可溶性sST2在急性心梗后心衰的研究进展
Research Progress of Soluble sST2 in Heart Failure after Acute Myocardial Infarction
DOI: 10.12677/acm.2025.1582384, PDF, HTML, XML,   
作者: 董 钰, 胡 帆:西安医学院研工部,陕西 西安;陈 皓, 杨 光*:陕西省人民医院心内二科,陕西 西安
关键词: 可溶性生长刺激表达基因2蛋白心力衰竭急性心肌梗死临床诊疗sST2 Heart Failure Acute Myocardial Infarction Clinical Diagnosis
摘要: sST2是由ST2基因编码的一种蛋白质,包括跨模型受体和可溶性ST2 (sST2)两种亚型。ST2L可与IL-33特异性结合形成跨膜复合物,参与体内多个系统炎症和免疫性疾病的发生、发展,而sST2可作为诱骗受体与IL-33结合,阻断IL-33/ST2L信号通路。近年来,多种研究发现,sST2在急性心梗后心衰患者中的早期预测、诊疗、危险分层中起到重要作用。是可联合NT-pro BNP及肌钙蛋白应用于急性心梗后心衰早期诊断的一个新型标志物。本文系统回顾sST2在急性心梗后心衰的临床应用研究进展,以期为早期诊断、积极干预、改善病人预后及生存质量方面提供新的思路。
Abstract: sST2 is a protein encoded by the ST2 gene, which includes two subtypes, trans-body and soluble ST2 (sST2). ST2L can specifically bind to IL-33 to form a transmembrane complex and participate in the occurrence and development of multiple systemic inflammatory and immune diseases in vivo, while sST2 can act as a decoy receptor to bind to IL-33 and block the IL-33/ST2L signaling pathway. In recent years, a variety of studies have found that sST2 can be used in the early prediction, diagnosis and treatment, and risk stratification of patients with heart failure after acute myocardial infarction. It is a novel marker that can be used in combination with NT-pro BNP and troponin for the early diagnosis of heart failure after acute myocardial infarction. This article systematically reviews the research progress of the clinical application of sST2 in heart failure after acute myocardial infarction, in order to provide new ideas for early diagnosis, active intervention, and improvement of prognosis and quality of life of patients.
文章引用:董钰, 陈皓, 胡帆, 杨光. 可溶性sST2在急性心梗后心衰的研究进展[J]. 临床医学进展, 2025, 15(8): 1447-1452. https://doi.org/10.12677/acm.2025.1582384

1. 流行病学证据

心力衰竭是一种复杂的临床综合征,是由于心脏结构或功能改变,使心脏泵功能衰竭,不能将血液、氧气等机体所需的物质泵至各个部位,导致各器官和组织出现缺氧,营养供应不足等情况。是心血管疾病的临床终末期表现,在全球范围内有较高的死亡率及发病率[1]。急性心肌梗死是导致心力衰竭的一个常见原因之一,是在冠状动脉病变的基础上,发生冠状动脉血供急剧减少或中断,使相应的心肌发生严重而持久的急性缺血导致心肌坏死。现在,青年人急性心肌梗死有着高复发率和高死亡率,严重影响公共健康[2]-[4]。数据显示2001~2010年,美国30~50岁人群中约有100万人因AMI入院[4],45岁以下人群AMI发生率为4%~10% [3]。而在中国,住院人数依然在上升,在青年人中,每10万人中AMI住院率从55.8人次增加至73.3人次,增幅约31.2%,60岁以上高达27.8% [5] [6]

