|
[1]
|
Marassi, M. and Fadini, G.P. (2023) The Cardio-Renal-Metabolic Connection: A Review of the Evidence. Cardiovascular Diabetology, 22, Article No. 195. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhu, R., Wang, R., He, J., Wang, L., Chen, H., Niu, X., et al. (2024) Prevalence of Cardiovascular-Kidney-Metabolic Syndrome Stages by Social Determinants of Health. JAMA Network Open, 7, e2445309. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, Y., Ning, Y., Shen, B., Shi, Y., Song, N., Fang, Y., et al. (2022) Temporal Trends in Prevalence and Mortality for Chronic Kidney Disease in China from 1990 to 2019: An Analysis of the Global Burden of Disease Study 2019. Clinical Kidney Journal, 16, 312-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Li, Y., Zhu, B., Xie, Y., Jin, S., Zhou, W., Fang, Y., et al. (2022) Effect Modification of Hyperuricemia, Cardiovascular Risk, and Age on Chronic Kidney Disease in China: A Cross-Sectional Study Based on the China Health and Nutrition Survey Cohort. Frontiers in Cardiovascular Medicine, 9, Article ID: 853917. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Medina-Inojosa, J.R., Somers, V.K., Garcia, M., Thomas, R.J., Allison, T., Chaudry, R., et al. (2023) Performance of the ACC/AHA Pooled Cohort Cardiovascular Risk Equations in Clinical Practice. Journal of the American College of Cardiology, 82, 1499-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ndumele, C.E., Rangaswami, J., Chow, S.L., Neeland, I.J., Tuttle, K.R., Khan, S.S., et al. (2023) Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association. Circulation, 148, 1606-1635. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Afkarian, M., Sachs, M.C., Kestenbaum, B., Hirsch, I.B., Tuttle, K.R., Himmelfarb, J., et al. (2013) Kidney Disease and Increased Mortality Risk in Type 2 Diabetes. Journal of the American Society of Nephrology, 24, 302-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Petersen, M.C. and Shulman, G.I. (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98, 2133-2223. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Szukiewicz, D. (2023) Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. International Journal of Molecular Sciences, 24, Article No. 9818. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Walker, R.E., Ford, J.L., Boston, R.C., Savinova, O.V., Harris, W.S., Green, M.H., et al. (2020) Trafficking of Nonesterified Fatty Acids in Insulin Resistance and Relationship to Dysglycemia. American Journal of Physiology-Endocrinology and Metabolism, 318, E392-E404. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kang, P.S. and Neeland, I.J. (2023) Body Fat Distribution, Diabetes Mellitus, and Cardiovascular Disease: An Update. Current Cardiology Reports, 25, 1555-1564. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
McQuaid, S.E., Hodson, L., Neville, M.J., Dennis, A.L., Cheeseman, J., Humphreys, S.M., et al. (2010) Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity: A Driver for Ectopic Fat Deposition? Diabetes, 60, 47-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wu, C. and Chen, X. (2021) Association of Serum Nonesterified Fatty Acids with Cardiovascular Event in Patients with Chronic Kidney Disease. International Journal of General Medicine, 14, 2033-2040. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shiri, H., Fallah, H., Abolhassani, M., Fooladi, S., Ramezani Karim, Z., Danesh, B., et al. (2024) Relationship between Types and Levels of Free Fatty Acids, Peripheral Insulin Resistance, and Oxidative Stress in T2DM: A Case-Control Study. PLOS ONE, 19, e0306977. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sullivan, A.E., Courvan, M.C.S., Aday, A.W., Wasserman, D.H., Niswender, K.D., Shardelow, E.M., et al. (2025) The Role of Serum Free Fatty Acids in Endothelium‐Dependent Microvascular Function. Endocrinology, Diabetes & Metabolism, 8, e70031. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mallick, R. and Duttaroy, A.K. (2021) Modulation of Endothelium Function by Fatty Acids. Molecular and Cellular Biochemistry, 477, 15-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Massy, Z.A. and Drueke, T.B. (2024) Combination of Cardiovascular, Kidney, and Metabolic Diseases in a Syndrome Named Cardiovascular-Kidney-Metabolic, with New Risk Prediction Equations. Kidney International Reports, 9, 2608-2618. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bays, H.E., Kirkpatrick, C., Maki, K.C., Toth, P.P., Morgan, R.T., Tondt, J., et al. (2024) Obesity, Dyslipidemia, and Cardiovascular Disease: A Joint Expert Review from the Obesity Medicine Association and the National Lipid Association 2024. Obesity Pillars, 10, Article ID: 100108. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tain, Y. and Hsu, C. (2024) The Renin-Angiotensin System and Cardiovascular-Kidney-Metabolic Syndrome: Focus on Early-Life Programming. International Journal of Molecular Sciences, 25, Article No. 3298. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, X., Hu, W., Xu, J., Shen, J., Lin, L., Zhu, J., et al. (2025) Difference between Estimated Glomerular Filtration Rate Based on Cystatin C versus Creatinine and Cardiovascular-Kidney-Metabolic Health. Frontiers in Medicine, 11, Article ID: 1477343. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
李伟, 胡洪贞. 高血压肾损害的危险因素及防治策略[J]. 肾脏病与透析肾移植杂志, 2010, 19(2): 172-179.
