中老年人衰弱与心血管危险因素的研究进展
Research Progress on Frailty and Cardiovascular Risk Factors in Middle-Aged and Elderly People
DOI: 10.12677/acm.2025.1582361, PDF, HTML, XML,   
作者: 石佳萌, 程圣钧:西安医学院第一附属医院全科医学科,陕西 西安;西安医学院研究生工作部,陕西 西安;王敏娟*:西安医学院第三附属医院全科医学科,陕西 西安
关键词: 衰弱心血管疾病危险因素Frailty Cardiovascular Disease Risk Factors
摘要: 衰弱是一种与年龄相关的生理功能下降状态是一种老年人常见的综合征,与心血管疾病的发生、进展及预后密切相关。近年来,研究逐渐揭示了衰弱与心血管危险因素之间的复杂关系。衰弱不仅是心血管疾病的独立危险因素,还与多种心血管危险因素(如高血压、糖尿病、肥胖等)存在双向作用,本文总结了衰弱与高血压、糖尿病、血脂异常等心血管危险因素的关系,同时,探讨了衰弱与心血管危险因素相互作用的潜在机制,为制定综合干预策略提供理论依据。
Abstract: Frailty is a state of physiological decline related to aging, which is a common syndrome in the elderly and closely associated with the occurrence, progression, and prognosis of cardiovascular diseases. In recent years, research has gradually revealed the complex relationship between frailty and cardiovascular risk factors. Frailty is not only an independent risk factor for cardiovascular disease but also interacts bidirectionally with various cardiovascular risk factors (such as hypertension, diabetes, obesity, etc.). This article summarizes the relationship between frailty and cardiovascular risk factors such as hypertension, diabetes, dyslipidemia, etc., and at the same time, explores the potential mechanisms of interaction between frailty and cardiovascular risk factors, providing theoretical basis for formulating comprehensive intervention strategies.
文章引用:石佳萌, 程圣钧, 王敏娟. 中老年人衰弱与心血管危险因素的研究进展[J]. 临床医学进展, 2025, 15(8): 1262-1269. https://doi.org/10.12677/acm.2025.1582361

1. 引言

衰弱是一种新兴的全球健康负担,对临床实践和公共卫生具有重大影响。随着全球老年人口的增加,衰弱状况正受到国际社会的关注。衰弱的特征是多个生理系统的功能下降,并伴随着对压力的衰弱性增加。它与死亡率、住院、摔倒,长期护理的增加有关[1] [2]。对于患有衰弱的人来说,还存在个人负担增加,生活质量受损和孤独[3] [4]。随着人口老龄化的迅速增长,预计衰弱的流行率将上升。衰弱综合征是一种与年龄相关的综合征,表现为体力下降、认知功能下降及对疾病或外界应激的易感性增加,是导致老年人群体生活质量下降和死亡风险增加的重要因素之一[5]。与此同时,心血管疾病(CVD)仍然是全球范围内导致死亡和残疾的主要原因,其患病率和疾病负担持续增加,其中危险因素包括高血压、高血脂、糖尿病、肥胖和吸烟等[6]。相关近年来,有研究表明衰弱与心血管危险因素之间存在密切的关联,二者相互影响,共同加剧中老年人群的健康风险。

衰弱不仅可能由心血管危险因素(如高血压、糖尿病和动脉粥样硬化)引发或加重,还可能通过炎症、代谢紊乱和内分泌失调等机制进一步增加心血管事件的发生风险[7]。此外,衰弱个体的生理功能下降和衰弱性使其对传统心血管治疗的反应较差,从而影响治疗效果和预后。因此,深入探讨衰弱与心血管危险因素之间的关系,对于改善老年人群的健康管理、制定个体化干预策略以及降低心血管疾病负担具有重要意义。

本综述旨在系统阐述衰弱与心血管危险因素的相互关系,探讨其潜在的病理生理机制,并分析其在临床实践中的应用价值,为未来的研究和干预提供理论和实践指导。

2. 衰弱的评估工具

目前,已有近70种用于评估衰弱的工具,其中最为广泛的包括Fried衰弱表型、FRAIL量表和临床衰弱量表。

1. 衰弱测评量表(FFP)最早于2001年由约翰霍普金斯医学院Fried等学者提出,该评估方法涉及5项内容:疲劳感、握力降低、非自主性体力下、降和低体能及步速减慢,只要有超过3项指标符合就证明患者已处于衰弱状态,若有1~2项符合则为衰弱前期[8]

