[1]
|
Marei, H.E., Hasan, A., Pozzoli, G. and Cenciarelli, C. (2023) Cancer Immunotherapy with Immune Checkpoint Inhibitors (ICIs): Potential, Mechanisms of Resistance, and Strategies for Reinvigorating T Cell Responsiveness When Resistance Is Acquired. Cancer Cell International, 23, Article No. 64. https://doi.org/10.1186/s12935-023-02902-0
|
[2]
|
Narang, A., Gebrael, G., Jo, Y., Thomas, V.M., Li, H., Fortuna, G.G., et al. (2024) Effectiveness of Second-Line Cabozantinib in Metastatic Clear Cell Renal Cell Carcinoma Patients after First-Line Treatment with Immune Checkpoint Inhibitor-Based Combinations. Kidney Cancer, 8, 135-142. https://doi.org/10.3233/kca-240016
|
[3]
|
Ciccarese, C., Strusi, A., Arduini, D., Russo, P., Palermo, G., Foschi, N., et al. (2023) Post Nephrectomy Management of Localized Renal Cell Carcinoma. from Risk Stratification to Therapeutic Evidence in an Evolving Clinical Scenario. Cancer Treatment Reviews, 115, Article ID: 102528. https://doi.org/10.1016/j.ctrv.2023.102528
|
[4]
|
Catalano, F., Brunelli, M., Signori, A., Rescigno, P., Buti, S., Galli, L., et al. (2024) Analyses of Tumor Microenvironment in Patients with Advanced Renal Cell Carcinoma Receiving Immunotherapy (Meet-URO 18 Study). Future Oncology, 20, 1495-1503. https://doi.org/10.2217/fon-2023-1068
|
[5]
|
Roy, A.M. and George, S. (2023) Emerging Resistance vs. Losing Response to Immune Check Point Inhibitors in Renal Cell Carcinoma: Two Differing Phenomena. Cancer Drug Resistance, 6, 642-655. https://doi.org/10.20517/cdr.2023.47
|
[6]
|
Gökalp Satıcı, F.E. and Karabulut, Y.Y. (2024) Pathological Findings Directing Immunotherapy in Renal Cell Carcinomas. Immunotherapy, 16, 199-204. https://doi.org/10.2217/imt-2023-0249
|
[7]
|
Liu, Q., Guan, Y. and Li, S. (2024) Programmed Death Receptor (PD-)1/PD-Ligand (L)1 in Urological Cancers: The “All-Around Warrior” in Immunotherapy. Molecular Cancer, 23, Article No. 183. https://doi.org/10.1186/s12943-024-02095-8
|
[8]
|
Choucair, K., Elliott, A., Oberley, M.J., Walker, P., Salama, A.K., Saeed, A., et al. (2025) Molecular and Immune Landscape of Tumours in Geriatric Patients with Non-Small Cell Lung Cancer, Melanoma and Renal Cell Carcinoma. BMJ Oncology, 4, e000551. https://doi.org/10.1136/bmjonc-2024-000551
|
[9]
|
Narukawa, T., Yasuda, S., Horinaka, M., Taniguchi, K., Tsujikawa, T., Morita, M., et al. (2024) The Novel HDAC Inhibitor OBP-801 Promotes MHC Class I Presentation through LMP2 Upregulation, Enhancing the PD-1-Targeting Therapy in Clear Cell Renal Cell Carcinoma. Cancers, 16, Article 4058. https://doi.org/10.3390/cancers16234058
|
[10]
|
Wang, B., Liu, Y., Xiong, F. and Wang, C. (2024) Improved Immunotherapy Outcomes via Cuproptosis Upregulation of HLA-DRA Expression: Promoting the Aggregation of CD4+ and CD8+ T Lymphocytes in Clear Cell Renal Cell Carcinoma. Pharmaceuticals, 17, Article 678. https://doi.org/10.3390/ph17060678
|
[11]
|
Xu, W., Lu, J., Tian, X., Ye, S., Wei, S., Wang, J., et al. (2024) Unveiling the Impact of Tertiary Lymphoid Structures on Immunotherapeutic Responses of Clear Cell Renal Cell Carcinoma. MedComm, 5, e461. https://doi.org/10.1002/mco2.461
|
[12]
|
Adeniran, A.J., Shuch, B. and Humphrey, P.A. (2024) Sarcomatoid and Rhabdoid Renal Cell Carcinoma. American Journal of Surgical Pathology, 48, e65-e88. https://doi.org/10.1097/pas.0000000000002233
|
[13]
|
Drobner, J., Doppalapudi, K., Saraiya, B., Packiam, V. and Ghodoussipour, S. (2024) The Role of Tumor and Host Microbiome on Immunotherapy Response in Urologic Cancers. Journal of Cancer Immunology, 6, 1-13. https://doi.org/10.33696/cancerimmunol.6.078
|
[14]
|
