[1]
|
Gagnon, K.B. and Delpire, E. (2013) Physiology of SLC12 Transporters: Lessons from Inherited Human Genetic Mutations and Genetically Engineered Mouse Knockouts. American Journal of Physiology-Cell Physiology, 304, C693-C714. https://doi.org/10.1152/ajpcell.00350.2012
|
[2]
|
Daigle, N.D., Carpentier, G.A., Frenette‐Cotton, R., Simard, M.G., Lefoll, M., Noël, M., et al. (2009) Molecular Characterization of a Human Cation‐Cl− Cotransporter (SLC12A8A, CCC9A) That Promotes Polyamine and Amino Acid Transport. Journal of Cellular Physiology, 220, 680-689. https://doi.org/10.1002/jcp.21814
|
[3]
|
Tao, Z., Shi, A., Lu, C., Song, T., Zhang, Z. and Zhao, J. (2014) Breast Cancer: Epidemiology and Etiology. Cell Biochemistry and Biophysics, 72, 333-338. https://doi.org/10.1007/s12013-014-0459-6
|
[4]
|
Grozio, A., Mills, K.F., Yoshino, J., Bruzzone, S., Sociali, G., Tokizane, K., et al. (2019) Author Correction: Slc12a8 Is a Nicotinamide Mononucleotide Transporter. Nature Metabolism, 1, 743-743. https://doi.org/10.1038/s42255-019-0088-x
|
[5]
|
Covarrubias, A.J., Perrone, R., Grozio, A. and Verdin, E. (2020) NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nature Reviews Molecular Cell Biology, 22, 119-141. https://doi.org/10.1038/s41580-020-00313-x
|
[6]
|
Ito, N., Takatsu, A., Ito, H., Koike, Y., Yoshioka, K., Kamei, Y., et al. (2022) Slc12a8 in the Lateral Hypothalamus Maintains Energy Metabolism and Skeletal Muscle Functions during Aging. Cell Reports, 40, Article ID: 111131. https://doi.org/10.1016/j.celrep.2022.111131
|
[7]
|
Gradishar, W.J., Moran, M.S., Abraham, J., et al. (2021) NCCN Guidelines ® Insights: Breast Cancer, Version 4.2021. Journal of the National Comprehensive Cancer Network, 19, 484-493.
|
[8]
|
du Rusquec, P., Blonz, C., Frenel, J.S. and Campone, M. (2020) Targeting the PI3K/Akt/mTOR Pathway in Estrogen-Receptor Positive HER2 Negative Advanced Breast Cancer. Therapeutic Advances in Medical Oncology, 12, 1-12. https://doi.org/10.1177/1758835920940939
|
[9]
|
Kim, J., Choi, J., Park, J., Park, C., Lee, S.M., Park, S.E., et al. (2018) Associations between Genetic Polymorphisms of Membrane Transporter Genes and Prognosis after Chemotherapy: Meta-Analysis and Finding from Seoul Breast Cancer Study (SEBCS). The Pharmacogenomics Journal, 18, 633-645. https://doi.org/10.1038/s41397-018-0016-6
|
[10]
|
Stearns, V., Davidson, N.E. and Flockhart, D.A. (2004) Pharmacogenetics in the Treatment of Breast Cancer. The Pharmacogenomics Journal, 4, 143-153. https://doi.org/10.1038/sj.tpj.6500242
|
[11]
|
Berry, D.A., Cronin, K.A., Plevritis, S.K., Fryback, D.G., Clarke, L., Zelen, M., et al. (2005) Effect of Screening and Adjuvant Therapy on Mortality from Breast Cancer. New England Journal of Medicine, 353, 1784-1792. https://doi.org/10.1056/nejmoa050518
|
[12]
|
Medzhitov, R., Preston-Hurlburt, P. and Janeway, C.A. (1997) A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity. Nature, 388, 394-397. https://doi.org/10.1038/41131
|
[13]
|
Takeda, K. and Akira, S. (2004) TLR Signaling Pathways. Seminars in Immunology, 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003
|
[14]
|
Doyle, S.L. and O’Neill, L.A.J. (2006) Toll-Like Receptors: From the Discovery of NFκB to New Insights into Transcriptional Regulations in Innate Immunity. Biochemical Pharmacology, 72, 1102-1113. https://doi.org/10.1016/j.bcp.2006.07.010
|
[15]
|
Grivennikov, S.I., Greten, F.R. and Karin, M. (2010) Immunity, Inflammation, and Cancer. Cell, 140, 883-899. https://doi.org/10.1016/j.cell.2010.01.025
|
[16]
|
Philip, M., Rowley, D.A. and Schreiber, H. (2004) Inflammation as a Tumor Promoter in Cancer Induction. Seminars in Cancer Biology, 14, 433-439. https://doi.org/10.1016/j.semcancer.2004.06.006
|
[17]
|
Duan, T., Du, Y., Xing, C., Wang, H.Y. and Wang, R. (2022) Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Frontiers in Immunology, 13, Article 812774. https://doi.org/10.3389/fimmu.2022.812774
|
[18]
|
Li, L., Xia, J., Cui, R. and Kong, B. (2020) Solute Carrier Family 12 Member 8 Impacts the Biological Behaviors of Breast Carcinoma Cells by Activating TLR/NLR Signaling Pathway. Cytotechnology, 73, 23-34. https://doi.org/10.1007/s10616-020-00439-y
|
[19]
|
李琪, 徐银莹, 谢冰雪, 等. 基于数据库挖掘分析SLC12A8在乳腺癌组织中的表达及与细胞耐药的关系[J]. 现代肿瘤医学, 2021, 29(22): 3938-3943.