2. FRAIL量表是一种简便易行的老年人衰弱评估工具,由国际营养与老龄化协会提出[9]。该量表包含以下五个项目:(1) 疲乏:过去4周内感到疲乏;(2) 不能上一层楼梯:不用外物及他人帮助的情况下中途不休息爬完一层楼梯有困难;(3) 不能走500 m:不用外物及他人帮助的情况下走500 m有困难;(4) 患5种以上疾病,如:心脏病、高血压、脑卒中、帕金森、糖尿病、慢性肺疾病、哮喘、关节炎、骨质疏松、消化道溃疡、白内障、骨折、肿瘤;(5) 体质量下降:近半年内体质量下降>3 kg (非节食或运动)。每项内容“否”为0分,“是”为1分,评分结果0分为无衰弱,1~2分为衰弱前期,≥3分为衰弱期。

3. 临床衰弱量表(Clinical Frailty Scale, CFS)是一种基于临床医生对患者整体健康状况的主观判断工具,主要用于快速评估患者的衰弱程度。它通过描述患者在日常生活中的功能状态和健康状况,将衰弱程度分为9个等级,从非常健康到接近死亡。通常≥5级定义为衰弱。CFS量表是一种简单实用的衰弱评估工具,尤其适合在时间有限的情况下快速判断患者的健康状况。

综上,Fried衰弱表型与Rockwood累积缺陷指数作为衰弱的两大模式,在心血管疾病领域均是重要的风险评估工具[10],但各自着眼点不同:前者侧重身体功能衰退,识别出高度易损但人数有限的患者;后者涵盖多系统缺陷,敏感捕捉广泛的亚临床脆弱性[11]。表型模型与CVD风险的联系更多通过炎症、体能等生理机制,缺陷模型则体现累积病损和全身储备下降对心血管的不利影响[12] [13]。不同人群中二者预测效力有所差异,应根据患者年龄、疾病状态选择或结合应用。近年来的研究和实践正将衰弱评估融入心血管医学,并探索针对衰弱的干预以改善预后。总之,衰弱不但预示心血管高风险,也是心血管疾病管理中的关键考量,两种模型提供了互补的视角,帮助临床更全面地把握患者的生理储备和风险状况。

3. 衰弱与心血管危险因素

1. 衰弱与高血压高血压和衰弱之间存在很强的双向关联,因为它们具有一些共同的病理生理机制[14]。慢性低度炎症、中心性肥胖、代谢功能障碍、氧化应激和胰岛素抵抗可以解释高血压和衰弱的分子和生理基础[15] [16]。韩国一项研究显示,65岁以上老年人中,高血压合并衰弱的患病率高达67.8% [17]。我国301医院的研究也发现,65~96岁的高血压患者中,衰弱的检出率为23.1%,且80岁及以上患者的衰弱检出率更高。炎症是高血压和衰弱的生理驱动力,炎症机制触发高血压以及促成衰弱的出现[12] [18]。先前的研究表明,循环炎症生物标志物(高敏C反应蛋白和白细胞介素-6)以及炎症细胞(中性粒细胞和单核细胞)在两种情况下都增加[19],因此这两种情况通常共存。此外,胰岛素抵抗作为高血压和衰弱的重要细胞/分子驱动因素[12],可破坏身体的葡萄糖稳态,从而抑制骨骼肌的葡萄糖摄取和利用[20]。此外,胰岛素抵抗排除了胰岛素对骨骼肌钙蛋白的抑制作用。这两种途径最终导致骨骼肌力量和体重下降,导致衰弱。此外,胰岛素抵抗可以减缓血流,心肌细胞和血管内皮细胞功能障碍,从而增加高血压和不良心血管事件的风险[18] [21]。衰弱和高血压之间可能存在相互促进的关系。高血压导致的长期心血管负担可能加速机体功能下降,而衰弱状态又可能进一步加重高血压的不良影响[22]。衰弱与高血压在老年人群中密切相关,二者相互影响并增加不良健康结局的风险。因此,临床管理中需要重视二者的共病关系,采取个体化的评估和治疗策略。

2. 衰弱与血脂异常研究显示,衰弱人群的血脂水平存在异常。例如,一项研究发现,老年衰弱患者的血清总胆固醇(TC)和低密度脂蛋白胆固醇(LDL-C)水平明显高于对照组。慢性低度炎症是衰弱的特征之一,炎症因子(如C反应蛋白)水平升高,可能通过影响脂质代谢,导致血脂异常,同时血脂异常可能导致动脉粥样硬化,进而影响器官功能,增加老年人衰弱的风险。衰弱和血脂异常都与慢性炎症有关。炎症因子能够通过促进分解代谢,影响合成代谢反应,导致蛋白质合成障碍,进而引发肌肉减少和衰弱。鉴于衰弱与血脂异常的关联,早期干预血脂异常可能有助于延缓衰弱的发生和发展。对于衰弱患者,除了降脂治疗外,还应关注炎症反应的管理,以改善预后[23]

