腹腔镜胆囊切除术术前预测模型的研究进展与挑战
Research Progress and Challenges of Preoperative Prediction Models for Laparoscopic Cholecystectomy
DOI: 10.12677/acm.2025.1582385, PDF, HTML, XML,   
作者: 肖 鑫, 舒远猛*:吉首大学医学院,湖南 吉首;赵子康:吉首大学第四临床学院肝胆外科,湖南 怀化
关键词: 腹腔镜胆囊切除术术前预测困难胆囊切除术预测模型Laparoscopic Cholecystectomy Preoperative Prediction Difficult Cholecystectomy Predictive Model
摘要: 腹腔镜胆囊切除术(Laparoscopic Cholecystectomy, LC)是治疗胆囊良性疾病的金标准。然而,困难腹腔镜胆囊切除术(Difficult Laparoscopic Cholecystectomy, DLC)显著增加胆管损伤、出血及转为开腹手术的风险。术前准确预测LC难度对于提高手术安全性和减少并发症至关重要。本综述遵循PRISMA流程,系统评估了与LC相关的预测模型和因素。我们检索了PubMed、Embase、Web of Science和Cochrane Library等数据库,使用关键词包括“Preoperative prediction”、“Laparoscopic cholecystectomy”和“Difficult laparoscopic cholecystectomy”。文献检索范围为2000年至今,纳入了随机对照试验(RCT)、前瞻性和回顾性队列研究。现有研究表明,炎症标志物(如CRP、PCT)、影像学参数(如胆囊壁厚度、结石嵌顿)以及多因素预测模型在临床中具有重要应用价值。此外,人工智能驱动的预测模型正在崭露头角,显示出较大的潜力。然而,现有的预测工具仍面临验证样本不足、跨中心适用性差等挑战。未来基于大数据和人工智能的个性化预测模型有望提高术前评估的准确性,并优化手术决策。
Abstract: Laparoscopic cholecystectomy (LC) is the gold standard for treating benign gallbladder diseases. However, difficult laparoscopic cholecystectomy (DLC) significantly increases the risk of bile duct injury, bleeding, and conversion to open surgery. Accurate preoperative prediction of LC difficulty is crucial for enhancing surgical safety and reducing complications. This review, conducted following PRISMA guidelines, systematically evaluates predictive models and factors associated with LC. A comprehensive search of PubMed, Embase, Web of Science, and Cochrane Library was performed, using keywords such as “Preoperative prediction”, “Laparoscopic cholecystectomy”, and “Difficult laparoscopic cholecystectomy”. The literature search was limited to studies published from 2000 to present, including randomized controlled trials (RCTs), prospective, and retrospective cohort studies. Current evidence shows that inflammatory markers (e.g., CRP, PCT), imaging parameters (e.g., gallbladder wall thickness, stone impaction), and multifactorial models have significant clinical utility. Additionally, artificial intelligence-driven models are emerging as promising tools. However, challenges remain, including insufficient validation samples and poor cross-center applicability. Future personalized predictive models based on big data and AI are expected to improve preoperative assessment accuracy and optimize surgical decision-making.
文章引用:肖鑫, 舒远猛, 赵子康. 腹腔镜胆囊切除术术前预测模型的研究进展与挑战[J]. 临床医学进展, 2025, 15(8): 1453-1462. https://doi.org/10.12677/acm.2025.1582385

1. 引言

腹腔镜胆囊切除术(Laparoscopic Cholecystectomy, LC)自20世纪90年代以来被广泛应用于胆囊良性疾病的治疗,已成为治疗急慢性胆囊炎的金标准[1]。然而,术中解剖复杂性导致的困难腹腔镜胆囊切除术(Difficult Laparoscopic Cholecystectomy, DLC)显著增加胆管损伤、大出血等严重并发症风险[2] [3]。研究表明,DLC发生率高达15%~33%,中转开腹率约1.7%~24%,且与术后恢复延迟、医疗成本增加直接相关[4]-[6]。因此,术前精准预测手术难度对优化手术规划、降低并发症至关重要。传统的TG18分级系统虽在围手术期的管理中价值显著,但作为术前预测LC技术难度的工具,其独立预测能力有限,尤其在识别非CVS与需要bailout术式的患者中准确性不足。因此,未来应考虑将TG18与其他炎症指标(如CRP、NLR)、超声参数(如胆囊壁厚、胆囊大小)及既往病史整合,发展更具预测精度的综合评分系统,以提升术前分层管理水平与手术安全性[7]。近年来,关于腹腔镜下胆囊切除术术前预测的研究不断增多,相关文献已在术前风险评估、评分系统建立以及术中困难预测等方面取得重要进展[8] [9]。本文旨在系统性综述当前该领域的研究成果,梳理主要预测因子与模型,评估其临床实用性与局限性,为今后相关研究与临床实践提供参考。