Liu, J., Wang, Y., Wang, X., Li, Y., Jiang, Y., Li, Y., et al. (2024) Succinate Dehydrogenase A Deficient Renal Cell Carcinoma: A Rare Renal Tumor Distinct from Typical Succinate Dehydrogenase Deficient Renal Cell Carcinoma. Pathology—Research and Practice, 261, Article ID: 155459. https://doi.org/10.1016/j.prp.2024.155459
|
[15]
|
Zheng, X., Tong, T., Duan, L., Ma, Y., Lan, Y., Shao, Y., et al. (2024) VSIG4 Induces the Immunosuppressive Microenvironment by Promoting the Infiltration of M2 Macrophage and Tregs in Clear Cell Renal Cell Carcinoma. International Immunopharmacology, 142, Article ID: 113105. https://doi.org/10.1016/j.intimp.2024.113105
|
[16]
|
Liang, H., Liu, X., Guo, W., Xiong, W., Ren, D. and Liu, W. (2025) OTUD1 Downregulates PD-L1 Expression by Deubiquitinating STAT3 and Promotes the Immune Response in CcRCC. Cellular Oncology. https://doi.org/10.1007/s13402-025-01079-0
|
[17]
|
Dubrot, J., Lane-Reticker, S.K., Kessler, E.A., Ayer, A., Mishra, G., Wolfe, C.H., et al. (2021) In Vivo Screens Using a Selective CRISPR Antigen Removal Lentiviral Vector System Reveal Immune Dependencies in Renal Cell Carcinoma. Immunity, 54, 571-585.e6. https://doi.org/10.1016/j.immuni.2021.01.001
|
[18]
|
Li, C.Y., Zhu, M.S., Gao, C., et al. (2024) N6-Methyladenosine Regulator-Mediated Methylation Modification Patterns with Distinct Prognosis, Oxidative Stress, and Tumor Microenvironment in Renal Cell Carcinoma. Frontiers in Bioscience-Landmark, 29, Article 33. https://doi.org/10.31083/j.fbl2901033
|
[19]
|
Caliò, A., Marletta, S., Stefanizzi, L., Marcolini, L., Rotellini, M., Serio, G., et al. (2024) Comparison of Primary and Metastatic Fumarate Hydratase-Deficient Renal Cell Carcinomas Documents Morphologic Divergence and Potential Diagnostic Pitfall with Peritoneal Mesothelioma. Modern Pathology, 37, Article ID: 100561. https://doi.org/10.1016/j.modpat.2024.100561
|
[20]
|
Iacovelli, R., Ciccarese, C., Buti, S., Zucali, P.A., Fantinel, E., Bimbatti, D., et al. (2024) Avelumab Plus Intermittent Axitinib in Previously Untreated Patients with Metastatic Renal Cell Carcinoma. The Tide-A Phase 2 Study. European Urology, 86, 411-419. https://doi.org/10.1016/j.eururo.2024.02.014
|
[21]
|
Carril-Ajuria, L., Lora, D., Carretero-González, A., Martín-Soberón, M., Rioja-Viera, P., Castellano, D., et al. (2021) Systemic Analysis and Review of Nivolumab-Ipilimumab Combination as a Rescue Strategy for Renal Cell Carcinoma after Treatment with Anti-PD-1/PD-L1 Therapy. Clinical Genitourinary Cancer, 19, 95-102. https://doi.org/10.1016/j.clgc.2020.10.004
|
[22]
|
Roy, A.M. and George, S. (2023) Management of Immune-Mediated Toxicities and Their Implications in the Outcomes of Advanced Kidney Cancer. Immunotherapy, 15, 397-400. https://doi.org/10.2217/imt-2023-0010
|
[23]
|
Brown, L.C., Zhu, J., Labriola, M.K., Wu, Y., Cheris, S., Liu, X., et al. (2020) PD-L1 Assay Concordance in Metastatic Renal Cell Carcinoma and Metastatic Urothelial Carcinoma. Clinical Genitourinary Cancer, 18, 509-513. https://doi.org/10.1016/j.clgc.2020.03.020
|
[24]
|
Rebuzzi, S.E., Fornarini, G., Signori, A., Rescigno, P., Banna, G.L. and Buti, S. (2024) Banana-Shaped Survival Curves of Metastatic Renal Cell Carcinoma Treated with First-Line Immune-Combinations, Not Just a Matter of “Palateau”. Human Vaccines & Immunotherapeutics, 20, Article ID: 2351669. https://doi.org/10.1080/21645515.2024.2351669
|
[25]
|
Zhou, M., Chen, M., Zheng, Z., Li, Q., Liao, L., Wang, Y., et al. (2025) CircRNA GRAMD4 Induces NBR1 Expression to Promote Autophagy and Immune Escape in Renal Cell Carcinoma. Autophagy, 1-21. https://doi.org/10.1080/15548627.2025.2503560
|
[26]
|