3. 衰弱与糖尿病糖尿病患者的数量正在增加,预计到2025年全球将达到3亿[24] [25]。在文献中,据报告,中年至老年糖尿病患者衰弱的发生率范围为32%至48% [26]。在社区居住的老年人中,衰弱的患病率为5%~10% [26]-[28]。在糖尿病患者中,慢性炎症、氧化应激增加和胰岛素抵抗导致肌肉骨骼质量损失和肌肉无力,这可能增加衰弱的发生率[26] [29]。此外,人们认为衰弱会导致慢性炎症和胰岛素抵抗,这与血管并发症和死亡率密切相关[30]。2型糖尿病(T2DM)是衰弱的危险因素。长期高血糖状态会导致机体代谢紊乱、氧化应激增加以及炎症反应,进而影响身体的多个系统功能,导致衰弱的发生[31]。例如,一项基于孟德尔随机化的研究发现,2型糖尿病与衰弱之间存在因果关联,T2DM患者发生衰弱的风险显著增加。除了糖尿病导致衰弱外,衰弱也可能增加糖尿病的发病风险。一项双向孟德尔随机化研究显示,衰弱与2型糖尿病之间存在双向因果关联。具体来说,衰弱状态(通过Fried衰弱评分评估)与T2DM的发病风险增加存在统计学关联。这表明,衰弱可能通过影响生活方式、身体活动水平和代谢状态等因素,间接促进糖尿病的发生[32]。糖尿病和衰弱之间存在多种共同的病理生理机制如代谢紊乱、慢性炎症、氧化应激。在老年人中,衰弱和糖尿病的共病现象尤为常见。糖尿病会导致老年人的肌肉量减少、身体功能下降,进一步加重衰弱程度。此外,衰弱的老年人往往难以有效管理糖尿病,导致血糖控制不佳,进一步加重病情[32]。总之,衰弱与糖尿病之间存在复杂的因果关系和共同的病理生理机制。对于合并这两种疾病的患者,需要综合管理,以改善其生活质量并降低死亡风险。

4. 衰弱与肥胖肥胖,尤其是中心性肥胖,是衰弱的重要危险因素。研究显示,肥胖个体发生衰弱的风险显著高于正常体重者。例如,一项系统综述和荟萃分析发现,腹部肥胖的社区居住老年人发生衰弱的风险比正常人高出57% [33] [34]。肥胖可能通过多种机制间接影响衰弱的发生和发展。肥胖和衰弱之间的关联可以通过以下直接和间接机制来解释。首先,脂肪组织是一种代谢活性组织,分泌脂联素、白细胞介素-6 (IL-6)、肿瘤坏死因子等细胞因子,可促进炎症的发展、代谢以及不同器官之间代谢信息的传递[35] [36],从而导致骨骼肌质量和强度下降[37] [38]。此外,慢性炎症由脂肪浸润引起,肌纤维中的过度肥胖可能导致肌肉功能丧失,这被描述为“肌肉减少性肥胖”。肌源性肥胖可能影响生活质量、体能和代谢紊乱,并与残疾和衰弱风险增加相关[39] [40]。最后,整体肥胖增加与老年人的抑郁率较高,认知能力下降[41]和骨质疏松症[42]有关。所有这些原因都被认为是导致衰弱的原因。然而,衰弱是一个动态过程,衰弱本身也可能通过几种潜在机制导致脂肪细胞积聚和肌肉减少,包括减少体力活动,肥胖与维生素D水平低下密切相关,而维生素D在调节炎症反应和免疫功能方面发挥重要作用。一项研究发现,中心性肥胖可通过降低维生素D水平间接增加衰弱的风险[34]。此外衰弱和肥胖之间可能存在双向关系。一方面,肥胖增加衰弱的风险;另一方面,衰弱也可能导致身体活动减少,进而加重肥胖。鉴于肥胖与衰弱之间的密切关联,中老年人可以通过增加身体活动、合理饮食、补充维生素D改善肥胖[43],从而降低衰弱的发生风险。总之,肥胖与衰弱之间存在复杂的因果关系,肥胖不仅是衰弱的危险因素,还可能通过多种机制间接加重衰弱。因此,针对肥胖和衰弱的综合管理对于改善老年人的健康状况至关重要。

