[1]
|
Liu, X., Liu, Y., Liu, J., Zhang, H., Shan, C., Guo, Y., et al. (2023) Correlation between the Gut Microbiome and Neurodegenerative Diseases: A Review of Metagenomics Evidence. Neural Regeneration Research, 19, 833-845. https://doi.org/10.4103/1673-5374.382223
|
[2]
|
De-Paula, V.d.J.R., Forlenza, A.S. and Forlenza, O.V. (2018) Relevance of Gutmicrobiota in Cognition, Behaviour and Alzheimer’s Disease. Pharmacological Research, 136, 29-34. https://doi.org/10.1016/j.phrs.2018.07.007
|
[3]
|
Kumar Singh, A., Cabral, C., Kumar, R., Ganguly, R., Kumar Rana, H., Gupta, A., et al. (2019) Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients, 11, Article 2216. https://doi.org/10.3390/nu11092216
|
[4]
|
Kesika, P., Suganthy, N., Sivamaruthi, B.S. and Chaiyasut, C. (2021) Role of Gut-Brain Axis, Gut Microbial Composition, and Probiotic Intervention in Alzheimer’s Disease. Life Sciences, 264, Article 118627. https://doi.org/10.1016/j.lfs.2020.118627
|
[5]
|
Etxeberria, U., Fernández-Quintela, A., Milagro, F.I., Aguirre, L., Martínez, J.A. and Portillo, M.P. (2013) Impact of Polyphenols and Polyphenol-Rich Dietary Sources on Gut Microbiota Composition. Journal of Agricultural and Food Chemistry, 61, 9517-9533. https://doi.org/10.1021/jf402506c
|
[6]
|
Dahiya, D.K., Renuka, Puniya, M., Shandilya, U.K., Dhewa, T., Kumar, N., et al. (2017) Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Frontiers in Microbiology, 8, Article 563. https://doi.org/10.3389/fmicb.2017.00563
|
[7]
|
Korf, J.M., Ganesh, B.P. and McCullough, L.D. (2022) Gut Dysbiosis and Age-Related Neurological Diseases in Females. Neurobiology of Disease, 168, Article 105695. https://doi.org/10.1016/j.nbd.2022.105695
|
[8]
|
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., et al. (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167, 1469-1480.E12. https://doi.org/10.1016/j.cell.2016.11.018
|
[9]
|
Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K. (2019) The Role of Short-Chain Fatty Acids in Microbiota-gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478. https://doi.org/10.1038/s41575-019-0157-3
|
[10]
|
Ren, T., Gao, Y., Qiu, Y., Jiang, S., Zhang, Q., Zhang, J., et al. (2020) Gut Microbiota Altered in Mild Cognitive Impairment Compared with Normal Cognition in Sporadic Parkinson’s Disease. Frontiers in Neurology, 11, Article 137. https://doi.org/10.3389/fneur.2020.00137
|
[11]
|
Jeong, S., Huang, L., Tsai, M., Liao, Y., Lin, Y., Hu, C., et al. (2022) Cognitive Function Associated with Gut Microbial Abundance in Sucrose and S-Adenosyl-L-Methionine (SAMe) Metabolic Pathways. Journal of Alzheimer’s Disease, 87, 1115-1130. https://doi.org/10.3233/jad-215090
|
[12]
|
Taru, V., Szabo, G., Mehal, W. and Reiberger, T. (2024) Inflammasomes in Chronic Liver Disease: Hepatic Injury, Fibrosis Progression and Systemic Inflammation. Journal of Hepatology, 81, 895-910. https://doi.org/10.1016/j.jhep.2024.06.016
|
[13]
|
Kisseleva, T. and Brenner, D. (2020) Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nature Reviews Gastroenterology & Hepatology, 18, 151-166. https://doi.org/10.1038/s41575-020-00372-7
|
[14]
|
Gracia-Sancho, J., Marrone, G. and Fernández-Iglesias, A. (2018) Hepatic Microcirculation and Mechanisms of Portal Hypertension. Nature Reviews Gastroenterology & Hepatology, 16, 221-234. https://doi.org/10.1038/s41575-018-0097-3
|
[15]
|
Mederacke, I., Hsu, C.C., Troeger, J.S., Huebener, P., Mu, X., Dapito, D.H., et al. (2013) Fate Tracing Reveals Hepatic Stellate Cells as Dominant Contributors to Liver Fibrosis Independent of Its Aetiology. Nature Communications, 4, Article No. 2823. https://doi.org/10.1038/ncomms3823
|
[16]
|
Tsuchida, T. and Friedman, S.L. (2017) Mechanisms of Hepatic Stellate Cell Activation. Nature Reviews Gastroenterology & Hepatology, 14, 397-411. https://doi.org/10.1038/nrgastro.2017.38
|
[17]
|
