|
[1]
|
樊东黎, 潘健生, 徐跃明, 等. 中国材料工程大典(第16卷) [M]. 北京: 化工工业出版社, 2005: 608.
|
|
[2]
|
杨尚超, 胡剑锋, 尹中秋, 等. 气体渗碳常见问题及预防措施[J]. 热处理技术与装备, 2024, 45(4): 62-64.
|
|
[3]
|
Wang, Y., Yang, Z., Zhang, F., Qin, Y., Wang, X. and Lv, B. (2020) Microstructures and Properties of a Novel Carburizing Nanobainitic Bearing Steel. Materials Science and Engineering: A, 777, Article 139086. [Google Scholar] [CrossRef]
|
|
[4]
|
Wang, G., Sang, X.G., Zhang, Y., et al. (2023) Carburization-Induced Microstructure Evolution and Hardening Mechanism of 18CrNiMo7-6 Steel. Journal of Materials Research and Technology, 25, 1649-1661. [Google Scholar] [CrossRef]
|
|
[5]
|
张津. 现代表面工程技术[J]. 机械工艺师, 1995, 10(10): 33-34.
|
|
[6]
|
Jiang, Y., Wu, Q., Wang, Y., Zhao, J. and Gong, J. (2019) Suppression of Hydrogen Absorption into 304L Austenitic Stainless Steel by Surface Low Temperature Gas Carburizing Treatment. International Journal of Hydrogen Energy, 44, 24054-24064. [Google Scholar] [CrossRef]
|
|
[7]
|
Kim, H.K., Kim, H.G., Lee, B., Min, S., Ha, T.K., Jung, K., et al. (2017) Atmosphere Gas Carburizing for Improved Wear Resistance of Pure Titanium Fabricated by Additive Manufacturing. Materials Transactions, 58, 592-595. [Google Scholar] [CrossRef]
|
|
[8]
|
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.
|
|
[9]
|
迟长志, 仲伟深, 韩喜令, 等. 快速渗碳工艺的研究[J]. 辽宁工程技术大学学报(自然科学版), 1998, 25(4): 383-386.
|
|
[10]
|
Qiao, Z.X., Mi, H.X., Huo, J., Wan, Y.B. and Chen, X. (2019) Effect of Austenitizing Temperature on Microstructure Formation of Quenched X65 Micro-Alloyed Pipeline Steel. IOP Conference Series: Materials Science and Engineering, 474, Article 012061. [Google Scholar] [CrossRef]
|
|
[11]
|
薛彦均. 重载齿轮钢低压渗碳组织、疲劳性能及淬火变形研究[D]: [博士学位论文]. 北京: 钢铁研究总院, 2024.
|
|
[12]
|
任慧远, 张天强, 包耳, 等. 离子渗碳与气体渗碳的比较[C]//中国热处理行业协会. 2003年全国热处理行业厂长经理会议暨第四次质量工作会议论文集. 2003: 104-110.
|
|
[13]
|
Michal, G.M., Ernst, F., Kahn, H., Cao, Y., et al. (2006) Carbon Supersaturation Due to Paraequilibrium Carburization: Stainless Steels with Greatly Improved Mechanical Properties. Acta Materialia, 54, 1597-1606. [Google Scholar] [CrossRef]
|
|
[14]
|
Kula, P., Kaczmarek, Ł., Dybowski, K., Pietrasik, R. and Krasowski, M. (2013) Activation of Carbon Deposit in the Process of Vacuum Carburizing with Preliminary Nitriding. Vacuum, 87, 26-29. [Google Scholar] [CrossRef]
|
|
[15]
|
郑子樵. 材料科学基础[M]. 第2版. 长沙: 中南大学出版社, 2013.
