[1]
|
Lu, X. and Hu, M.C. (2016) Klotho/fgf23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Diseases, 3, 15-23. https://doi.org/10.1159/000452880
|
[2]
|
高菲, 卢宇, 董书琴, 等. 成纤维细胞生长因子23在代谢相关性疾病中的研究进展[J]. 吉林医学, 2022, 43(6): 1680-1683.
|
[3]
|
Yoshiko, Y., Wang, H., Minamizaki, T., Ijuin, C., Yamamoto, R., Suemune, S., et al. (2007) Mineralized Tissue Cells Are a Principal Source of FGF23. Bone, 40, 1565-1573. https://doi.org/10.1016/j.bone.2007.01.017
|
[4]
|
Acquaviva, J., Abdelhady, H.G. and Razzaque, M.S. (2022) Phosphate Dysregulation and Neurocognitive Sequelae. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 151-160. https://doi.org/10.1007/978-3-030-91623-7_13
|
[5]
|
郑明楠, 吴华, 金实. FGF-23和Klotho蛋白水平在终末期肾病患者中与钙磷代谢及其伴发病的相关性[J]. 西部医学, 2019, 31(2): 190-193.
|
[6]
|
Meyer, M.B., Benkusky, N.A., Lee, S.M., Yoon, S., Mannstadt, M., Wein, M.N., et al. (2022) Rapid Genomic Changes by Mineralotropic Hormones and Kinase SIK Inhibition Drive Coordinated Renal Cyp27b1 and Cyp24a1 Expression via CREB Modules. Journal of Biological Chemistry, 298, Article ID: 102559. https://doi.org/10.1016/j.jbc.2022.102559
|
[7]
|
Meyer, M.B. and Pike, J.W. (2023) Genomic Mechanisms Controlling Renal Vitamin D Metabolism. The Journal of Steroid Biochemistry and Molecular Biology, 228, Article ID: 106252. https://doi.org/10.1016/j.jsbmb.2023.106252
|
[8]
|
Yadav, P.S., Kobelski, M.M., Martins, J.S., Tao, T., Liu, E.S. and Demay, M.B. (2023) Impaired Growth Plate Maturation in XLH Is Due to Both Excess FGF23 and Decreased 1,25-Dihydroxyvitamin D Signaling. Endocrinology, 165, bqad186. https://doi.org/10.1210/endocr/bqad186
|
[9]
|
Yamazaki, M. and Michigami, T. (2022) Osteocytes and the Pathogenesis of Hypophosphatemic Rickets. Frontiers in Endocrinology, 13, Article ID: 1005189. https://doi.org/10.3389/fendo.2022.1005189
|
[10]
|
Ratsma, D.M.A., Muller, M., Koedam, M., Zillikens, M.C. and van der Eerden, B.C.J. (2023) In Vitro Regulation of Fibroblast Growth Factor 23 by 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Synthesized by Osteocyte-Like MC3T3-E1 Cells. European Journal of Endocrinology, 189, 448-459. https://doi.org/10.1093/ejendo/lvad131
|
[11]
|
Zeng, D., Zha, A., Lei, Y., Yu, Z., Cao, R., Li, L., et al. (2023) Correlation of Serum FGF23 and Chronic Kidney Disease‐mineral and Bone Abnormality Markers with Cardiac Structure Changes in Maintenance Hemodialysis Patients: eCAM. Evidence-Based Complementary and Alternative Medicine, 2023, Article ID: 6243771. https://doi.org/10.1155/2023/6243771
|
[12]
|
Kumar, R., Kumar, T., Mohanty, S., Rani, A., Malik, A. and Bhashker, G. (2022) Fibroblast Growth Factor-23 in Pre-Dialysis Chronic Kidney Disease Patients and Its Correlation with Carotid Artery Calcification. Indian Journal of Nephrology, 32, 560-566. https://doi.org/10.4103/ijn.ijn_506_20
|
[13]
|
Wang, N. and Zhang, C. (2024) Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. International Journal of Molecular Sciences, 25, Article No. 3086. https://doi.org/10.3390/ijms25063086
|
[14]
|
高小娟, 张建芳, 李媛媛, 等. 成纤维细胞因子23对急性肾损伤的诊断价值研究[J]. 安徽医药, 2024, 28(7): 1387-1391.