2. 急性心梗后心衰的分子机制

急性心肌梗死主要是由免疫、脂质、炎症因子等多因素相互作用,在血管内皮下形成动脉粥样硬化斑块,导致冠状动脉管腔狭窄或阻塞,进而影响心肌细胞能量供给,致使心肌细胞结构和功能发生异常,是冠状动脉粥样硬化易损斑块(充满脂质的)破裂或糜烂导致心肌血流急性中断和缺血性心肌坏死的结果,是世界范围内发病率和死亡率较高的常见心脏急症[7]-[10]。尽管在过去的20年中,急性心梗的治疗取得了显著进展,但急性心梗导致的心力衰竭仍然是[3] [11]最常见的心血管死亡原因。急性心梗中斑块破裂引起的急性炎症触发了随后的反应,可能导致长期的心脏损伤。急性心肌梗死后,相应节段的心肌缺血坏死,导致对应区域供氧及营养物质不足,使心脏出现损伤,可能会影响心脏的收缩与舒张功能,使得心脏更容易发生心衰,从而造成更恶劣的全球公共卫生健康事件。急性心肌梗死后出现心衰的诊断需要足够的病史及临床相关检查,但是急性心肌梗死后出现心衰只有25%的病人会出现症状[12],所以早期诊断对于急性心梗后心衰的及时治疗及预后有着重要的作用。

3. 传统生物标志物的局限性

我们临床上常用的心衰标志物NT-proBNP和BNP可能受其他因素的干扰[13]-[15],所以需要在使用NT-proBNP的基础上,寻找其他的新型早期预测标志物,从而对急性心梗后心衰的病人进行尽早地干预治疗,从而减低患者的恶性事件发生率及再次入院率。

NT-proBNP是一种无活性的蛋白,是脑钠肽的N末端前体,由心室肌细胞释放,以响应增加的室壁张力[16]。NT-proBNP对急性心梗后心衰的诊断和预后均有帮助,NT-proBNP也是急、慢性心力衰竭死亡的强预测因子,也是可疑或已证实的不稳定心血管疾病患者短期和长期死亡率的强预测因子[15] [17]。然而,NT-proBNP对于急性心梗后心衰的检测也存在一些局限性,检测结果受多种因素的影响,如年龄、性别、肾功能、糖尿病、肥胖、非心脏疾病及药物等,极有可能在合并相关肾脏及糖尿病等疾病的患者发生急性心梗后相关数值的异常升高,不能精准地预测风险及危险分层[15]

近年来,sST2在炎症反应、纤维化和心脏应激领域备受关注[18]对sST2进行了深入研究,发现其在心力衰竭[19],心肌梗死[19] [20]、冠状动脉粥样硬化及冠状动脉粥样硬化性心脏病[21]、高血压[22]、心肌病[23]和心肌纤维化[24]的诊断和预测方面相比传统生物学标志物具有更大的优势[8]

4. sST2的生物学特征

生长刺激表达基因2蛋白,又称肿瘤发生抑制蛋白2 (Suppression of Tumorigenicity 2, ST2),是白细胞介素-1受体家族成员。主要有3种形态,一种为跨膜结合亚型ST2L,另一种为血清中存在的可溶性ST2,还有一种为主要分布在胃肠器官的变异型STV。直接影响心脏疾病进展的ST2蛋白有两种,可溶性ST2和跨膜形式的STL2。其中,可溶性生长刺激表达基因2蛋白(soluble growth stimulator gene 2 protein, sST2)简称ST2,常用于检验,是心脏疾病或损伤时所分泌的物质。正常心脏中可溶性ST2浓度较低,此时ST2的配体IL-33可与ST2L结合,IL-33/ST2L可介导抗心肌肥厚和心肌纤维化作用,对心脏有保护作用。当心衰发生时,心肌细胞和心肌成纤维细胞受到机械压力刺激时,可大量分泌可溶性ST2,高浓度可溶性ST2可竞争性地与IL-33结合,使IL-33可与ST2L结合减少,使IL-33无法进入心脏保护的信号转导途径,导致心脏持续承受压力,使细胞死亡和组织纤维化,心肌功能下降[25]-[27],从而增加心血管疾病的进展率。sST2作为一个分泌型的受体,其水平受到多种生理和病理因素的影响。心肌细胞的受损、炎症反应的加剧、心肌肥厚等因素均可促使sST2的释放增加。因此,血清sST2不仅被认为是心血管疾病进展的标志,还有可能成为一种重要的预后指标。总体而言,sST2作为IL-33/ST2L信号通路的调节因子[25],其生物学特性决定了它在心血管疾病发展、心衰进展等方面的潜在作用,这为深入研究sST2在急性心梗后心衰过程中的作用机制提供了重要线索[28]。sST2作为新一代心衰标志物[29],也期待它在急性心梗发作后对于是否后再发心衰也具有早期的预测作用、危险分层,具有生物变异性低、稳定性高、不受性别、年龄、种族、肾功能干扰等特点[30],在心衰患者的诊断、治疗及风险预测中发挥着重要作用,以为患者的后续生活质量提供一些作用。

