|
[1]
|
马亮亮. 骨骼肌缺血再灌注继发肾损伤的实验研究[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2010.
|
|
[2]
|
Tong, X., Liu, M., Li, J., Zhang, W., Hu, R., Yang, G., et al. (2025) Musculoskeletal Organoids-on-Chip Uncover Muscle-Bone Communication under Intermittent Hypoxia. National Science Review, 12, nwaf214. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liu, Q., Zhang, Y. and Sun, Q. (2025) Zanubrutinib Inhibits Macrophage Infiltration to Ameliorate Renal Fibrosis after Renal Ischemia-Reperfusion Injury. Organ Transplantation, 16, 545-555.
|
|
[4]
|
Murphy, E., Ardehali, H., Balaban, R.S., DiLisa, F., Dorn, G.W., Kitsis, R.N., et al. (2016) Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement from the American Heart Association. Circulation Research, 118, 1960-1991. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Granger, D.N. and Kvietys, P.R. (2015) Reperfusion Injury and Reactive Oxygen Species: The Evolution of a Concept. Redox Biology, 6, 524-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mauro, A.G., Bonaventura, A., Mezzaroma, E., Quader, M. and Toldo, S. (2019) NLRP3 Inflammasome in Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology, 74, 175-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Giorgi, C., Baldassari, F., Bononi, A., Bonora, M., De Marchi, E., Marchi, S., et al. (2012) Mitochondrial Ca2+ and Apoptosis. Cell Calcium, 52, 36-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bernardi, P. and Di Lisa, F. (2015) The Mitochondrial Permeability Transition Pore: Molecular Nature and Role as a Target in Cardioprotection. Journal of Molecular and Cellular Cardiology, 78, 100-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and Ros-Induced ROS Release. Physiological Reviews, 94, 909-950. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, G.Y. and Nuñez, G. (2010) Sterile Inflammation: Sensing and Reacting to Damage. Nature Reviews Immunology, 10, 826-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, L., Vijayan, V., Chen, R., Thorenz, A., van Kooten, C., Haller, H., et al. (2018) Ischemia Reperfusion Injury (IRI) Causes Local Release of Free Heme Which Aggravates Inflammation and Contributes to Delayed Graft Function. Transplantation, 102, S711. [Google Scholar] [CrossRef]
|
|
[12]
|
Kalkavan, H. and Green, D.R. (2017) MOMP, Cell Suicide as a BCL-2 Family Business. Cell Death & Differentiation, 25, 46-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Shi, J., Zhao, Y., Wang, K., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665.
|
|
[14]
|
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019) The Role of Necroptosis in Cancer Biology and Therapy. Molecular Cancer, 18, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kraut, J.A. and Kurtz, I. (2005) Metabolic Acidosis of CKD: Diagnosis, Clinical Characteristics, and Treatment. American Journal of Kidney Diseases, 45, 978-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S. and Moll, U.M. (2012) p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis. Cell, 149, 1536-1548. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lin, M.T. and Beal, M.F. (2006) Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature, 443, 787-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chouchani, E.T., Methner, C., Nadtochiy, S.M., Logan, A., Pell, V.R., Ding, S., et al. (2013) Cardioprotection by S-Nitrosation of a Cysteine Switch on Mitochondrial Complex I. Nature Medicine, 19, 753-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gaschler, M.M., Andia, A.A., Liu, H., Csuka, J.M., Hurlocker, B., Vaiana, C.A., et al. (2018) FINO2 Initiates Ferroptosis through GPX4 Inactivation and Iron Oxidation. Nature Chemical Biology, 14, 507-515. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cooke, M.S., Evans, M.D., Dizdaroglu, M. and Lunec, J. (2003) Oxidative DNA Damage: Mechanisms, Mutation, and Disease. The FASEB Journal, 17, 1195-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., et al. (2011) Ribose 2’-O-Methylation Provides a Molecular Signature for the Distinction of Self and Non-Self mRNA Dependent on the RNA Sensor Mda5. Nature Immunology, 12, 137-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Berridge, M.J., Bootman, M.D. and Roderick, H.L. (2003) Calcium Signalling: Dynamics, Homeostasis and Remodeling. Nature Reviews Molecular Cell Biology, 4, 517-529. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Santulli, G., Pagano, G., Sardu, C., Xie, W., Reiken, S., D’Ascia, S.L., et al. (2015) Calcium Release Channel Ryr2 Regulates Insulin Release and Glucose Homeostasis. Journal of Clinical Investigation, 125, 1968-1978. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Brand-Schieber, E. and Werner, P. (2004) Calcium Channel Blockers Ameliorate Disease in a Mouse Model of Multiple Sclerosis. Experimental Neurology, 189, 5-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., et al. (2005) Loss of Cyclophilin D Reveals a Critical Role for Mitochondrial Permeability Transition in Cell Death. Nature, 434, 658-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I. and Green, D.R. (2000) The Coordinate Release of Cytochrome C during Apoptosis Is Rapid, Complete and Kinetically Invariant. Nature Cell Biology, 2, 156-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W. and Sheu, S. (2004) Calcium, ATP, and ROS: A Mitochondrial Love-Hate Triangle. American Journal of Physiology-Cell Physiology, 287, C817-C833. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
He, S., Liu, C., Ren, C., et al. (2024) Immunological Landscape of Retinal Ischemia-Reperfusion Injury: Insights into Resident and Peripheral Immune Cell Responses. Aging & Disease, 16, 115-136.
|
|
[30]
|
Xiao, X., Gao, Y., Liu, S., Wang, M., Zhong, M., Wang, J., et al. (2023) A “Nano‐Courier” for Precise Delivery of Acetylcholine and Melatonin by C5a‐Targeted Aptamers Effectively Attenuates Reperfusion Injury of Ischemic Stroke. Advanced Functional Materials, 33, Article 2213633. [Google Scholar] [CrossRef]
|
|
[31]
|
陈驾君, 杨帆, 解杰, 等. 负压封闭引流技术干预兔骨骼肌缺血再灌注损伤后炎性反应的实验研究[J]. 重庆医学, 2019, 48(4): 564-568.
|
|
[32]
|
Aboelez, M.O., Ezelarab, H.A.A., Alotaibi, G. and Abouzed, D.E.E. (2024) Inflammatory Setting, Therapeutic Strategies Targeting Some Pro-Inflammatory Cytokines and Pathways in Mitigating Ischemia/Reperfusion-Induced Hepatic Injury: A Comprehensive Review. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 6299-6315. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Serhan, C.N. (2014) Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature, 510, 92-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Keyes, K.T., Ye, Y., Lin, Y., Zhang, C., Perez-Polo, J.R., Gjorstrup, P., et al. (2010) Resolvin E1 Protects the Rat Heart against Reperfusion Injury. American Journal of Physiology-Heart and Circulatory Physiology, 299, H153-H164. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Youle, R.J. and Strasser, A. (2008) The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nature Reviews Molecular Cell Biology, 9, 47-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Newton, K. (2015) RIPK1 and RIPK3: Critical Regulators of Inflammation and Cell Death. Trends in Cell Biology, 25, 347-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Dillon, C.P., Weinlich, R., Rodriguez, D.A., Cripps, J.G., Quarato, G., Gurung, P., et al. (2014) RIPK1 Blocks Early Postnatal Lethality Mediated by Caspase-8 and RIPK3. Cell, 157, 1189-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yin, H., Price, F. and Rudnicki, M.A. (2013) Satellite Cells and the Muscle Stem Cell Niche. Physiological Reviews, 93, 23-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Armstrong, R.B., Warren, G.L. and Warren, J.A. (1991) Mechanisms of Exercise-Induced Muscle Fibre Injury. Sports Medicine, 12, 184-207. [Google Scholar] [CrossRef] [PubMed]
|