5. 衰弱与吸烟2015年进行的一项系统性综述研究检查了吸烟对衰弱的影响。根据这项研究,吸烟与社区居民的衰弱性增加有关[44]吸烟被认为是促进老年人衰弱发展的关键危险因素之一。吸烟涉及增加炎症介质的物质[45],这导致肌肉损失,体重减轻和疲劳–所有因素都参与衰弱[8] [46]。一般来说,戒烟可以帮助降低衰弱的风险,因为戒烟与体重增加有关[47] [48]。如前所述,体重减轻是衰弱的一个方面。吸烟也与缓慢的步行速度有关[49],这也是衰弱的一个组成部分。吸烟也可能减少身体活动,因此,这种减少的身体活动可能会增加衰弱的风险。研究表明,吸烟不仅会增加衰弱的发生风险,还会显著提高衰弱患者的死亡风险。此外,吸烟还与多种不良健康结局相关,如骨折、跌倒、失能等[50]。吸烟可能通过加速衰老、慢性炎症及氧化应激、影响肺功能导致衰弱。在老年人群体中,吸烟与衰弱的关联更为显著。一项针对65岁以上老年人的研究发现,吸烟者(包括现吸烟者和已戒烟者)的衰弱风险显著高于非吸烟者。此外,吸烟还与老年人的体力活动水平低、睡眠质量差等其他衰弱相关因素存在交互作用[51]。因此戒烟可以显著降低衰弱和相关疾病的风险。例如,戒烟可以延长预期寿命,减少因吸烟导致的端粒缩短和其他衰老标志。此外,戒烟还可以改善肺功能和整体健康状态,减少慢性炎症和氧化应激。

4. 衰弱与心血管危险因素相关的病理机制。

1. 炎症机制及氧化应激

炎症是衰弱与心血管疾病共同的病理生理基础。衰弱状态下,机体处于慢性低度炎症状态,炎症因子如C反应蛋白(CRP)、白介素-6 (IL-6)和肿瘤坏死因子-α (TNF-α)水平升高。这些炎症因子不仅会损害血管内皮细胞,导致血管功能障碍,还会促进动脉粥样硬化的发生和发展,增加心血管疾病的风险[52]-[54]。衰弱与氧化应激密切相关。氧化应激会导致血管内皮功能障碍,增加低密度脂蛋白胆固醇(LDL-C)的氧化修饰,进而促进动脉粥样硬化斑块的形成[55]。此外,氧化应激还会损伤线粒体功能,影响细胞的能量代谢,进一步削弱机体的抗应激能力。

2. 神经内分泌失调及代谢异常

衰弱状态下,交感神经系统和肾素–血管紧张素–醛固酮系统(RAAS)的激活会导致血压升高和心脏负荷增加。这种神经内分泌失调不仅会加重心血管系统的负担,还会通过影响代谢和炎症反应,进一步加剧心血管疾病的发生风险。衰弱与多种代谢异常相关,如肥胖、低高密度脂蛋白胆固醇(HDL-C)、胰岛素抵抗等[56]。这些代谢异常会增加心血管疾病的危险因素,例如肥胖会导致心脏负担加重和血管炎症,而低HDL-C则会降低胆固醇的逆向转运,促进动脉粥样硬化。

3. 生理变化与慢性损伤

衰弱的病理生理基础涉及与衰老相关的生物学变化以及长期的“磨损”导致的亚临床器官功能障碍[57]。随着年龄增长,人体多个系统功能逐渐减退,如肌肉力量下降、骨密度降低、免疫功能减弱等。这些变化使得机体在面对疾病等应激因素时,更容易从“亚临床”状态转变为“临床”状态,导致严重的不良后果[58]

5. 总结

衰弱与心血管疾病之间存在双向关系,相互恶化预后,心血管疾病患者更容易出现衰弱状态,而衰弱又会加重心血管疾病的病情,例如,心力衰竭患者由于长期的心功能不全,会导致身体各器官的供血不足,进一步引发肌肉萎缩、疲劳等症状,加剧衰弱[58]

研究表明,衰弱是慢性心力衰竭患者死亡率和再住院率增加的重要危险因素之一[59] [60]。心血管危险因素(如高血压、糖尿病、动脉粥样硬化)与衰弱之间存在双向关系,即心血管危险因素可加速衰弱的发生,而衰弱状态又会进一步加重心血管疾病的负担。衰弱患者往往同时存在多种心血管危险因素,如高血压、高血脂、糖尿病等,这些危险因素相互作用,进一步增加了心血管疾病的发生风险。例如,肥胖患者更容易出现胰岛素抵抗和高血压,而这些因素又会加重心血管系统的负担。在心血管疾病的临床管理中,衰弱状态的识别和干预至关重要。研究表明,通过综合干预(如营养支持、康复训练、药物管理)可以有效改善衰弱患者的预后。例如,针对慢性心力衰竭患者的衰弱管理,建议早期识别并干预相关危险因素,以延缓衰弱进展。此外,未来研究还应探索如何将衰弱评估纳入心血管疾病的常规临床实践中。