Chen, Y., Lu, X., Peng, G., Liu, S., Wang, M. and Hou, H. (2024) A Bibliometric Analysis of Research on PD-1/PD-L1 in Urinary Tract Tumors. Human Vaccines & Immunotherapeutics, 20, Article ID: 2390727. https://doi.org/10.1080/21645515.2024.2390727
|
[27]
|
Smith, S.C., Yu, J. and Paul, A.K. (2023) A TFEB-Amplified Renal Cell Carcinoma with Long-Term, Complete Immunotherapy Response: Retrospective Support for the Value of Molecular Classification. International Journal of Surgical Pathology, 32, 539-542. https://doi.org/10.1177/10668969231185077
|
[28]
|
Grünwald, V., Bex, A., Rottey, S., Suárez, C., Procopio, G., Velasco, G., et al. (2025) Current Status of Adjuvant Immunotherapy and Relapse Management in Renal Cell Carcinoma: Insights from a European Delphi Study. European Journal of Cancer, 225, Article ID: 115569. https://doi.org/10.1016/j.ejca.2025.115569
|
[29]
|
Martin, S.D., Bhuiyan, I., Soleimani, M. and Wang, G. (2023) Biomarkers for Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Journal of Clinical Medicine, 12, Article 4987. https://doi.org/10.3390/jcm12154987
|
[30]
|
Dibajnia, P., Cardenas, L.M. and Lalani, A.A. (2023) The Emerging Landscape of Neo/Adjuvant Immunotherapy in Renal Cell Carcinoma. Human Vaccines & Immunotherapeutics, 19, Article ID: 2178217. https://doi.org/10.1080/21645515.2023.2178217
|
[31]
|
Zeuschner, P. and Junker, K. (2022) Optimal Selection of Patients with Genitourinary Cancers for Anti-PD1/PD-L1 Treatment with a Focus on Urothelial and Renal Cell Carcinoma. European Urology Focus, 8, 907-909. https://doi.org/10.1016/j.euf.2022.07.002
|
[32]
|
Choueiri, T.K., McDermott, D.F., Merchan, J., Bauer, T.M., Figlin, R., Heath, E.I., et al. (2023) Belzutifan Plus Cabozantinib for Patients with Advanced Clear Cell Renal Cell Carcinoma Previously Treated with Immunotherapy: An Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 24, 553-562. https://doi.org/10.1016/s1470-2045(23)00097-9
|
[33]
|
Fumarola, C., La Monica, S., Bonelli, M., Zoppi, S., Alfieri, R., Galetti, M., et al. (2024) Immunomodulatory Effects of Antiangiogenic Tyrosine Kinase Inhibitors in Renal Cell Carcinoma Models: Impact on Following Anti-PD-1 Treatments. Biochemical Pharmacology, 226, Article ID: 116397. https://doi.org/10.1016/j.bcp.2024.116397
|
[34]
|
Simonds, E.F., Lu, E.D., Badillo, O., Karimi, S., Liu, E.V., Tamaki, W., et al. (2021) Deep Immune Profiling Reveals Targetable Mechanisms of Immune Evasion in Immune Checkpoint Inhibitor-Refractory Glioblastoma. Journal for ImmunoTherapy of Cancer, 9, e002181. https://doi.org/10.1136/jitc-2020-002181
|
[35]
|
Li, C., Hong, W., Reuben, A., et al. (2024) TimiGP-Response: The Pan-Cancer Immune Landscape Associated with Response to Immunotherapy. bioRxiv.
|
[36]
|
Chen, Y., Zhou, X., Xie, Y., Wu, J., Li, T., Yu, T., et al. (2023) Establishment of a Seven-Gene Signature Associated with CD8+ T Cells through the Utilization of Both Single-Cell and Bulk RNA-Sequencing Techniques in Clear Cell Renal Cell Carcinoma. International Journal of Molecular Sciences, 24, Article 13729. https://doi.org/10.3390/ijms241813729
|
[37]
|
Wang, Y., Cho, J.W., Kastrunes, G., Buck, A., Razimbaud, C., Culhane, A.C., et al. (2024) Immune-Restoring CAR-T Cells Display Antitumor Activity and Reverse Immunosuppressive TME in a Humanized ccRCC Mouse Model. iScience, 27, Article ID: 108879. https://doi.org/10.1016/j.isci.2024.108879
|
[38]
|
An, Z., Hsu, M.A., Gicobi, J.K., Xu, T., Harrington, S.M., Zhang, H., et al. (2023) A Novel PD-L1 Antibody Promotes Antitumor Function of Peripheral Cytotoxic Lymphocytes after Radical Nephrectomy in Patients with Renal Cell Carcinoma. The Journal of Immunology, 210, 2029-2037. https://doi.org/10.4049/jimmunol.2200933
|