) What Are the Levels and Interactions of Neuroligin-1, Neuroligin-3, and Inflammatory Cytokines (IL-6, IL-8) in Children Diagnosed with Autism Spectrum Disorder? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 137, Article 111275. https://doi.org/10.1016/j.pnpbp.2025.111275
|
[30]
|
Sgadò, P., Genovesi, S., Kalinovsky, A., Zunino, G., Macchi, F., Allegra, M., et al. (2013) Loss of GABAergic Neurons in the Hippocampus and Cerebral Cortex of Engrailed-2 Null Mutant Mice: Implications for Autism Spectrum Disorders. Experimental Neurology, 247, 496-505. https://doi.org/10.1016/j.expneurol.2013.01.021
|
[31]
|
Vargason, T., Kruger, U., McGuinness, D.L., Adams, J.B., Geis, E., Gehn, E., et al. (2018) Investigating Plasma Amino Acids for Differentiating Individuals with Autism Spectrum Disorder and Typically Developing Peers. Research in Autism Spectrum Disorders, 50, 60-72. https://doi.org/10.1016/j.rasd.2018.03.004
|
[32]
|
Wang, B., Li, H., Yue, X., et al. (2018) A Review on the Role of Gamma-Aminobutyric Acid Signaling Pathway in Autism Spectrum Disorder. Chinese Journal of Contemporary Pediatrics, 20, 974-978.
|
[33]
|
LaFoya, B., Munroe, J.A., Mia, M.M., Detweiler, M.A., Crow, J.J., Wood, T., et al. (2016) Notch: A Multi-Functional Integrating System of Microenvironmental Signals. Developmental Biology, 418, 227-241. https://doi.org/10.1016/j.ydbio.2016.08.023
|
[34]
|
Hashem, S., Nisar, S., Bhat, A.A., Yadav, S.K., Azeem, M.W., Bagga, P., et al. (2020) Genetics of Structural and Functional Brain Changes in Autism Spectrum Disorder. Translational Psychiatry, 10, Article No. 229. https://doi.org/10.1038/s41398-020-00921-3
|
[35]
|
Casanova, M.F., Sokhadze, E.M., Casanova, E.L. and Li, X. (2020) Transcranial Magnetic Stimulation in Autism Spectrum Disorders: Neuropathological Underpinnings and Clinical Correlations. Seminars in Pediatric Neurology, 35, Article 100832. https://doi.org/10.1016/j.spen.2020.100832
|
[36]
|
Dickinson, A., Daniel, M., Marin, A., Gaonkar, B., Dapretto, M., McDonald, N.M., et al. (2021) Multivariate Neural Connectivity Patterns in Early Infancy Predict Later Autism Symptoms. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 59-69. https://doi.org/10.1016/j.bpsc.2020.06.003
|
[37]
|
Bacigaluppi, M., Russo, G.L., Peruzzotti-Jametti, L., Rossi, S., Sandrone, S., Butti, E., et al. (2016) Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes. The Journal of Neuroscience, 36, 10529-10544. https://doi.org/10.1523/jneurosci.1643-16.2016
|
[38]
|
Vallée, A., Lecarpentier, Y., Guillevin, R. and Vallée, J. (2020) The Influence of Circadian Rhythms and Aerobic Glycolysis in Autism Spectrum Disorder. Translational Psychiatry, 10, Article No. 400. https://doi.org/10.1038/s41398-020-01086-9
|
[39]
|
Zuccarini, M., Giuliani, P., Ziberi, S., Carluccio, M., Iorio, P.D., Caciagli, F., et al. (2018) The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes, 9, Article 105. https://doi.org/10.3390/genes9020105
|
[40]
|
Forsberg, S.L., Ilieva, M. and Maria Michel, T. (2018) Epigenetics and Cerebral Organoids: Promising Directions in Autism Spectrum Disorders. Translational Psychiatry, 8, Article No. 14. https://doi.org/10.1038/s41398-017-0062-x
|
[41]
|
卜笑松. SIRT1/PGC-1α在孤独症谱系障碍线粒体氧化应激中的作用[D]: [博士学位论文]. 合肥: 安徽医科大学, 2017.
|
[42]
|
Hughes, H.K., Mills Ko, E., Rose, D. and Ashwood, P. (2018) Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12, Article ID: 405. https://doi.org/10.3389/fncel.2018.00405
|
[43]
|
Wang, L., Wang, B., Wu, C., Wang, J. and Sun, M. (2023) Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. International Journal of Molecular Sciences, 24, Article 1819. https://doi.org/10.3390/ijms24031819
|
[44]
|
Marks, K., Coutinho, E. and Vincent, A. (2020) Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention. Journal of Clinical Medicine, 9, Article 2564. https://doi.org/10.3390/jcm9082564
|
[45]
|
Ramirez-Celis, A., Becker, M., Nuño, M., Schauer, J., Aghaeepour, N. and Van de Water, J. (2021) Risk Assessment Analysis for Maternal Autoantibody-Related Autism (MAR-ASD): A Subtype of Autism. Molecular Psychiatry, 26, 1551-1560. https://doi.org/10.1038/s41380-020-00998-8
|
[46]
|
Jones, K.L. and Van de Water, J. (2018) Maternal Autoantibody Related Autism: Mechanisms and Pathways. Molecular Psychiatry, 24, 252-265. https://doi.org/10.1038/s41380-018-0099-0
|
[47]
|
Appleton, J. (2018) The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integrative Medicine, 17, 28-32.
|
[48]
|
Kim, C., Cha, J., Sim, M., Jung, S., Chun, W.Y., Baik, H.W., et al. (2020) Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. The Journals of Gerontology: Series A, 76, 32-40. https://doi.org/10.1093/gerona/glaa090
|