NOTES

*通讯作者。

参考文献

[1] Kim, D.H. and Rockwood, K. (2024) Frailty in Older Adults. New England Journal of Medicine, 391, 538-548.
https://doi.org/10.1056/nejmra2301292
[2] Clegg, A., Young, J., Iliffe, S., Rikkert, M.O. and Rockwood, K. (2013) Frailty in Elderly People. The Lancet, 381, 752-762.
https://doi.org/10.1016/s0140-6736(12)62167-9
[3] Hoogendijk, E.O., Suanet, B., Dent, E., Deeg, D.J.H. and Aartsen, M.J. (2016) Adverse Effects of Frailty on Social Functioning in Older Adults: Results from the Longitudinal Aging Study Amsterdam. Maturitas, 83, 45-50.
https://doi.org/10.1016/j.maturitas.2015.09.002
[4] Kojima, G., Iliffe, S., Jivraj, S. and Walters, K. (2016) Association between Frailty and Quality of Life among Community-Dwelling Older People: A Systematic Review and Meta-Analysis. Journal of Epidemiology and Community Health, 70, 716-721.
https://doi.org/10.1136/jech-2015-206717
[5] Hoogendijk, E.O., Afilalo, J., Ensrud, K.E., Kowal, P., Onder, G. and Fried, L.P. (2019) Frailty: Implications for Clinical Practice and Public Health. The Lancet, 394, 1365-1375.
https://doi.org/10.1016/s0140-6736(19)31786-6
[6] Bastos-Barbosa, R.G., Ferriolli, E., Coelho, E.B., Moriguti, J.C., Nobre, F. and da Costa Lima, N.K. (2012) Association of Frailty Syndrome in the Elderly with Higher Blood Pressure and Other Cardiovascular Risk Factors. American Journal of Hypertension, 25, 1156-1161.
https://doi.org/10.1038/ajh.2012.99
[7] Soysal, P., Arik, F., Smith, L., Jackson, S.E. and Isik, A.T. (2020) Inflammation, Frailty and Cardiovascular Disease. In: Veronese, N., Eds., Frailty and Cardiovascular Diseases, Springer, 55-64.
https://doi.org/10.1007/978-3-030-33330-0_7
[8] Fried, L.P., Tangen, C.M., Walston, J., Newman, A.B., Hirsch, C., Gottdiener, J., et al. (2001) Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56, M146-M157.
https://doi.org/10.1093/gerona/56.3.m146
[9] 韩君, 王君俏, 谢博钦, 等. Fried衰弱表型和FRAIL量表及埃德蒙顿衰弱评估量表在社区高龄老年人衰弱筛查中一致性和适用性的比较研究[J]. 中国全科医学, 2021, 24(21): 2669-2675.
[10] Rockwood, K., Andrew, M. and Mitnitski, A. (2007) A Comparison of Two Approaches to Measuring Frailty in Elderly People. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62, 738-743.
https://doi.org/10.1093/gerona/62.7.738
[11] Kim, D.J., Massa, M.S., Potter, C.M., Clarke, R. and Bennett, D.A. (2022) Systematic Review of the Utility of the Frailty Index and Frailty Phenotype to Predict All-Cause Mortality in Older People. Systematic Reviews, 11, Article No. 187.
https://doi.org/10.1186/s13643-022-02052-w
[12] Ijaz, N., Buta, B., Xue, Q., Mohess, D.T., Bushan, A., Tran, H., et al. (2022) Interventions for Frailty among Older Adults with Cardiovascular Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 79, 482-503.
https://doi.org/10.1016/j.jacc.2021.11.029
[13] James, K., Jamil, Y., Kumar, M., Kwak, M.J., Nanna, M.G., Qazi, S., et al. (2024) Frailty and Cardiovascular Health. Journal of the American Heart Association, 13, e031736.
https://doi.org/10.1161/jaha.123.031736
[14] Ma, L., Chhetri, J.K., Liu, P., Ji, T., Zhang, L. and Tang, Z. (2020) Epidemiological Characteristics and Related Factors of Frailty in Older Chinese Adults with Hypertension: A Population-Based Study. Journal of Hypertension, 38, 2192-2197.
https://doi.org/10.1097/hjh.0000000000002650
[15] Ma, L., Zhang, L., Sun, F., Li, Y. and Tang, Z. (2018) Frailty in Chinese Older Adults with Hypertension: Prevalence, Associated Factors, and Prediction for Long‐Term Mortality. The Journal of Clinical Hypertension, 20, 1595-1602.