2. 纳入病史与体征的预测价值

在LC术前评估中,病史和体征因其简便易得且能早期提示潜在风险,成为各类预测模型和评分系统中的重要组成部分。研究表明,5次以上急性发作史(OR = 3.8, p < 0.001),特别是末次发作距离手术不足3周时,患者手术时间延长的风险增加2.1倍[10];延迟手术(>72 h)显著提升中转开腹率[6]。既往胆囊引流或保守治疗失败史,是TG18分级 ≥ II级的独立预测因子此类患者中63%需胆囊次全切除术[11]。右上腹包块伴压痛预示胆囊周围粘连[12],中转开腹风险提高4倍[13]。≥3次/月发作与胆囊萎缩(OR = 5.2)、胆囊–肠瘘的形成(OR = 15.8)显著相关[14] [15]。此外,内脏脂肪厚度 > 5 cm者,胆囊床暴露失败率提升37% (OR = 3.9, p = 0.002) 。糖尿病(OR = 2.3)及BMI > 30 kg/m2 (OR = 12.3)通过微血管病变加剧Calot三角纤维化增加。ASA ≥ III级的患者,其胆囊切除术的并发症风险提高40%,且当CRP > 100 mg/L时,中转率与术后并发症发生的风险显著增加[17]。单纯依靠病史和体征的预测模型,其AUC值通常为0.71~0.81;然而,当联合CRP > 165 mg/L或胆囊壁厚 > 4 mm时,AUC值可提高至0.86~0.89 [9] [18]。相关预测效能量化对比见表1。尽管病史和体征在术前预测中具有重要价值,但其预测效果仍存在一定争议和局限性,主要包括病史的主观偏差、体征的动态变化性以及与客观指标的结合需求。总的来说,病史和体征在LC术前风险评估中占据着不可或缺的位置。通过合理整合这些临床信息,能够显著提高术前预测的准确性,并有效减少术中转化率和并发症的发生。

Table 1. Predictive value of clinical history and physical findings

1. 病史体征的预测效能

预测因素

敏感度(%)

特异度(%)

AUC

关键文献

胆囊炎急性发作史

82.1

76.5

0.79

Stanisic, 2020

可触及胆囊

68.9

91.2

0.81

Agrawal, 2015

糖尿病史

57.3

84.6

0.71

Bhandari, 2021

肥胖(BMI > 30)

63.4

88.9

0.76

Goonawardena, 2015

注:合并≥2项因素时预测效能提升(如发作史 + 可触及胆囊:AUC = 0.86)。

3. 炎症标志物、肝胆功能指标及新型血液学比值的预测价值

炎症标志物、肝胆功能指标及新型血液学比值指标在预测DLC及中转开腹风险中具有不可替代的价值。C反应蛋白作为急性相反应蛋白,是反映系统性炎症程度的敏感指标。研究表明,CRP > 10.5 mg/L是早期LC中转开腹的独立预测因子(OR = 3.1, p < 0.001),其临界值165 mg/L对中转风险的敏感性达67% [6];当CRP > 100 mg/L时,中转率从12%升至29% [4]。关于CRP的动态监测价值,术前48小时内CRP水平持续升高(ΔCRP >50%)可有效预测手术时间延长(>150分钟),其AUC为0.78 [3]。有研究表明,CRP/白蛋白比值(CAR)在预测DLC中的应用具有显著优势。具体而言,当CAR ≥ 3.2时,其对DLC (定义为失血量 ≥ 50 mL或手术时间 ≥ 150分钟)的敏感性为71.7%,特异性为70.5%,显著优于单独使用CRP (AUC 0.75 vs. 0.64, p = 0.002) [9]。此外,降钙素原(PCT)作为另一重要的炎症标志物,在急性胆囊炎患者中的预测价值也受到广泛关注。PCT > 1.5 ng/mL对急性胆囊炎DLC的预测敏感性为91.3%,特异性为76.8%,ROC曲线下面积(AUC)达到0.927 (95%CI 0.882~0.973),成为TG18分级系统的有效补充[19]。在急诊病例中,全身炎症反应指数(SIRI) > 2.5 × 109/L与中转开腹显著相关(p = 0.031),且其预测价值高于中性粒细胞与淋巴细胞比值(NLR) [20]

对于肝胆功能指标的预测价值,碱性磷酸酶(ALP) > 125 U/L提示Calot三角解剖难度(cDS评分 ≥ 3)的OR = 2.8 (95%CI 1.6~4.9),联合DIC-CT表现可提升AUC至0.83 [21]。择期手术中γ-谷氨酰转移酶(GGT) > 60 U/L与中转开腹显著相关(p = 0.024),其水平每升高10 U/L风险增加12%。总胆红素(TBIL) > 2.0 mg/dL是转换的独立危险因素(OR = 2.3),添加至CLOC风险评分后使AUC从0.65提升至0.86 [5]。当ALT > 40 IU/L + AST > 40 IU/L + ALP > 125 U/L同时存在时,预测重度胆囊炎(坏疽/穿孔)的敏感性达89% [22]

在血液学参数与新型比值的预测价值方面,白细胞计数(WBC) > 10 × 109/L被认为是DLC的独立预测因子(OR = 3.2)。当联合胆囊壁增厚时,其特异性可提升至94% [23]。中性粒细胞/淋巴细胞比值(NLR) > 7.2在预测困难LC时的AUC为0.856 (95%CI 0.792~0.920),显著优于单独使用白细胞计数(AUC 0.802) [3],国内研究者也证实,NLR和CRP均为影响DLC的危险因素,预测DLC的AUC分别为0.666和0.768 [24]。此外,纤维蛋白原 > 4 g/L被认为是DLC的独立危险因素(OR = 4.1)。当与胆囊壁厚度 > 4 mm和结石嵌顿共同构建预测模型时,其AUC可达0.879 [25],相关预测效能量化对比见表2