|
|
[16]
|
Sun, Y. (2005) Kinetics of Low Temperature Plasma Carburizing of Austenitic Stainless Steels. Journal of Materials Processing Technology, 168, 189-194. [Google Scholar] [CrossRef]
|
|
[17]
|
Harper, M.A. and Cotner, J.P. (2000) Mixed Sulfidation/Carburization Attack on Several Heat-Resistant Alloys at 900˚C. Oxidation of Metals, 53, 427-449. [Google Scholar] [CrossRef]
|
|
[18]
|
陈增谋. 生产实际中的碳势控制[J]. 机械工程师, 2014(10): 259-260.
|
|
[19]
|
涂鹏飞. 工业纯钛表面渗铝及其改进渗层性能研究[D]: [硕士学位论文]. 郑州: 华北水利水电大学, 2024.
|
|
[20]
|
李连清. 渗碳及碳氮共渗新工艺[J]. 宇航材料工艺, 2001(4): 56.
|
|
[21]
|
葵怀福. 真空渗碳工艺和设备[J]. 真空, 1978(4): 19-30.
|
|
[22]
|
Adedipe, O., Medupin, R.O., Yoro, K.O., Dauda, E.T., Aigbodion, V.S., Agbo, N.A., et al. (2023) Sustainable Carburization of Low Carbon Steel Using Organic Additives: A Review. Sustainable Materials and Technologies, 38, e00723. [Google Scholar] [CrossRef]
|
|
[23]
|
马森林, 高文栋, 沈玉明. ECM低压真空渗碳技术应用研究与探讨[J]. 汽车工艺与材料, 2004(8): 27-30.
|
|
[24]
|
孙伟, 李检贵, 康风波. 氮气甲醇丙烷和甲醇丙烷渗碳气氛的对比[J]. 金属加工(热加工), 2017(7): 16-18.
|
|
[25]
|
赵振东. 低压真空渗碳气淬技术的应用[J]. 国外金属热处理, 2005, 26(3): 33-34.
|
|
[26]
|
张治中, 张银, 胡云波, 等. 9310航空齿轮真空渗碳热处理表面强化数值模拟及工艺参数优化[J]. 重庆理工大学学报(自然科学), 2024, 38(7): 194-203.
|
|
[27]
|
牛志芳. 真空渗碳热处理技术的研究与探讨[J]. 农机使用与维修, 2023(6): 99-101.
|
|
[28]
|
南胜强. 中碳钢高温快速膏剂渗碳工艺及性能研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2016.
|
|
[29]
|
白雨鑫, 牟家林, 肖佳, 等. Nb微合金元素对渗碳轴承钢组织和性能的影响[J]. 特钢技术, 2024, 30(2): 22-25.
|
|
[30]
|
Wang, N., Zhang, H.X., Wei, Z.W., et al. (2024) Solid Carburizing in Ferritic Phase Region of DIEVAR Steel: Microstructure Evolution and Formation Mechanism of Carburizing Layer. Surface and Coatings Technology, 476, Article 130200. [Google Scholar] [CrossRef]
|
|
[31]
|
Zheng, X.Z., Ghassemi-Armaki, H., Hartwig, K.T. and Srivastava, A. (2022) Correction: Zheng Et Al. Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels. Metals, 12, Article 303. [Google Scholar] [CrossRef]
|
|
[32]
|
Huang, X., Wang, H., Chen, J., Dang, L., Ma, Z. and Cui, S. (2022) Effects of Austenitizing Temperature on Microstructure Evolution and Corrosion Resistance of High Cr Ferritic/Martensitic Steel. International Journal of Electrochemical Science, 17, Article 220833. [Google Scholar] [CrossRef]
|
|
[33]
|
谭克诚, 高祯云. 渗碳温度对齿轮钢组织及磨损性能的影响[J]. 铸造技术, 2015, 36(3): 641-643.
|
|
[34]
|
Friedman, H.H. (2025) The Education Irony: When College Degrees Lead to Unemployment, Mindless Thinking, Debt, and Despair. Academia Mental Health and Well-Being, 2, 1-10. [Google Scholar] [CrossRef]
|
|
[35]
|
孙振岩, 刘春明. 合金中的扩散与相变[M]. 沈阳: 东北大学出版社, 2002.