https://doi.org/10.1111/jch.13405
[16] Bielecka‐Dabrowa, A., Ebner, N., dos Santos, M.R., Ishida, J., Hasenfuss, G. and von Haehling, S. (2020) Cachexia, Muscle Wasting, and Frailty in Cardiovascular Disease. European Journal of Heart Failure, 22, 2314-2326.
https://doi.org/10.1002/ejhf.2011
[17] Kang, M., Kim, S., Yoon, S., Choi, J., Kim, K. and Kim, C. (2017) Association between Frailty and Hypertension Prevalence, Treatment, and Control in the Elderly Korean Population. Scientific Reports, 7, Article No. 7542.
https://doi.org/10.1038/s41598-017-07449-5
[18] Khan, M.S., Segar, M.W., Usman, M.S., Singh, S., Greene, S.J., Fonarow, G.C., et al. (2022) Frailty, Guideline-Directed Medical Therapy, and Outcomes in HFrEF: From the GUIDE-IT Trial. JACC: Heart Failure, 10, 266-275.
https://doi.org/10.1016/j.jchf.2021.12.004
[19] Forman, D.E. and Alexander, K.P. (2016) Frailty: A Vital Sign for Older Adults with Cardiovascular Disease. Canadian Journal of Cardiology, 32, 1082-1087.
https://pubmed.ncbi.nlm.nih.gov/27476987/
[20] Stout, M.B., Justice, J.N., Nicklas, B.J. and Kirkland, J.L. (2017) Physiological Aging: Links among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology, 32, 9-19.
https://doi.org/10.1152/physiol.00012.2016
[21] Patel, T.P., Rawal, K., Bagchi, A.K., Akolkar, G., Bernardes, N., Dias, D.d.S., et al. (2015) Insulin Resistance: An Additional Risk Factor in the Pathogenesis of Cardiovascular Disease in Type 2 Diabetes. Heart Failure Reviews, 21, 11-23.
https://doi.org/10.1007/s10741-015-9515-6
[22] The SPRINT Research Group (2015) A Randomized Trial of Intensive versus Standard Blood-Pressure Control. New England Journal of Medicine, 373, 2103-2116.
https://doi.org/10.1056/nejmoa1511939
[23] 张占英, 古丽班努, 李玉琴. 血脂异常、高敏C反应蛋白与老年衰弱的相关性研究[J]. 中西医结合心血管病电子杂志, 2019, 7(33): 80, 82.
[24] King, H., Aubert, R.E. and Herman, W.H. (1998) Global Burden of Diabetes, 1995-2025: Prevalence, Numerical Estimates, and Projections. Diabetes Care, 21, 1414-1431.
https://doi.org/10.2337/diacare.21.9.1414
[25] Zimmet, P.Z. (1999) Diabetes Epidemiology as a Tool to Trigger Diabetes Research and Care. Diabetologia, 42, 499-518.
https://doi.org/10.1007/s001250051188
[26] Morley, J.E., Malmstrom, T.K., Rodriguez-Mañas, L. and Sinclair, A.J. (2014) Frailty, Sarcopenia and Diabetes. Journal of the American Medical Directors Association, 15, 853-859.
https://doi.org/10.1016/j.jamda.2014.10.001
[27] Saum, K., Dieffenbach, A.K., Müller, H., Holleczek, B., Hauer, K. and Brenner, H. (2014) Frailty Prevalence and 10-Year Survival in Community-Dwelling Older Adults: Results from the ESTHER Cohort Study. European Journal of Epidemiology, 29, 171-179.
https://doi.org/10.1007/s10654-014-9891-6
[28] Ottenbacher, K.J., Graham, J.E., Al Snih, S., Raji, M., Samper-Ternent, R., Ostir, G.V., et al. (2009) Mexican Americans and Frailty: Findings from the Hispanic Established Populations Epidemiologic Studies of the Elderly. American Journal of Public Health, 99, 673-679.
https://doi.org/10.2105/ajph.2008.143958
[29] Kalyani, R.R., Corriere, M. and Ferrucci, L. (2014) Age-Related and Disease-Related Muscle Loss: The Effect of Diabetes, Obesity, and Other Diseases. The Lancet Diabetes & Endocrinology, 2, 819-829.
https://pubmed.ncbi.nlm.nih.gov/24731660/
[30] Chen, L., Chen, Y., Lin, M., Peng, L. and Hwang, S. (2010) Care of Elderly Patients with Diabetes Mellitus: A Focus on Frailty. Ageing Research Reviews, 9, S18-S22.
https://doi.org/10.1016/j.arr.2010.08.008