5. sST2在急性心梗后心衰中的临床应用

5.1. sST2在急性心梗后早发心衰中的应用

Katayama等人[31]研究发现,在心肌梗死急性期NT-proBNP大于或等于290 pg/ml的患者有更高的心血管事件发生率及死亡率,多变量分析得出NT-proBNP是最有效的死亡率预测因素;一项研究对1200例急性ST段抬高型心肌梗死患者分析显示:基线sST2升高可独立预测30天内心力衰竭的发生[32]。马红利等人[20]研究发现sST2与NT-proBNP联合可提高PCI术后主要不良心血管事件(MACE)的预测价值,且患者sST2水平越高,PCI术后6个月的死亡率越高。孙爱梅等人[33]证实sST2的水平对心功能具有预测价值,且发现NT-ProBNP的ROC曲线下面积为0.798,sST2的ROC曲线下面积为0.782,sST2与NT-ProBNP在心衰中的预测价值差异无统计学意义,考虑可能原因是:第一是炎症性等疾病也可使得sST2升高;第二是除外心肌细胞及心肌成纤维细胞外,内皮细胞、肺部及巨噬细胞同样也会产生sST2,均会对研究结果产生一定的影响。Januzzi [34]等人研究发现sST2诊断心衰的曲线下面积为0.74,不如NT-proBNP;且sST2特异性较NT-ProBNP低,敏感性较NT-ProBNP高,与上述结果存在一定的偏差,考虑与二者的作用机制相关,sST2主要为心室重塑指标,NT-ProBNP为心脏压力负荷指标,对于急性心肌梗死患者心室重塑贯穿于整个病史过程,而心力衰竭则为心室重塑进展的后果,因此急性心肌梗死后24小时内NT-ProBNP可能较sST2上升不明显,故用于预测急性心肌梗死患者发生心梗后心衰的敏感性不如sST2。

5.2. sST2在指导急性心梗后心力衰竭药物治疗方面的价值

随着研究的深入,sST2在药物治疗指导方面也存在重要的价值。PARADIGM-HF试验[35]中首次记录到sST2水平随药物治疗时间降低,与依那普利相比,沙库巴曲缬沙坦明显降低sST2的水平,在随访的第1个月和第8个月均有降低sST2的作用,但依那普利不能。在校正了包含NT-proBNP和高敏蛋白T在内的其他预测因子后,基线sST2仍然是结局的独立预测因子,与预后结果呈线性关系。但此次试验未能得出一个与风险高低相关的特定阈值,值得进一步探讨。一项前瞻性对照研究:比较亲脂性阿托伐他汀和亲水性瑞舒伐他汀对心力衰竭患者左心室功能、炎症和纤维化生物标志物的影响。结果显示阿托伐他汀组左心室射血分数的增加显著大于瑞舒伐他汀组(6.5% [3~11] vs 4% [2~5], P = 0.006)。阿托伐他汀组sST2 (pg/mL)水平的降低比瑞舒伐他汀组更显著[−255 (−383)~(−109.8) vs (−151) (−216)~(−69), P = 0.003]。亲脂性阿托伐他汀在增加左心室射血分数和降低sST2 (抗炎抗纤维化)方面优于亲水性瑞舒伐他汀,对于合并有心力衰竭者的抗炎降脂方案,选择。2020年西班牙的一项阿托伐他汀[36]可能获益更多多中心临床试验旨在探讨可溶性ST2的循环水平是否可以预测急性心力衰竭伴肾功能不全患者在24 h和72 h的累积利尿效率[37],研究包括160例急性心力衰竭合并肾衰竭患者(eGFR: 60 mL/min·1.73m2),发现在24 h和72 h,早期sST2测量可作为利尿剂(呋塞米)疗效不佳的独立预测因子;在急性心力衰竭和呼吸窘迫的患者中,利尿效果差的患者循环sST2水平更高,这有助于及时调整利尿用药方者呈独立负相关方案。降低sST2值意味着更低的心血管风险,sST2值变化可用于评估某药物干预对心力衰竭患者的治疗效果,帮助调整治疗方案,判断是否值得临床推广应用。