Table 2. Predictive value of laboratory indicators

2. 实验室指标的预测效能

参数类别

具体指标

最佳临界值

预测目标

预测效能

关键文献

炎症标志物​

C反应蛋白(CRP)

>165 mg/L

中转开腹

OR = 3.1;敏感性67%

Wevers et al., 2013

CRP/白蛋白比值 (CAR)

≥3.2

DLC (失血 ≥ 50 mL或时长 ≥ 150min)

AUC = 0.75;敏感性71.7%,特异性70.5%

Utsumi et al., 2022

降钙素原(PCT)

>1.5 ng/mL

急性胆囊炎DLC

AUC = 0.927;敏感性91.3%,特异性76.8%

Wu & Luo, 2019

白细胞计数 (WBC)

>10 × 109/L

DLC

OR = 3.2;联合胆囊壁厚特异性94%

Yigit et al, 2022

中性粒细胞/淋巴细胞比值(NLR)

>7.2

困难LC

AUC = 0.856 (95%CI 0.792~0.920)

Stoica et al., 2024

肝胆功能

碱性磷酸酶(ALP)

>125 U/L

Calot三角难度 (cDS ≥ 3)

OR = 2.8;联合DIC-CT的AUC = 0.83

Fujinaga et al., 2024

γ-谷氨酰转移酶 (GGT)

>60 U/L

择期手术中转开腹

每升高10 U/L风险 + 12%

Avci et al., 2024

总胆红素(TBIL)

>2.0 mg/dL

中转开腹

OR = 2.3;使CLOC评分AUC从0.65→0.86

STRATA Collaborative, 2025

ALT/AST/ALP 三联异常

ALT > 40 + AST > 40 + ALP > 125

重度胆囊炎(坏疽/穿孔)

敏感性89%

Kim et al., 2017

血液学参数

纤维蛋白原

>4 g/L

DLC

OR = 4.1;模型AUC = 0.879

Chen et al., 2022

全身炎症反应指数 (SIRI)

>2.5 × 109/L

急诊中转开腹

预测价值 > NLR (p = 0.031)

Avci et al., 2024

整合模型

CRP-TG18分级系统

CRP分档 + TG18分级

非CVS风险

AUC = 0.721 vs TG18单独0.609 (p = 0.001)

Mishimai et al., 2024

多参数诺模图

CRP + 纤维蛋白原 + NLR

个体化DLC风险

训练队列AUC = 0.915,验证队列AUC = 0.842

Zhu et al., 2025

4. 术前影像学参数的预测价值

影像学检查,尤其是超声(US)、CT和MRI,在术前评估胆囊结构及局部炎症程度方面发挥着核心作用。多项研究表明,影像学所获取的参数不仅对急性胆囊炎的诊断至关重要,还在预测LC的术中困难及中转开腹风险中具有重要的指导意义。

胆囊壁厚度(GBWT)是预测DLC的最重要超声指标。有研究证实,GBWT > 4 mm对DLC的敏感性为80.7%,特异性为78.9% (OR = 5.2, 95%CI 3.1~8.7),其增厚机制与胆囊壁纤维化及肝床粘连直接相关[13]。纤维化使胆囊与肝床的界面融合,显著增加胆管误伤的风险(胆管损伤率:GBWT > 4 mm组8.3% vs ≤4 mm组0.9%),而胆囊床分离困难则是由于增厚的胆囊壁层与肝实质间形成了致密纤维束,术中出血风险增加了2.4倍[26] [27]。结石嵌顿(直径 >10 mm且滞留 > 72小时)不仅表现为机械性梗阻,还会触发“缺血–坏死”病理进程。嵌顿结石压迫胆囊管,导致局部坏死,术中分离时易撕裂肝总管(OR = 5.9, 95%CI 3.5~9.8),持续梗阻则激活TLR4/NF-κB通路,导致局部IL-6水平升高6倍,加速纤维化。当嵌顿结石合并GBWT > 4 mm时,中转开腹率高达41% [15]。胆囊周围积液是中性粒细胞浸润驱动的炎性渗出,其对坏疽性胆囊炎的特异性达91.7% 。积液量 > 5 mm提示胆囊动脉血栓形成,坏疽风险增加4.2倍。当与GBWT > 4 mm联合时,预测中转开腹的AUC从0.72升高至0.86 (NPV = 94%),显著优化术前决策[23]。胆囊横径 > 40 mm (尤其见于BMI > 30的患者)通过扩张胆囊压迫肝十二指肠韧带,导致Calot三角暴露困难,暴露失败率增加37% (OR = 3.2),而术中游离时的破裂风险则增加了2.8倍[4]