[31] Chi, C., Wang, J., Lee, S., Chao, C., Hung, K. and Chien, K. (2023) The Impact of Glucose-Lowering Strategy on the Risk of Increasing Frailty Severity among 49,519 Patients with Diabetes Mellitus: A Longitudinal Cohort Study. Aging and disease, 14, 1917-1926.
https://doi.org/10.14336/ad.2023.0225
[32] 崔彦泽, 张玲, 蒋璐, 等. 衰弱与2型糖尿病的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 786-789.
[33] Yuan, L., Chang, M. and Wang, J. (2021) Abdominal Obesity, Body Mass Index and the Risk of Frailty in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. Age and Ageing, 50, 1118-1128.
https://doi.org/10.1093/ageing/afab039
[34] 尹单, 贺惠娟, 李梦盈, 等. 中国老年人中心性肥胖和维生素D水平与衰弱的关系研究[J]. 中国全科医学, 2025, 28(8): 933-938.
[35] Barzilay, J.I. (2007) Insulin Resistance and Inflammation as Precursors of Frailty: The Cardio-Vascular Health Study. Archives of Internal Medicine, 167, 635-641.
https://doi.org/10.1001/archinte.167.7.635
[36] García‐Esquinas, E., José García‐García, F., León‐Muñoz, L.M., Carnicero, J.A., Guallar‐Castillón, P., Gonzalez‐Colaço Harmand, M., et al. (2015) Obesity, Fat Distribution, and Risk of Frailty in Two Population‐based Cohorts of Older Adults in Spain. Obesity, 23, 847-855.
https://doi.org/10.1002/oby.21013
[37] Barzilay, J.I., Cotsonis, G.A., Walston, J., Schwartz, A.V., Satterfield, S., Miljkovic, I., et al. (2009) Insulin Resistance Is Associated with Decreased Quadriceps Muscle Strength in Nondiabetic Adults Aged ≥ 70 Years. Diabetes Care, 32, 736-738.
https://doi.org/10.2337/dc08-1781
[38] Abbatecola, A.M., Ferrucci, L., Ceda, G., Russo, C.R., Lauretani, F., Bandinelli, S., et al. (2005) Insulin Resistance and Muscle Strength in Older Persons. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60, 1278-1282.
https://doi.org/10.1093/gerona/60.10.1278
[39] Hirani, V., Naganathan, V., Blyth, F., Le Couteur, D.G., Seibel, M.J., Waite, L.M., et al. (2016) Longitudinal Associations between Body Composition, Sarcopenic Obesity and Outcomes of Frailty, Disability, Institutionalisation and Mortality in Community-Dwelling Older Men: The Concord Health and Ageing in Men Project. Age and Ageing, 46, 413-420.
https://doi.org/10.1093/ageing/afw214
[40] Polyzos, S.A. and Margioris, A.N. (2018) Sarcopenic Obesity. Hormones, 17, 321-331.
https://doi.org/10.1007/s42000-018-0049-x
[41] Sakakura, K., Hoshide, S., Ishikawa, J., Momomura, S., Kawakami, M., Shimada, K., et al. (2008) Association of Body Mass Index with Cognitive Function in Elderly Hypertensive Japanese. American Journal of Hypertension, 21, 627-632.
https://doi.org/10.1038/ajh.2008.157
[42] Felson, D.T., Zhang, Y., Hannan, M.T. and Anderson, J.J. (1993) Effects of Weight and Body Mass Index on Bone Mineral Density in Men and Women: The Framingham Study. Journal of Bone and Mineral Research, 8, 567-573.
https://doi.org/10.1002/jbmr.5650080507
[43] Zheng, Z., Xu, W., Wang, F., Qiu, Y. and Xue, Q. (2022) Association between Vitamin D3 Levels and Frailty in the Elderly: A Large Sample Cross-Sectional Study. Frontiers in Nutrition, 9, Article 980908.
https://doi.org/10.3389/fnut.2022.980908
[44] Kojima, G., Iliffe, S. and Walters, K. (2015) Smoking as a Predictor of Frailty: A Systematic Review. BMC Geriatrics, 15, Article No. 131.
https://doi.org/10.1186/s12877-015-0134-9
[45] Gonçalves, R.B., Coletta, R.D., Silvério, K.G., Benevides, L., Casati, M.Z., da Silva, J.S., et al. (2011) Impact of Smoking on Inflammation: Overview of Molecular Mechanisms. Inflammation Research, 60, 409-424.
https://doi.org/10.1007/s00011-011-0308-7