|
|
[22]
|
Schiffrin, E.L. and Pollock, D.M. (2024) Endothelin System in Hypertension and Chronic Kidney Disease. Hypertension, 81, 691-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B.A., Griendling, K.K., et al. (1996) Angiotensin Ii-Mediated Hypertension in the Rat Increases Vascular Superoxide Production via Membrane NADH/NADPH Oxidase Activation. Contribution to Alterations of Vasomotor Tone. Journal of Clinical Investigation, 97, 1916-1923. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, X. and Zhuo, J. (2023) Intracellular Angiotensin II Stimulation of Sodium Transporter Expression in Proximal Tubule Cells via AT1 (AT1a) Receptor-Mediated, MAP Kinases ERK1/2-and NF-кB-Dependent Signaling Pathways. Cells, 12, Article No. 1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Otsuka, H., Abe, M. and Kobayashi, H. (2023) The Effect of Aldosterone on Cardiorenal and Metabolic Systems. International Journal of Molecular Sciences, 24, Article No. 5370. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Forrester, S.J., Booz, G.W., Sigmund, C.D., Coffman, T.M., Kawai, T., Rizzo, V., et al. (2018) Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiological Reviews, 98, 1627-1738. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhu, M., Hu, J., Pan, Y., Jiang, Q. and Shu, C. (2024) Magnoflorine Attenuates Ang II-Induced Cardiac Remodeling via Promoting Ampk-Regulated Autophagy. Cardiovascular Diagnosis and Therapy, 14, 576-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
中华医学会内分泌学分会. 中国成人代谢综合征诊断标准专家共识(2020修订版) [J]. 中华内分泌代谢杂志, 2020, 36(12): 953-960.
|
|
[29]
|
国家心血管病中心, 中华医学会心血管病学分会. 中国心血管病风险评估和管理指南(2022年修订版) [J]. 中华心血管病杂志, 2022, 50(6): 557-586.
|
|
[30]
|
中华医学会肾脏病学分会. 中国慢性肾脏病早期筛查与规范化管理指南[J]. 中华肾脏病杂志, 2021, 37(3): 201-216.
|
|
[31]
|
Wang, Y., Ren, Y., Zhang, X., Shen, B., Chen, X., Wang, Y., et al. (2021) Development and Validation of a Risk Prediction Model for Cardio-Renal-Metabolic Syndrome in Chinese Adults: The China Health and Nutrition Survey. Diabetes Care, 44, 2108-2116.
|
|
[32]
|
中华医学会内分泌学分会. 心肾代谢综合征多学科协作诊疗中国专家共识[J]. 中华内分泌代谢杂志, 2022, 38(11): 901-912.
|
|
[33]
|
Kistler, B.M., Moore, L.W., Benner, D., Biruete, A., Boaz, M., Brunori, G., et al. (2021) The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI Clinical Practice Guideline for Nutrition in Chronic Kidney Disease. Journal of Renal Nutrition, 31, 116-120.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Simsek, I., Manemann, S.M., Yost, K.J., Chamberlain, A.M., Fabbri, M., Jiang, R., et al. (2020) Participation Bias in a Survey of Community Patients with Heart Failure. Mayo Clinic Proceedings, 95, 911-919. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Herrington, W.G., Staplin, N. and Baigent, C. (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Müller, T.D. and Tschöp, M.H. (2022) GLP-1 Receptor Agonists: Beyond Glycemic Control-Cardiometabolic and Organoprotective Effects. Nature Reviews Endocrinology, 18, 721-737.
|
|
[37]
|
McMurray, J.J.V., Packer, M. and Desai, A.S. (2023) Sacubitril/Valsartan: Mechanisms and Clinical Evidence in Heart Failure and Beyond. Nature Reviews Cardiology, 20, 237-253.
|
|
[38]
|
Bakris, G.L., Agarwal, R., Anker, S.D., Pitt, B., Ruilope, L.M., Rossing, P., et al. (2020) Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. New England Journal of Medicine, 383, 2219-2229. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Heerspink, H.J.L. (2023) Combined Renin-Angiotensin System Inhibition and Sodium-Glucose Cotransporter 2 Inhibition in Diabetic Kidney Disease: Mechanisms and Clinical Implications. Nature Reviews Nephrology, 19, 505-520.
|
|
[40]
|
Sharma, K., Ix, J.H. and Kusiak, A.W. (2023) Pirfenidone in Chronic Kidney Disease with Progressive Fibrosis: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Journal of the American Society of Nephrology (JASN), 34, 1234-1245.
|