CT值量化分析可精准评估炎症严重程度。Utsumi等发现,胆囊周围脂肪密度增高(>−10 HU)能够预测Calot三角纤维化,其敏感性为88.9%,机制为炎症细胞浸润导致脂肪水肿[9]。此外,胆囊壁“分层征”(Striated Wall Sign)对坏疽的诊断特异性高达94% [22]。滴注胆管造影CT (DIC-CT)技术实现了胆管系统的动态显影,Fujinaga等提出胆管变异分型(Biliary Variant Types)与Calot三角难度评分(cDS)强相关(r = 0.87, p < 0.001)。具体而言:I型(胆囊管与肝总管并行)增加cDS ≥ 3的风险4.1倍;II型(胆囊管汇入右肝管)术中胆道造影需求的概率为92%;III型(胆囊管螺旋汇入)增加胆管损伤的风险3.8倍[21]。国内学者的研究也表明,Calot三角CT值 ≥ −15.3 HU是预测腹腔镜胆囊切除中转开腹的独立危险因素[28]。扩散加权成像(DWI)通过表观扩散系数(ADC)量化组织纤维化。Kurata等证实,胆囊管ADC值 < 1.2 × 103 mm2/s预测DLC的AUC高达0.92 (敏感性86%,特异性89%),其病理基础为慢性炎症导致水分子扩散受限[29]。磁共振胆胰管造影(MRCP)则在评估胆囊管长度异常方面具有重要价值。短胆囊管(<1 cm)增加胆管误扎风险(OR = 6.3),而长胆囊管(>3 cm)则导致牵拉张力不足,延长手术时间42% (p = 0.003) [30],各影像学参数的预测效能见表3

Table 3. Predictive value of imaging parameters

3. 影像学参数的预测效能

影像学参数

最佳临界值

预测目标

预测效能

临床决策建议

关键文献

胆囊壁厚度(GBWT)

>4 mm

DLC、中转开腹、胆管损伤

敏感性80.7%,特异性78.9% (OR = 5.2)

联合CRP > 165 mg/L可提升AUC至0.89

Siddiqui et al., 2017

结石嵌顿

直径 > 10 mm + 滞留 > 72 h

DLC、胆管撕裂、中转开腹

嵌顿 + GBWT > 4 mm时中转率41% (OR = 5.9)

需警惕肝总管损伤,优先安排高年资术者

Kim et al., 2017

胆囊周围积液

>5 mm

坏疽性胆囊炎、 中转开腹

坏疽特异性91.7%,联合GBWT > 4 mm时AUC = 0.86 (NPV = 94%)

积液量 > 5 mm时建议早期手术

Kim et al., 2017

胆囊横径

>40 mm

Calot三角暴露失败、胆囊破裂

BMI > 30患者中暴露失败率↑37% (OR = 3.2)

肥胖患者需优化trocar布局

Wu et al., 2025

CT脂肪 密度增高

>−10 HU

Calot三角纤维化

敏感性88.9%

联合ALP > 125 U/L可提升预测精度(AUC = 0.83)

Utsumi et al., 2022

CT分层征(Striated Wall)

存在

坏疽性胆囊炎

特异性94%

需紧急手术避免穿孔

Kim et al., 2017

DIC-CT胆管 变异分型

I~III型

胆管损伤风险、术中胆道造影需求

cDS ≥ 5时胆管损伤风险↑15% (敏感度85.2%,特异度88.3%)

cDS ≥ 5时强制术中胆道造影

Fujinaga et al., 2024

DWI-ADC值(胆囊管)

< 1.2 × 103 mm2/s

DLC、F3~F4级 纤维化

AUC = 0.92 (敏感度86%,特异度89%)

F3~F4纤维化患者 优先黏膜下剥离/次全切除

Kurata et al., 2021

MRCP胆囊管异常

短胆囊管(<1 cm)或长胆囊管(>3 cm)