6. 局限与前景

sST2是检测常规检测心力衰竭诊治及预后的重要标志物,在急性心梗后发生恶性事件的早期识别也发挥着重要的作用,包括在其他相关心血管疾病的诊疗及预后也可能有着重要的价值,且sST2在未来很有可能成为急性心梗后发生心衰的治疗靶点。但是目前sST2在心血管疾病中发挥作用的机制还需要更多的实验研究及临床研究数据证实。

NOTES

*通讯作者。

参考文献

[1] McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2023) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 44, 3627-3639.
https://doi.org/10.1093/eurheartj/ehad195
[2] Gandhi, S., Garratt, K.N., Li, S., Wang, T.Y., Bhatt, D.L., Davis, L.L., et al. (2022) Ten-Year Trends in Patient Characteristics, Treatments, and Outcomes in Myocardial Infarction from National Cardiovascular Data Registry Chest Pain-MI Registry. Circulation: Cardiovascular Quality and Outcomes, 15, e008112.
https://doi.org/10.1161/circoutcomes.121.008112
[3] Salari, N., Morddarvanjoghi, F., Abdolmaleki, A., Rasoulpoor, S., Khaleghi, A.A., Hezarkhani, L.A., et al. (2023) The Global Prevalence of Myocardial Infarction: A Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 23, Article No. 206.
https://doi.org/10.1186/s12872-023-03231-w
[4] Gulati, R., Behfar, A., Narula, J., Kanwar, A., Lerman, A., Cooper, L., et al. (2020) Acute Myocardial Infarction in Young Individuals. Mayo Clinic Proceedings, 95, 136-156.
https://doi.org/10.1016/j.mayocp.2019.05.001
[5] (2016) Recent Hospitalization Trends for Acute Myocardial Infarction in Beijing. European Heart Journal, 37, 3188-3189.
https://doi.org/10.1093/eurheartj/ehw472
[6] 徐晓. 老年冠心病并发慢性心力衰竭患者血压变异性与其心功能的关系研究[J]. 微量元素与健康研究, 2024, 41(2): 94-95.
[7] Barnett, R. (2019) Acute Myocardial Infarction. The Lancet, 393, 2580.
https://doi.org/10.1016/s0140-6736(19)31419-9
[8] Siasos, G., Tousoulis, D., Oikonomou, E., Kokkou, E., Mazaris, S., Konsola, T., et al. (2014) Novel Biomarkers in Heart Failure: Usefulness in Clinical Practice. Expert Review of Cardiovascular Therapy, 12, 311-321.
https://doi.org/10.1586/14779072.2014.890516
[9] Islam, M.S. (2018) Heart Failure: From Research to Clinical Practice. In: Islam, M., Ed., Heart Failure: From Research to Clinical Practice, Springer, 1-3.
https://doi.org/10.1007/5584_2018_181
[10] Bergmark, B.A., Mathenge, N., Merlini, P.A., Lawrence-Wright, M.B. and Giugliano, R.P. (2022) Acute Coronary Syndromes. The Lancet, 399, 1347-1358.
https://doi.org/10.1016/s0140-6736(21)02391-6
[11] Fletcher, R.A., Rockenschaub, P., Neuen, B.L., Walter, I.J., Conrad, N., Mizani, M.A., et al. (2024) Contemporary Epidemiology of Hospitalised Heart Failure with Reduced versus Preserved Ejection Fraction in England: A Retrospective, Cohort Study of Whole-Population Electronic Health Records. The Lancet Public Health, 9, e871-e885.
https://doi.org/10.1016/s2468-2667(24)00215-9
[12] Minicucci, M.F., Azevedo, P.S., Polegato, B.F., Paiva, S.A.R. and Zornoff, L.A.M. (2011) Heart Failure after Myocardial Infarction: Clinical Implications and Treatment. Clinical Cardiology, 34, 410-414.
https://doi.org/10.1002/clc.20922
[13] Rubattu, S. and Gallo, G. (2021) The Natriuretic Peptides for Hypertension Treatment. High Blood Pressure & Cardiovascular Prevention, 29, 15-21.
https://doi.org/10.1007/s40292-021-00483-5