Engelmann, C., Clària, J., Szabo, G., Bosch, J. and Bernardi, M. (2021) Pathophysiology of Decompensated Cirrhosis: Portal Hypertension, Circulatory Dysfunction, Inflammation, Metabolism and Mitochondrial Dysfunction. Journal of Hepatology, 75, S49-S66. https://doi.org/10.1016/j.jhep.2021.01.002
|
[18]
|
Berzigotti, A. (2017) Advances and Challenges in Cirrhosis and Portal Hypertension. BMC Medicine, 15, Article No. 200. https://doi.org/10.1186/s12916-017-0966-6
|
[19]
|
Trebicka, J., Fernandez, J., Papp, M., Caraceni, P., Laleman, W., Gambino, C., et al. (2020) The Predict Study Uncovers Three Clinical Courses of Acutely Decompensated Cirrhosis that Have Distinct Pathophysiology. Journal of Hepatology, 73, 842-854.
|
[20]
|
Li, D., Wang, P., Wang, P., Hu, X. and Chen, F. (2016) The Gut Microbiota: A Treasure for Human Health. Biotechnology Advances, 34, 1210-1224. https://doi.org/10.1016/j.biotechadv.2016.08.003
|
[21]
|
Chang, C. and Kao, C. (2019) Current Understanding of the Gut Microbiota Shaping Mechanisms. Journal of Biomedical Science, 26, Article No. 59. https://doi.org/10.1186/s12929-019-0554-5
|
[22]
|
Kaoutari, A.E., Armougom, F., Gordon, J.I., Raoult, D. and Henrissat, B. (2013) The Abundance and Variety of Carbohydrate-Active Enzymes in the Human Gut Microbiota. Nature Reviews Microbiology, 11, 497-504. https://doi.org/10.1038/nrmicro3050
|
[23]
|
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. and Goodman, A.L. (2019) Mapping Human Microbiome Drug Metabolism by Gut Bacteria and Their Genes. Nature, 570, 462-467. https://doi.org/10.1038/s41586-019-1291-3
|
[24]
|
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2018) Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. European Journal of Nutrition, 57, 1-24. https://doi.org/10.1007/s00394-017-1445-8
|
[25]
|
Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. https://doi.org/10.1038/nri.2016.42
|
[26]
|
Hughes, D.T. and Sperandio, V. (2008) Inter-Kingdom Signalling: Communication between Bacteria and Their Hosts. Nature Reviews Microbiology, 6, 111-120. https://doi.org/10.1038/nrmicro1836
|
[27]
|
Tulkens, J., De Wever, O. and Hendrix, A. (2019) Analyzing Bacterial Extracellular Vesicles in Human Body Fluids by Orthogonal Biophysical Separation and Biochemical Characterization. Nature Protocols, 15, 40-67. https://doi.org/10.1038/s41596-019-0236-5
|
[28]
|
Pant, K., Yadav, A.K., Gupta, P., Islam, R., Saraya, A. and Venugopal, S.K. (2017) Butyrate Induces Ros-Mediated Apoptosis by Modulating miR-22/SIRT-1 Pathway in Hepatic Cancer Cells. Redox Biology, 12, 340-349. https://doi.org/10.1016/j.redox.2017.03.006
|
[29]
|
Zhang, B., Zhao, J., Jiang, M., Peng, D., Dou, X., Song, Y., et al. (2022) The Potential Role of Gut Microbial-Derived Exosomes in Metabolic-Associated Fatty Liver Disease: Implications for Treatment. Frontiers in Immunology, 13, Article 893617. https://doi.org/10.3389/fimmu.2022.893617
|
[30]
|
Portincasa, P., Bonfrate, L., Khalil, M., Angelis, M.D., Calabrese, F.M., D’Amato, M., et al. (2021) Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 10, Article 83. https://doi.org/10.3390/biomedicines10010083
|
[31]
|
Suk, K.T. and Kim, D.J. (2019) Gut Microbiota: Novel Therapeutic Target for Nonalcoholic Fatty Liver Disease. Expert Review of Gastroenterology & Hepatology, 13, 193-204. https://doi.org/10.1080/17474124.2019.1569513
|
[32]
|
Schnabl, B. and Brenner, D.A. (2014) Interactions between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 146, 1513-1524. https://doi.org/10.1053/j.gastro.2014.01.020
|
[33]
|
Yu, Y., Wang, X. and Fan, G. (2017) Versatile Effects of Bacterium-Released Membrane Vesicles on Mammalian Cells and Infectious/inflammatory Diseases. Acta Pharmacologica Sinica, 39, 514-533. https://doi.org/10.1038/aps.2017.82
|
[34]
|
敬进华, 金星, 马旭, 等. 基于肠-肝轴理论探讨NAFLD进展与肠道菌群的联系[J]. 肝脏, 2024, 29(9): 1150-1153.