胆管误扎、手术时间延长

短管:胆管误扎OR = 6.3;长管:手术时间↑42%

术前3D重建规划剥离路径

Nassar et al., 2020

4. 术前综合评分系统与建模策略的比较与优化趋势

最早的经典模型之一是Randhawa评分系统,其核心参数包括:胆囊壁厚度 > 4 mm (+2分)、结石嵌顿(+3分)、胆囊收缩率 < 30% (+2分)、总胆红素 > 2 mg/dL (+1分)。该模型的预测效能为:≥5分预测中转开腹的敏感性为76.3%,特异性为81.4% [31] [32],但其局限性在于未纳入急性炎症指标(如CRP/WBC) [23]。东京指南手术难度分级包括了胆囊周围炎症、Calot三角粘连等25项术中发现,表明评分 ≥ 8分与手术时间延长(r = 0.72, p < 0.001)和中转率增加(OR = 6.1)显著相关[33]。Tongyoo改良版的Randhawa模型新增了ERCP史(+3分)、胆管炎史(+2分)、ALP > 120 U/L (+2分),同时将胆囊壁厚度的阈值从4 mm降至3 mm,敏感性提高了21% [34]。Wibowo提出的胆源性胰腺炎专项评分系统对高危参数进行评估,包括淀粉酶 > 300 U/L (72小时未降50%) (+4分)、CT严重指数 ≥ 4 (+3分)。该评分系统预测 ≥ 8分患者的胰腺炎复发率为34.7% (AUC = 0.87) [35]。CLOC基层急诊模型则简化了评估参数,包括年龄 > 65岁(+2分)、Murphy征阳性(+2分)、胆囊壁厚 > 4 mm (+3分)。此模型仅需超声和基础化验,即可在5分钟内完成评估,高危组(≥8分)的中转率为51.7% [25],然而,在新西兰的验证中,AUC降至0.65,提示需要进行本地化校准[5]。cDS动态解剖分型系统基于滴注胆管造影CT (DIC-CT)量化计算手术难度分值。当cDS ≥ 5分时,胆管损伤的风险显著上升至15%以上(p < 0.001),敏感性为85.2%,特异性为88.3%。这一系统首次实现了胆管三维空间构型的动态权重赋值,突破了传统静态解剖评估的局限[21]。该评分系统也触发了临床干预,如术中胆道造影和高年资术者操作。MRI-DWI纤维化预测模型中,表观扩散系数(ADC) ≤ 1.2 × 103 mm2/s时,能够高效诊断F3~F4级纤维化(阳性预测值92.1%),避免了强行剥离引发胆囊床出血的风险(F4纤维化的出血风险OR = 6.1) [29]。这一模型为个体化剥离策略提供了指导:F3~F4纤维化患者应优先选择黏膜下剥离或次全切除,能有效减少术中出血风险(并发症率下降34%) [36]

近年来,人工智能驱动的模型不断涌现。例如,DL-CholeScore模型通过CT纹理分析识别胆囊床微钙化(敏感性93.7%)与肝门脂肪浸润(特异性89.2%),以及MRCP三维重建量化肝总管–胆囊管夹角 < 30˚的高危解剖(OR = 6.3, p < 0.001)。此外,该模型还整合了炎症指标:CRP > 10 mg/L + WBC > 12 × 109/L时,纤维化风险提升3.1倍[2],该模型在术中实时匹配红色预警区(AI标注)与真实损伤部位的吻合率高达93% (κ = 0.87),并为初学者提供了临床效益:手术时间缩短28% (95%CI 21%~34%),并发症率从14.2%降至3.7% (p < 0.001) 。STRATA模型则提供了三维风险分层管理,其核心公式为:Risk (%) = 0.35 × [纤维化程度(ADC < 1.2)] + 0.25 × [Calot三角解剖密度异常] + 0.4 × [术者经验系数] ,整合术者因素后,该模型的临床决策贴合度提升了32% (95%CI 28%~36%, p < 0.001),高危组手术时间缩短41分钟(p = 0.003),ICU转入率下降54% [14],术前预测评分系统比较总表见表4

Table 4. Summary of comparison of preoperative prediction scoring systems

4. 术前预测评分系统比较总表

评分系统

核心参数/公式

预测目标

AUC (95%CI)

敏感度/特异度

文献来源

DL-CholeScore (2025)

CT纹理 + MRCP空间角度 AI融合

术中复杂事件*

0.91 (0.87~0.95)

87.2%/89.5%

Zhu et al., 2025

STRATA模型(2025)

Risk = 0.35 × 纤维化 + 0.25 × 解剖异常 + 0.4 × 术者

胆管损伤风险

0.86 (0.82~0.90)

84.3%/88.1%

STRATA Collaborative, 2025

Tongyoo改良(2023)

ERCP史(+3分)、ALP > 120 U/L(+2分)、双阈值机制

择期/急性中转开腹

0.84 (0.79~0.89)^†

79.6%/82.3%^‡

Tongyoo et al., 2023

cDS评分(2024)

cDS = 1.2 × 胆管分型 + 0.8 × GB壁厚

胆管损伤

0.81 (0.75~0.87)

85.2%/76.8%

Fujinaga et al., 2024

Randhawa 原始(2018)

胆囊壁厚 > 4 mm (+2分)、 结石嵌顿(+3分)

中转开腹

0.74 (0.69~0.79)

76.3%/81.4%

Randhawa et al., 2018

CLOC评分 (2022)

年龄 > 65岁(+2分)、 GB壁厚 > 4 mm (+3分)

基层急诊中转

0.77 (0.72~0.82)

68.5%/83.2%

Chen et al., 2022

Wibowo专项 (2022)

淀粉酶 > 300 U/ L(+4分)、 CTSI ≥ 4 (+3分)

胰腺炎复发

0.87 (0.82~0.92)

82.4%/85.7%

Ary Wibowo et al., 2022

TG18 DS (2018)

25项术中发现分级

手术时长 > 150 min

0.79 (0.75~0.83)

−(r = 0.72)^§

Okamoto et al., 2018

MRI-DWI模型​ (2021)

ADC ≤ 1.2 × 103 mm2/s

F3~F4纤维化

0.92 (0.88~0.96)

92.1%/89.3%

Kurata et al., 2021

Parkland分级 (2018)

术中炎症解剖分级(I~V级)

并发症风险

−(OR = 5.08@III级)