|
|
[36]
|
单朝军. H13钢RE-N-C-V-Nb 共渗渗层动力学及热稳定性研究[D]: [硕士学位论文]. 南宁: 广西大学, 2012.
|
|
[37]
|
Di, C., Yan, X., Lv, X., Yan, C., Ye, W. and Li, D. (2021) Effect of Vacuum Carburizing Time on Microstructure and Mechanical Properties of Tantalum Carbide Layer. Metals and Materials International, 27, 5008-5016. [Google Scholar] [CrossRef]
|
|
[38]
|
Guo, J., Deng, X., Wang, H., Zhou, L., Xu, Y. and Ju, D. (2021) Modeling and Simulation of Vacuum Low Pressure Carburizing Process in Gear Steel. Coatings, 11, Article 1003. [Google Scholar] [CrossRef]
|
|
[39]
|
Liu, L.D. and Chen, F.S. (2004) Super-Carburization of Low Alloy Steel in a Vacuum Furnace. Surface and Coatings Technology, 183, 233-238.
|
|
[40]
|
于朋翰, 严昊明, 杨帅, 等. 扩散时间对真空低压渗碳20CrMnTi钢组织与硬度的影响[J]. 金属热处理, 2025, 50(2): 251-256.
|
|
[41]
|
Boumediri, H., Touati, S., Debbah, Y., Selami, S., Chitour, M., Khelifa, M., et al. (2024) Effect of Carburizing Time Treatment on Microstructure and Mechanical Properties of Low Alloy Gear Steels. Materials Research Express, 11, Article 076505. [Google Scholar] [CrossRef]
|
|
[42]
|
Yada, K. and Watanabe, O. (2013) Reactive Flow Simulation of Vacuum Carburizing by Acetylene Gas. Computers & Fluids, 79, 65-76. [Google Scholar] [CrossRef]
|
|
[43]
|
龙振. 真空渗碳法制备TaC涂层工艺及性能研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023.
|
|
[44]
|
Tian, Y., An, X.X., Wang, Z.D. and Wang, G.D. (2020) High Temperature Vacuum Low-Pressure Pulse Carburizing Process of 12Cr2Ni4A Steel. Journal of Northeastern University Natural Science, 41, 1251-1256.
|
|
[45]
|
Kwon, G., Park, H., Lee, Y.-K. and Moon, K. (2023) Effect of Process Pressure and Nitrogen Addition Ratio on the Uniformity of Hardening Depth and Surface Properties of Cr-Mo Low Alloy Steel in Vacuum Carburizing. Journal of the Korean Institute of Surface Engineering, 56, 94-103.
|
|
[46]
|
Wołowiec-Korecka, E., Korecki, M., Sut, M., Brewka, A. and Kula, P. (2019) Calculation of the Mixture Flow in a Low-Pressure Carburizing Process. Metals, 9, Article 439. [Google Scholar] [CrossRef]
|
|
[47]
|
Sabino, L.L. and Macusi, E.D. (2023) Tree Height, Canopy Cover, and Leaf Litter Production of Rhizophora Apiculata in Baganga, Davao Oriental, Philippines. Academia Biology, 1, 1-10. [Google Scholar] [CrossRef]
|
|
[48]
|
李振鹏. TA2钛合金快速渗碳工艺及组织演变规律研究[D]: [硕士学位论文]. 贵阳: 贵州师范大学, 2019.
|
|
[49]
|
Tian, Y., Wang, H.J., An, X.X., et al. (2021) Effects of the Voltage and Pressure on the Carburizing of Martensitic Stainless Steel in Pulsed DC Glow Discharge. Materials Research, 24, Article 20210154. [Google Scholar] [CrossRef]
|
|
[50]
|
Wang, H.J., Liu, J., Tian, Y., et al. (2020) Mathematical Modeling of Carbon Flux Parameters for Low-Pressure Vacuum Carburizing with Medium-High Alloy Steel. Coatings, 10, Article 1075.
|