|
[35]
|
Tripathi, A., Debelius, J., Brenner, D.A., Karin, M., Loomba, R., Schnabl, B., et al. (2018) The Gut-Liver Axis and the Intersection with the Microbiome. Nature Reviews Gastroenterology & Hepatology, 15, 397-411. https://doi.org/10.1038/s41575-018-0011-z
|
[36]
|
Ji, Y., Yin, Y., Sun, L. and Zhang, W. (2020) The Molecular and Mechanistic Insights Based on Gut-Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement. International Journal of Molecular Sciences, 21, Article 3066. https://doi.org/10.3390/ijms21093066
|
[37]
|
Yang, X., Lu, D., Zhuo, J., Lin, Z., Yang, M. and Xu, X. (2020) The Gut-Liver Axis in Immune Remodeling: New Insight into Liver Diseases. International Journal of Biological Sciences, 16, 2357-2366. https://doi.org/10.7150/ijbs.46405
|
[38]
|
Lee, N.Y. and Suk, K.T. (2020) The Role of the Gut Microbiome in Liver Cirrhosis Treatment. International Journal of Molecular Sciences, 22, Article 199. https://doi.org/10.3390/ijms22010199
|
[39]
|
Bajaj, J.S. (2019) Altered Microbiota in Cirrhosis and Its Relationship to the Development of Infection. Clinical Liver Disease, 14, 107-111. https://doi.org/10.1002/cld.827
|
[40]
|
Acharya, C. and Bajaj, J.S. (2019) Altered Microbiome in Patients with Cirrhosis and Complications. Clinical Gastroenterology and Hepatology, 17, 307-321. https://doi.org/10.1016/j.cgh.2018.08.008
|
[41]
|
鲁冰洁, 赵亚红, 安泳潼, 等. 肠道微生物在肝硬化及相关并发症中的研究进展[J]. 临床肝胆病杂志, 2018, 34(11): 2433-2437.
|
[42]
|
Bajaj, J.S., Betrapally, N.S., Hylemon, P.B., Heuman, D.M., Daita, K., White, M.B., et al. (2015) Salivary Microbiota Reflects Changes in Gut Microbiota in Cirrhosis with Hepatic Encephalopathy. Hepatology, 62, 1260-1271. https://doi.org/10.1002/hep.27819
|
[43]
|
García-Pagán, J., Gracia-Sancho, J. and Bosch, J. (2012) Functional Aspects on the Pathophysiology of Portal Hypertension in Cirrhosis. Journal of Hepatology, 57, 458-461. https://doi.org/10.1016/j.jhep.2012.03.007
|
[44]
|
Moghadamrad, S., McCoy, K.D., Geuking, M.B., Sägesser, H., Kirundi, J., Macpherson, A.J., et al. (2015) Attenuated Portal Hypertension in Germ‐Free Mice: Function of Bacterial Flora on the Development of Mesenteric Lymphatic and Blood Vessels. Hepatology, 61, 1685-1695. https://doi.org/10.1002/hep.27698
|
[45]
|
Huang, R., Ni, J.J. and Gao, Y. (2018) The Association between the Intestinal Microbiota-Lipopolysaccharide-Toll-Like Receptor 4 Axis and Hepatocellular Carcinoma. Journal of Clinical Hepatology, 34, 1325-1328.