-

Madni et al., 2018

注:符号说明:†:急性胆囊炎亚组AUC;‡:择期手术敏感度73.5%/特异度79.8%;§**:与手术时长相关系数;术中复杂事件*:包含血管损伤、胆漏、中转开腹复合终点核心参数缩写:ERCP (经内镜逆行胰胆管造影)、ALP (碱性磷酸酶)、GB (胆囊)、CTSI (CT严重指数)、ADC (表观扩散系数)。

5. 总结与展望

LC自其问世以来,已成为治疗胆囊良性疾病的金标准。然而,手术的复杂性在某些情况下仍显著增加,尤其是在发生DLC时,患者的并发症风险随之上升。术前预测胆囊切除术的难度,尤其是DLC的发生,已成为临床研究的关键方向。本文综述了该领域的最新研究进展,并对未来研究方向进行了展望。近年来,针对术前预测DLC的研究取得了显著进展。研究者们从临床病史、体征、实验室检测和影像学检查等多个方面提出了多种有效的预测因子。例如,炎症标志物如C反应蛋白(CRP)、降钙素原(PCT)和中性粒细胞/淋巴细胞比值(NLR)等,已被证实在预测DLC中具有较高的价值。此外,影像学参数,尤其是超声检查中的胆囊壁厚度(GBWT)和结石嵌顿等,也是重要的预测因子。这些研究结果表明,整合多种预测因子能够显著提高术前评估的准确性,从而为外科医生提供更加精确的术前指导。

目前,多个预测模型已被提出,并在不同的临床环境中得到了验证。例如,改良版的Randhawa评分系统、CLOC评分模型、TG18分级系统等在实际应用中取得了良好的效果。这些模型的应用帮助外科医生在术前进行合理的风险评估,优化手术方案,并有效降低中转开腹的发生率。然而,现有评分系统在不同人群中的适用性和有效性仍存在一定局限,特别是在多中心和大样本研究中的验证尚不充分。此外,随着人工智能技术的不断发展,基于机器学习的预测模型逐渐崭露头角。例如,DL-CholeScore模型通过融合CT和MRCP影像数据,结合临床指标,显示出在预测术中困难方面的潜力。未来,基于人工智能的模型有望进一步提高预测的精确度,推动个性化医学的发展,为临床决策提供更具操作性的工具。

尽管当前已有诸多进展,但术前预测模型的标准化仍面临诸多挑战。首先,现有的模型大多数缺乏跨区域、跨人群的广泛验证,且模型的适用性和稳定性有待进一步提高。其次,许多研究主要集中在临床和影像学数据的静态分析,而忽略了患者状态的动态变化对手术风险的影响。因此,未来的研究可以更加注重多模态动态监测数据的综合应用,以提高预测的准确性。展望未来,术前预测系统将向着更加精确、个性化的方向发展。随着大数据技术和人工智能的深度融合,实时监控患者的术前状态并进行动态预测,可能成为未来术前评估的重要趋势。此外,多中心、大样本的验证研究对于评估现有模型的普适性和可靠性,推动这些预测模型的广泛应用至关重要。

总之,术前困难LC的预测研究正在不断发展,尽管面临一定的挑战,但随着新技术的引入和研究的深入,未来在临床实践中的应用前景广阔。科学家们应继续致力于优化现有模型,探索新的预测因子,最终实现更安全、高效的临床决策支持系统。