|
[15]
|
Kritmetapak, K., Losbanos, L., Berent, T.E., Ashrafzadeh-Kian, S.L., Algeciras-Schimnich, A., Hines, J.M., et al. (2021) Hyperphosphatemia with Elevated Serum PTH and FGF23, Reduced 1,25(OH)2D and Normal FGF7 Concentrations Characterize Patients with Ckd. BMC Nephrology, 22, Article No. 114. https://doi.org/10.1186/s12882-021-02311-3
|
[16]
|
Portale, A.A., Wolf, M., Jüppner, H., Messinger, S., Kumar, J., Wesseling-Perry, K., et al. (2014) Disordered FGF23 and Mineral Metabolism in Children with CKD. Clinical Journal of the American Society of Nephrology, 9, 344-353. https://doi.org/10.2215/cjn.05840513
|
[17]
|
Hasegawa, H., Nagano, N., Urakawa, I., Yamazaki, Y., Iijima, K., Fujita, T., et al. (2010) Direct Evidence for a Causative Role of FGF23 in the Abnormal Renal Phosphate Handling and Vitamin D Metabolism in Rats with Early-Stage Chronic Kidney Disease. Kidney International, 78, 975-980. https://doi.org/10.1038/ki.2010.313
|
[18]
|
李黎, 张曦, 李俊, 等. FGF23与慢性肾脏病5期透析患者贫血相关性研究[J]. 黑龙江医学, 2025, 49(8): 899-901.
|
[19]
|
Titan, S.M., Zatz, R., Graciolli, F.G., dos Reis, L.M., Barros, R.T., Jorgetti, V., et al. (2011) FGF-23 as a Predictor of Renal Outcome in Diabetic Nephropathy. Clinical Journal of the American Society of Nephrology, 6, 241-247. https://doi.org/10.2215/cjn.04250510
|
[20]
|
Aoki, A., Murata, M., Asano, T., Ikoma, A., Sasaki, M., Saito, T., et al. (2013) Association of Serum Osteoprotegerin with Vascular Calcification in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 12, Article No. 11. https://doi.org/10.1186/1475-2840-12-11
|
[21]
|
Farías-Basulto, A., Martínez-Ramírez, H.R., Gómez-García, E.F., Cueto-Manzano, A.M., Cortés-Sanabria, L., Hernández-Ramos, L.E., et al. (2018) Circulating Levels of Soluble Klotho and Fibroblast Growth Factor 23 in Diabetic Patients and Its Association with Early Nephropathy. Archives of Medical Research, 49, 451-455. https://doi.org/10.1016/j.arcmed.2019.01.008
|
[22]
|
Kang, Y., Jin, Q., Zhou, M., Li, Z., Zheng, H., Li, D., et al. (2024) Predictive Value of Bone Metabolism Markers in the Progression of Diabetic Kidney Disease: A Cross-Sectional Study. Frontiers in Endocrinology, 15, Article ID: 1489676. https://doi.org/10.3389/fendo.2024.1489676
|
[23]
|
Liu, D., Yu, S., Zhang, Y., Li, Q., Kang, P., Wang, L., et al. (2025) Fibroblast Growth Factor 23 Predicts Incident Diabetic Kidney Disease: A 4.6‐Year Prospective Study. Diabetes, Obesity and Metabolism, 27, 2232-2241. https://doi.org/10.1111/dom.16224
|
[24]
|
代云, 曹磊. Klotho蛋白、FGF23与糖尿病肾病肾损伤的相关研究[J]. 中国中西医结合肾病杂志, 2025, 26(1): 42-44.
|
[25]
|
Deng, J., Liu, Y., Liu, Y., Li, W. and Nie, X. (2021) The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. Journal of Inflammation Research, 14, 5273-5290. https://doi.org/10.2147/jir.s334996
|
[26]
|
Muñoz-Castañeda, J.R., Rodelo-Haad, C., Pendon-Ruiz de Mier, M.V., Martin-Malo, A., Santamaria, R. and Rodriguez, M. (2020) Klotho/fgf23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins, 12, Article No. 185. https://doi.org/10.3390/toxins12030185
|
[27]
|
Bouma-de Krijger, A., Bots, M.L., Vervloet, M.G., Blankestijn, P.J., ter Wee, P.W., van Zuilen, A.D., et al. (2013) Time-Averaged Level of Fibroblast Growth Factor-23 and Clinical Events in Chronic Kidney Disease. Nephrology Dialysis Transplantation, 29, 88-97. https://doi.org/10.1093/ndt/gft456
|
[28]
|
Czaya, B. and Faul, C. (2019) FGF23 and Inflammation—A Vicious Coalition in CKD. Kidney International, 96, 813-815. https://doi.org/10.1016/j.kint.2019.05.018
|
[29]
|
Silswal, N., Touchberry, C.D., Daniel, D.R., McCarthy, D.L., Zhang, S., Andresen, J., et al. (2014) FGF23 Directly Impairs Endothelium-Dependent Vasorelaxation by Increasing Superoxide Levels and Reducing Nitric Oxide Bioavailability. American Journal of Physiology-Endocrinology and Metabolism, 307, E426-E436. https://doi.org/10.1152/ajpendo.00264.2014
|