|
[46]
|
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., et al. (2014) The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66
|
[47]
|
Egresi, A., Drexler, D., Hagymási, K., Blázovics, A., Jakab, Z., Kocsis, I., et al. (2020) The Potential Role of Organic and Conventional Yoghurt Consumption in the Treatment of Non-Alcoholic Fatty Liver Disease. Orvosi Hetilap, 161, 1466-1474. https://doi.org/10.1556/650.2020.31839
|
[48]
|
Andresen, V., Gschossmann, J. and Layer, P. (2020) Heat-Inactivated Bifidobacterium bifidum Mimbb75 (SYN-HI-001) in the Treatment of Irritable Bowel Syndrome: A Multicentre, Randomised, Double-Blind, Placebo-Controlled Clinical Trial. The Lancet Gastroenterology & Hepatology, 5, 658-666. https://doi.org/10.1016/s2468-1253(20)30056-x
|
[49]
|
Pessione, E. (2012) Lactic Acid Bacteria Contribution to Gut Microbiota Complexity: Lights and Shadows. Frontiers in Cellular and Infection Microbiology, 2, Article 86. https://doi.org/10.3389/fcimb.2012.00086
|
[50]
|
Shin, D., Chang, S.Y., Bogere, P., Won, K., Choi, J., Choi, Y., et al. (2019) Beneficial Roles of Probiotics on the Modulation of Gut Microbiota and Immune Response in Pigs. PLOS ONE, 14, e0220843. https://doi.org/10.1371/journal.pone.0220843
|
[51]
|
Hutkins, R.W., Krumbeck, J.A., Bindels, L.B., Cani, P.D., Fahey, G., Goh, Y.J., et al. (2016) Prebiotics: Why Definitions Matter. Current Opinion in Biotechnology, 37, 1-7. https://doi.org/10.1016/j.copbio.2015.09.001
|
[52]
|
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, Article 92. https://doi.org/10.3390/foods8030092
|
[53]
|
Pandey, K.R., Naik, S.R. and Vakil, B.V. (2015) Probiotics, Prebiotics and Synbiotics—A Review. Journal of Food Science and Technology, 52, 7577-7587. https://doi.org/10.1007/s13197-015-1921-1
|
[54]
|
Peña, A.S. (2007) Flora intestinal, probióticos, prebióticos, Simbióticos y alimentos novedosos. Revista Española de Enfermedades Digestivas, 99, 653-658. https://doi.org/10.4321/s1130-01082007001100006
|
[55]
|
Campion, D., Giovo, I., Ponzo, P., Saracco, G.M., Balzola, F. and Alessandria, C. (2019) Dietary Approach and Gut Microbiota Modulation for Chronic Hepatic Encephalopathy in Cirrhosis. World Journal of Hepatology, 11, 489-512. https://doi.org/10.4254/wjh.v11.i6.489
|
[56]
|
Moon, A.M., Singal, A.G. and Tapper, E.B. (2020) Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clinical Gastroenterology and Hepatology, 18, 2650-2666. https://doi.org/10.1016/j.cgh.2019.07.060
|
[57]
|
Solé, C., Guilly, S., Da Silva, K., Llopis, M., Le-Chatelier, E., Huelin, P., et al. (2021) Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship with Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology, 160, 206-218.E13. https://doi.org/10.1053/j.gastro.2020.08.054
|
[58]
|
Sydor, S., Best, J., Messerschmidt, I., Manka, P., Vilchez-Vargas, R., Brodesser, S., et al. (2020) Altered Microbiota Diversity and Bile Acid Signaling in Cirrhotic and Noncirrhotic Nash-HCC. Clinical and Translational Gastroenterology, 11, e00131. https://doi.org/10.14309/ctg.0000000000000131
|
[59]
|
Bajaj, J.S., Salzman, N., Acharya, C., et al. (2019) Microbial Functional Change Slinked with Clinical Outcomes after Capsular Fecal Trans-Plantin Cirrhosis. JCI Insight, 4, e133410.
|
[60]
|
Bakhshimoghaddam, F. and Alizadeh, M. (2020) Modulation of the Gut Microbiota Represents a New Management for Non-Alcoholic Fatty Liver Disease. Hepatobiliary Surgery and Nutrition, 9, 223-226. https://doi.org/10.21037/hbsn.2019.10.01
|