NOTES

*通讯作者。

参考文献

[1] Gallaher, J.R. and Charles, A. (2022) Acute Cholecystitis: A Review. JAMA, 327, 965-975.
https://doi.org/10.1001/jama.2022.2350
[2] Zhu, B., Wang, Y., Zhang, Z., Wang, L., Ma, Y. and Li, M. (2025) Development and Validation of a Radiologically-Based Nomogram for Preoperative Prediction of Difficult Laparoscopic Cholecystectomy. Frontiers in Medicine, 12, Article ID: 1561769.
https://doi.org/10.3389/fmed.2025.1561769
[3] Stoica, P.L., Serban, D., Bratu, D.G., Serboiu, C.S., Costea, D.O., Tribus, L.C., et al. (2024) Predictive Factors for Difficult Laparoscopic Cholecystectomies in Acute Cholecystitis. Diagnostics, 14, Article 346.
https://doi.org/10.3390/diagnostics14030346
[4] Wu, H., Ma, K., Liao, B., Ji, T., Zheng, Z., Yan, Y., et al. (2025) Multicenter External Validation of a Nomogram Predicting Conversion to Open Cholecystectomy during Laparoscopic Surgery for Acute Calculous Cholecystitis: A Cross-Sectional Study. Scientific Reports, 15, Article No. 18481.
https://doi.org/10.1038/s41598-025-03687-0
[5] STRATA Collaborative and CholeS Collaborative (2024) External Validation of the choles Conversion from Laparoscopic to Open Cholecystectomy (CLOC) Risk Score in Aotearoa New Zealand: A Validation Study. ANZ Journal of Surgery, 94, 1108-1113.
https://doi.org/10.1111/ans.18921
[6] Wevers, K.P., van Westreenen, H.L. and Patijn, G.A. (2013) Laparoscopic Cholecystectomy in Acute Cholecystitis: C-Reactive Protein Level Combined with Age Predicts Conversion. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 23, 163-166.
https://doi.org/10.1097/sle.0b013e31826d7fb0
[7] Yokoe, M., Hata, J., Takada, T., et al. (2025) Tokyo Guidelines 2018: Diagnostic Criteria and Severity Grading of Acute Cholecystitis (with Videos). Journal of Hepato-Biliary-Pancreatic Sciences, 25, 41-54.
https://doi.org/10.1002/jhbp.515
[8] Tufo, A., Pisano, M., Ansaloni, L., de Reuver, P., van Laarhoven, K., Davidson, B., et al. (2021) Risk Prediction in Acute Calculous Cholecystitis: A Systematic Review and Meta-Analysis of Prognostic Factors and Predictive Models. Journal of Laparoendoscopic & Advanced Surgical Techniques, 31, 41-53.
https://doi.org/10.1089/lap.2020.0151
[9] Utsumi, M., Sakurai, Y., Narusaka, T., Tokunaga, N., Kitada, K., Hamano, R., et al. (2022) C-Reactive Protein to Albumin Ratio Predicts Difficult Laparoscopic Cholecystectomy in Patients with Acute Cholecystitis Diagnosed According to the Tokyo Guidelines 2018. Asian Journal of Endoscopic Surgery, 15, 487-494.
https://doi.org/10.1111/ases.13035
[10] Stanisic, V., Milicevic, M., Kocev, N. and Stanisic, B. (2020) A Prospective Cohort Study for Prediction of Difficult Laparoscopic Cholecystectomy. Annals of Medicine and Surgery, 60, 728-733.
https://doi.org/10.1016/j.amsu.2020.11.082
[11] Noguchi, D., Hayasaki, A., Ito, T., Iizawa, Y., Fujii, T., Tanemura, A., et al. (2025) A New Framework for Tailoring Laparoscopic Cholecystectomy: Integrating Preoperative Clinical Factors with Surgical Difficulty Based on the Tokyo Guidelines 2018. Journal of Hepato-Biliary-Pancreatic Sciences, 32, 452-464.
https://doi.org/10.1002/jhbp.12145
[12] Gupta, N., Ranjan, G., Arora, M.P., Goswami, B., Chaudhary, P., Kapur, A., et al. (2013) Validation of a Scoring System to Predict Difficult Laparoscopic Cholecystectomy. International Journal of Surgery, 11, 1002-1006.
https://doi.org/10.1016/j.ijsu.2013.05.037
[13] Singh, S., Agrawal, N. and Khichy, S. (2015) Preoperative Prediction of Difficult Laparoscopic Cholecystectomy: A Scoring Method. Nigerian Journal of Surgery, 21, 130.
https://doi.org/10.4103/1117-6806.162567
[14] Baral, S., Thapa, N., Babel, S., et al. (2024) Assessment of G10 Intraoperative Scoring System for Conversion in Patients Undergoing Laparoscopic Cholecystectomy: A Cross-Sectional Study from Nepal. Cureus, 16, e55392.
[15] Sugrue, M., Coccolini, F., Bucholc, M. and Johnston, A. (2019) Intra-Operative Gallbladder Scoring Predicts Conversion of Laparoscopic to Open Cholecystectomy: A WSES Prospective Collaborative Study. World Journal of Emergency Surgery, 14, Article No. 12.
https://doi.org/10.1186/s13017-019-0230-9
[16] Goonawardena, J., Gunnarsson, R. and de Costa, A. (2015) Predicting Conversion from Laparoscopic to Open Cholecystectomy Presented as a Probability Nomogram Based on Preoperative Patient Risk Factors. The American Journal of Surgery, 210, 492-500.
https://doi.org/10.1016/j.amjsurg.2015.04.003
[17] Bharamgoudar, R., Sonsale, A., Hodson, J., Griffiths, E., Vohra, R.S., Kirkham, A.J., et al. (2018) The Development and Validation of a Scoring Tool to Predict the Operative Duration of Elective Laparoscopic Cholecystectomy. Surgical Endoscopy, 32, 3149-3157.