[14] Higa, Y., Nabeshima, Y., Kitano, T., Kataoka, M., Nakazono, A. and Takeuchi, M. (2022) Brain Natriuretic Peptide Measurements Using Standard Biochemical Equipment: Comparisons with Conventional Immunoassays. PLOS ONE, 17, e0268895.
https://doi.org/10.1371/journal.pone.0268895
[15] Clerico, A., Passino, C., Franzini, M. and Emdin, M. (2015) Cardiac Biomarker Testing in the Clinical Laboratory: Where Do We Stand? General Overview of the Methodology with Special Emphasis on Natriuretic Peptides. Clinica Chimica Acta, 443, 17-24.
https://doi.org/10.1016/j.cca.2014.06.003
[16] Liang, F., O’Rear, J., Schellenberger, U., Tai, L., Lasecki, M., Schreiner, G.F., et al. (2007) Evidence for Functional Heterogeneity of Circulating B-Type Natriuretic Peptide. Journal of the American College of Cardiology, 49, 1071-1078.
https://doi.org/10.1016/j.jacc.2006.10.063
[17] Groenning, B.A., Nilsson, J.C., Sondergaard, L., Kjaer, A., Larsson, H.B.W. and Hildebrandt, P.R. (2001) Evaluation of Impaired Left Ventricular Ejection Fraction and Increased Dimensions by Multiple Neurohumoral Plasma Concentrations. European Journal of Heart Failure, 3, 699-708.
https://doi.org/10.1016/s1388-9842(01)00181-7
[18] Thanikachalam, P.V., Ramamurthy, S., Mallapu, P., Varma, S.R., Narayanan, J., Abourehab, M.A., et al. (2023) Modulation of IL-33/ST2 Signaling as a Potential New Therapeutic Target for Cardiovascular Diseases. Cytokine & Growth Factor Reviews, 71, 94-104.
https://doi.org/10.1016/j.cytogfr.2023.06.003
[19] Tsigkou, V., Siasos, G., Bletsa, E., Panoilia, M., Papastavrou, A., Kokosias, G., et al. (2020) The Predictive Role for ST2 in Patients with Acute Coronary Syndromes and Heart Failure. Current Medicinal Chemistry, 27, 4479-4493.
https://doi.org/10.2174/0929867326666191016121630
[20] 杨树涵, 陈红伟, 刘艳宾. 可溶性生长刺激表达因子2对急性心肌梗死患者近期临床预后的预测价值[J]. 中国动脉硬化杂志, 2019, 27(9): 783-786, 801.
[21] Xhakollari, L., Jujic, A., Molvin, J., Nilsson, P., Holm, H., Bachus, E., et al. (2021) Proteins Linked to Atherosclerosis and Cell Proliferation Are Associated with the Shrunken Pore Syndrome in Heart Failure Patients: Shrunken Pore Syndrome and Proteomic Associations. PROTEOMICSClinical Applications, 15, e2000089.
https://doi.org/10.1002/prca.202000089
[22] 魏鹏, 孙娜, 宗斌. 可溶性ST2在原发性高血压病患者中表达及诊断价值[J]. 中国循证心血管医学杂志, 2022, 14(8): 963-966.
[23] 尹杰, 李文成, 郇雷. 扩张型心肌病患者血清半乳糖凝集素-3、分形趋化因子及可溶性sST2的变化及临床意义[J]. 中国循证心血管医学杂志, 2021, 13(3): 318-321.
[24] Obradovic, D.M., Büttner, P., Rommel, K., Blazek, S., Loncar, G., von Haehling, S., et al. (2022) Soluble ST2 Receptor: Biomarker of Left Ventricular Impairment and Functional Status in Patients with Inflammatory Cardiomyopathy. Cells, 11, Article 414.
https://doi.org/10.3390/cells11030414
[25] Liew, F.Y. (2012) IL-33: A JANUS CYTokine. Annals of the Rheumatic Diseases, 71, i101-i104.
https://doi.org/10.1136/annrheumdis-2011-200589
[26] Aimo, A., Januzzi, J.L., Bayes-Genis, A., Vergaro, G., Sciarrone, P., Passino, C., et al. (2019) Clinical and Prognostic Significance of sST2 in Heart Failure. Journal of the American College of Cardiology, 74, 2193-2203.
https://doi.org/10.1016/j.jacc.2019.08.1039