[46] Levi, M. and van der Poll, T. (2010) Inflammation and Coagulation. Critical Care Medicine, 38, S26-S34.
https://doi.org/10.1097/ccm.0b013e3181c98d21
[47] Tian, J., Venn, A., Otahal, P. and Gall, S. (2015) The Association between Quitting Smoking and Weight Gain: A Systemic Review and Meta‐Analysis of Prospective Cohort Studies. Obesity Reviews, 16, 883-901.
https://doi.org/10.1111/obr.12304
[48] Pistelli, F., Aquilini, F. and Carrozzi, L. (2016) Weight Gain after Smoking Cessation. Monaldi Archives for Chest Disease, 71, 81-87.
https://doi.org/10.4081/monaldi.2009.367
[49] North, T., Palmer, T.M., Lewis, S.J., Cooper, R., Power, C., Pattie, A., et al. (2015) Effect of Smoking on Physical and Cognitive Capability in Later Life: A Multicohort Study Using Observational and Genetic Approaches. BMJ Open, 5, e008393.
https://doi.org/10.1136/bmjopen-2015-008393
[50] 陈潇婷, 卜小宁. 吸烟与老年人衰弱的研究进展[J]. 中华全科医师杂志, 2023, 22(9): 983-986.
[51] 金玲玲, 张鸣庆, 黄春妍, 等. 老年人衰弱的影响因素研究[J]. 预防医学, 2024, 36(11): 931-935.
[52] Xu, Y., Wang, M., Chen, D., Jiang, X. and Xiong, Z. (2022) Inflammatory Biomarkers in Older Adults with Frailty: A Systematic Review and Meta-Analysis of Cross-Sectional Studies. Aging Clinical and Experimental Research, 34, 971-987.
https://doi.org/10.1007/s40520-021-02022-7
[53] Cesari, M., Penninx, B.W.J.H., Newman, A.B., Kritchevsky, S.B., Nicklas, B.J., Sutton-Tyrrell, K., et al. (2003) Inflammatory Markers and Onset of Cardiovascular Events: Results from the Health ABC Study. Circulation, 108, 2317-2322.
https://doi.org/10.1161/01.cir.0000097109.90783.fc
[54] Qu, T., Yang, H., Walston, J.D., Fedarko, N.S. and Leng, S.X. (2009) Upregulated Monocytic Expression of CXC Chemokine Ligand 10 (CXCL-10) and Its Relationship with Serum Interleukin-6 Levels in the Syndrome of Frailty. Cytokine, 46, 319-324.
https://doi.org/10.1016/j.cyto.2009.02.015
[55] Soysal, P., Isik, A.T., Carvalho, A.F., Fernandes, B.S., Solmi, M., Schofield, P., et al. (2017) Oxidative Stress and Frailty: A Systematic Review and Synthesis of the Best Evidence. Maturitas, 99, 66-72.
https://doi.org/10.1016/j.maturitas.2017.01.006
[56] Resmini, E., Minuto, F., Colao, A. and Ferone, D. (2009) Secondary Diabetes Associated with Principal Endocrinopathies: The Impact of New Treatment Modalities. Acta Diabetologica, 46, 85-95.
https://doi.org/10.1007/s00592-009-0112-9
[57] Finn, M. and Green, P. (2015) The Influence of Frailty on Outcomes in Cardiovascular Disease. Revista Española de Cardiología (English Edition), 68, 653-656.
https://doi.org/10.1016/j.rec.2015.04.005
[58] 邹晓, 范利. 老年心血管疾病与衰弱相关性及研究进展[J]. 中国临床保健杂志, 2023, 26(1): 7-12.
https://kns.cnki.net/kcms2/article/abstract?v=LzEBRIJt2Q2WJzL7PJGN0XehcwYVT7Nn25vIVU17aBzYh-Lz8eJJFJXkNQnEHlt8oOly4CLfrdVC3znUeXAlqPgtveCUiEFy4m7NMAoayGxskc9s1UO7EQrTNKFSUApVoyNZUyFPGm66rvKBHfyrotDEJ0XqnCCdQ2ODv8t7A9M5Fwcd2rAqWaxz-qZzF2If&uniplatform=NZKPT&language=CHS
[59] Dewan, P., Jackson, A., Jhund, P.S., Shen, L., Ferreira, J.P., Petrie, M.C., et al. (2020) The Prevalence and Importance of Frailty in Heart Failure with Reduced Ejection Fraction—An Analysis of paradigm‐hf and atmosphere. European Journal of Heart Failure, 22, 2123-2133.
https://doi.org/10.1002/ejhf.1832
[60] Goyal, P., Yum, B., Navid, P., Chen, L., Kim, D.H., Roh, J., et al. (2021) Frailty and Post-Hospitalization Outcomes in Patients with Heart Failure with Preserved Ejection Fraction. The American Journal of Cardiology, 148, 84-93.
https://doi.org/10.1016/j.amjcard.2021.02.019