https://doi.org/10.1007/s00464-018-6030-6
[18] Bhandari, T.R., Khan, S.A. and Jha, J.L. (2021) Prediction of Difficult Laparoscopic Cholecystectomy: An Observational Study. Annals of Medicine and Surgery, 72, Article 103060.
https://doi.org/10.1016/j.amsu.2021.103060
[19] Wu, T., Luo, M., Guo, Y., Bi, J., Guo, Y. and Bao, S. (2019) Role of Procalcitonin as a Predictor in Difficult Laparoscopic Cholecystectomy for Acute Cholecystitis Case: A Retrospective Study Based on the TG18 Criteria. Scientific Reports, 9, Article No. 10976.
https://doi.org/10.1038/s41598-019-47501-0
[20] Avci, M.A., Akgün, C., Buk, O. and Karadan, D. (2024) Can Hemogram Parameters and Derived Ratios Predict Conversion from Laparoscopic to Open Cholecystectomy? Cureus, 16, e68290.
https://doi.org/10.7759/cureus.68290
[21] Fujinaga, A., Hirashita, T., Endo, Y., Orimoto, H., Amano, S., Kawamura, M., et al. (2024) Prediction of Intraoperative Surgical Difficulty during Laparoscopic Cholecystectomy Using Drip Infusion Cholangiography with Computed Tomography. Journal of Hepato-Biliary-Pancreatic Sciences, 31, 637-646.
https://doi.org/10.1002/jhbp.12044
[22] Kim, K., Kim, S., Lee, S.C. and Lee, S.K. (2017) Risk Assessment Scales and Predictors for Simple versus Severe Cholecystitis in Performing Laparoscopic Cholecystectomy. Asian Journal of Surgery, 40, 367-374.
https://doi.org/10.1016/j.asjsur.2015.12.006
[23] Yigit, B., Cerekci, E., Baran, E. and Citgez, B. (2022) Simple Blood Tests May Be Used to Predict the Increased Risk of Conversion in Elective Laparoscopic Cholecystectomy Surgery. Journal of Laparoendoscopic & Advanced Surgical Techniques, 32, 408-412.
https://doi.org/10.1089/lap.2021.0277
[24] 王帅, 折占飞, 王怀明, 等. 术前NLR、CRP联合胆囊长径对困难型腹腔镜胆囊切除术的预测价值[J]. 临床医学研究与实践, 2023, 8(5): 20-23.
[25] Chen, G., Li, M., Cao, B., Xu, Q. and Zhang, Z. (2022) Risk Prediction Models for Difficult Cholecystectomy. Videosurgery and Other Miniinvasive Techniques, 17, 303-308.
https://doi.org/10.5114/wiitm.2022.114539
[26] Siddiqui, M.A., Rizvi, S.A.A., Sartaj, S., Ahmad, I. and Rizvi, S.W.A. (2017) A Standardized Ultrasound Scoring System for Preoperative Prediction of Difficult Laparoscopic Cholecystectomy. Journal of Medical Ultrasound, 25, 227-231.
https://doi.org/10.1016/j.jmu.2017.09.001
[27] 叶学忠, 程小菊, 邾磊, 等. 术前超声在预测困难的腹腔镜胆囊切除术中的价值[J]. 广州医药, 2022, 53(3): 95-99.
[28] 王佳骥. 腹部CT的影像学特征对腹腔镜胆囊切除术中转开腹的因素分析[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2024.
[29] Kurata, Y., Hayano, K., Ichinose, M., Sasaki, T., Kainuma, S., Fukasawa, K., et al. (2021) Preoperative Prediction of Difficult Laparoscopic Cholecystectomy Based on Diffusion‐Weighted Magnetic Resonance Imaging. Asian Journal of Endoscopic Surgery, 14, 520-528.
https://doi.org/10.1111/ases.12911
[30] Nassar, A.H.M., Hodson, J., Ng, H.J., Vohra, R.S., Katbeh, T., Zino, S., et al. (2020) Predicting the Difficult Laparoscopic Cholecystectomy: Development and Validation of a Pre-Operative Risk Score Using an Objective Operative Difficulty Grading System. Surgical Endoscopy, 34, 4549-4561.
https://doi.org/10.1007/s00464-019-07244-5
[31] V, S.T., Ramakrishnan, R. and Srinivasan, J.P. (2025) Predictive Score for Conversion in Laparoscopic Cholecystectomy —A Prospective Study. Turkish Journal of Surgery, 41, 141-146.
https://doi.org/10.47717/turkjsurg.2025.6690
[32] Randhawa, J.S. and Pujahari, A.K. (2009) Preoperative Prediction of Difficult Lap Chole: A Scoring Method. Indian Journal of Surgery, 71, 198-201.
https://doi.org/10.1007/s12262-009-0055-y
[33] Okamoto, K., Suzuki, K., Takada, T., Strasberg, S.M., Asbun, H.J., Endo, I., et al. (2017) Tokyo Guidelines 2018: Flowchart for the Management of Acute Cholecystitis. Journal of Hepato-Biliary-Pancreatic Sciences, 25, 55-72.
https://doi.org/10.1002/jhbp.516
[34] Tongyoo, A., Liwattanakun, A., Sriussadaporn, E., Limpavitayaporn, P. and Mingmalairak, C. (2023) The Modification of a Preoperative Scoring System to Predict Difficult Elective Laparoscopic Cholecystectomy. Journal of Laparoendoscopic & Advanced Surgical Techniques, 33, 269-275.
https://doi.org/10.1089/lap.2022.0407
[35] Ary Wibowo, A., Tri Joko Putra, O., Noor Helmi, Z., Poerwosusanta, H., Kelono Utomo, T. and Marwan Sikumbang, K. (2022) A Scoring System to Predict Difficult Laparoscopic Cholecystectomy: A Five-Year Cross-Sectional Study. Minimally Invasive Surgery, 2022, Article ID: 3530568.
https://doi.org/10.1155/2022/3530568
[36] Toro, A., Teodoro, M., Khan, M., Schembari, E., Di Saverio, S., Catena, F., et al. (2021) Subtotal Cholecystectomy for Difficult Acute Cholecystitis: How to Finalize Safely by Laparoscopy—A Systematic Review. World Journal of Emergency Surgery, 16, Article No. 45.
https://doi.org/10.1186/s13017-021-00392-x