[27] Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., et al. (2005) IL-33, an Interleukin-1-Like Cytokine That Signals via the IL-1 Receptor-Related Protein ST2 and Induces T Helper Type 2-Associated Cytokines. Immunity, 23, 479-490.
https://doi.org/10.1016/j.immuni.2005.09.015
[28] Stojkovic, S., Demyanets, S., Kopp, C.W., Hengstenberg, C., Wojta, J., Eichelberger, B., et al. (2020) Association of Soluble Suppression of Tumorigenesis 2 (sST2) with Platelet Activation, Monocyte Tissue Factor and Ischemic Outcomes Following Angioplasty and Stenting. Frontiers in Cardiovascular Medicine, 7, Article 605669.
https://doi.org/10.3389/fcvm.2020.605669
[29] Januzzi, J.L., Pascual-Figal, D. and Daniels, L.B. (2015) ST2 Testing for Chronic Heart Failure Therapy Monitoring: The International ST2 Consensus Panel. The American Journal of Cardiology, 115, 70B-75B.
https://doi.org/10.1016/j.amjcard.2015.01.044
[30] Mueller, T. and Jaffe, A.S. (2015) Soluble ST2—Analytical Considerations. The American Journal of Cardiology, 115, 8B-21B.
https://doi.org/10.1016/j.amjcard.2015.01.035
[31] Toshiro, K., Hiroshi, N., Tsuyoshi, Y, et al. (2003) Clinical Significance of Acute-Phase Brain Natriuretic Peptide in Acute Myocardial Infarction Treated with Direct Coronary Angioplasty. Journal of Cardiology, 42, 195-200.
[32] Sabatine, M.S., Cannon, C.P., Gibson, C.M., López-Sendón, J.L., Montalescot, G., Theroux, P., et al. (2005) Addition of Clopidogrel to Aspirin and Fibrinolytic Therapy for Myocardial Infarction with St-Segment Elevation. New England Journal of Medicine, 352, 1179-1189.
https://doi.org/10.1056/nejmoa050522
[33] 孙爱梅, 刘婷,陈 还珍. 可溶性ST2对冠心病的危险分层价值及其与心功能的关系[J]. 中国心血管杂志, 2017, 22(1): 19-23.
[34] Januzzi, J.L., Peacock, W.F., Maisel, A.S., Chae, C.U., Jesse, R.L., Baggish, A.L., et al. (2007) Measurement of the Interleukin Family Member ST2 in Patients with Acute Dyspnea: Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) Study. Journal of the American College of Cardiology, 50, 607-613.
https://doi.org/10.1016/j.jacc.2007.05.014
[35] O’Meara, E., Prescott, M.F., Claggett, B., Rouleau, J.L., Chiang, L., Solomon, S.D., et al. (2018) Independent Prognostic Value of Serum Soluble ST2 Measurements in Patients with Heart Failure and a Reduced Ejection Fraction in the PARADIGM-HF Trial (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure). Circulation: Heart Failure, 11, e004446.
https://doi.org/10.1161/circheartfailure.117.004446
[36] El Said, N.O., El Wakeel, L.M., Khorshid, H., Darweesh, E.A.G. and Ahmed, M.A. (2021) Impact of Lipophilic vs Hydrophilic Statins on the Clinical Outcome and Biomarkers of Remodelling in Heart Failure Patients: A Prospective Comparative Randomized Study. British Journal of Clinical Pharmacology, 87, 2855-2866.
https://doi.org/10.1111/bcp.14695
[37] Espriella, R.D.L., Bayés-Genis, A., Revuelta-López, E., Miñana, G., Santas, E., Llàcer, P., et al. (2021) Soluble ST2 and Diuretic Efficiency in Acute Heart Failure and Concomitant Renal Dysfunction. Journal of Cardiac Failure, 27, 427-434.
https://doi.org/10.1016/j.cardfail.2020.10.002