|
[20]
|
Fletcher, J.I., Williams, R.T., Henderson, M.J., Norris, M.D. and Haber, M. (2016) ABC Transporters as Mediators of Drug Resistance and Contributors to Cancer Cell Biology. Drug Resistance Updates, 26, 1-9. https://doi.org/10.1016/j.drup.2016.03.001
|
[21]
|
Lobo, N., Afferi, L., Moschini, M., Mostafid, H., Porten, S., Psutka, S.P., et al. (2022) Epidemiology, Screening, and Prevention of Bladder Cancer. European Urology Oncology, 5, 628-639. https://doi.org/10.1016/j.euo.2022.10.003
|
[22]
|
李辉章, 郑荣寿, 杜灵彬, 等. 中国膀胱癌流行现状与趋势分析[J]. 中华肿瘤杂志, 2021, 43(3): 293-298.
|
[23]
|
Li, S., Li, Z., Cao, Q. and Wang, W. (2020) SLC12A8 Plays a Key Role in Bladder Cancer Progression and EMT. Open Medicine, 16, 058-067. https://doi.org/10.1515/med-2021-0013
|
[24]
|
Moresi, V., Adamo, S. and Berghella, L. (2019) The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Frontiers in Physiology, 10,Article 500. https://doi.org/10.3389/fphys.2019.00500
|
[25]
|
Hu, Q., Bian, Q., Rong, D., Wang, L., Song, J., Huang, H., et al. (2023) JAK/STAT Pathway: Extracellular Signals, Diseases, Immunity, and Therapeutic Regimens. Frontiers in Bioengineering and Biotechnology, 11, Article 1110765. https://doi.org/10.3389/fbioe.2023.1110765
|
[26]
|
Feigin, M.E., Garvin, T., Bailey, P., Waddell, N., Chang, D.K., Kelley, D.R., et al. (2017) Recurrent Noncoding Regulatory Mutations in Pancreatic Ductal Adenocarcinoma. Nature Genetics, 49, 825-833. https://doi.org/10.1038/ng.3861
|
[27]
|
张晓林, 吴浩松, 汪盛. SLC12A8通过JAK/STAT途径促进膀胱癌细胞的增殖、侵袭与迁移并触发上皮间充质转化[J]. 南方医科大学学报, 2023, 43(9): 1613-1621.
|
[28]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[29]
|
Wu, F., Wang, L. and Zhou, C. (2020) Lung Cancer in China: Current and Prospect. Current Opinion in Oncology, 33, 40-46. https://doi.org/10.1097/cco.0000000000000703
|
[30]
|
Nie, J. and Yang, X. (2024) SLC12A8 Promotes the Migration and Invasion of Non-Small Cell Lung Cancer (NSCLC) Cells. General physiology and biophysics, 43, 445-455. https://doi.org/10.4149/gpb_2024020
|
[31]
|
Yang, C., Yang, J.C. and Yang, P. (2020) Precision Management of Advanced Non-Small Cell Lung Cancer. Annual Review of Medicine, 71, 117-136. https://doi.org/10.1146/annurev-med-051718-013524
|
[32]
|
Boch, T., Köhler, J., Janning, M. and Loges, S. (2022) Targeting the EGF Receptor Family in Non-Small Cell Lung Cancer—Increased Complexity and Future Perspectives. Cancer Biology & Medicine, 19, 1543-1564. https://doi.org/10.20892/j.issn.2095-3941.2022.0540
|
[33]
|
Lu, S., Zhou, J., Jian, H., Wu, L., Cheng, Y., Fan, Y., et al. (2023) Befotertinib (D-0316) versus Icotinib as First-Line Therapy for Patients with EGFR-Mutated Locally Advanced or Metastatic Non-Small-Cell Lung Cancer: A Multicentre, Open-Label, Randomised Phase 3 Study. The Lancet Respiratory Medicine, 11, 905-915. https://doi.org/10.1016/s2213-2600(23)00183-2
|
[34]
|
Planchard, D., Jänne, P.A., Cheng, Y., Yang, J.C., Yanagitani, N., Kim, S., et al. (2023) Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. New England Journal of Medicine, 389, 1935-1948. https://doi.org/10.1056/nejmoa2306434
|
[35]
|
Yang, Y., Min, J., Yang, N., Yu, Q., Cheng, Y., Zhao, Y., et al. (2023) Envonalkib versus Crizotinib for Treatment-Naive Alk-Positive Non-Small Cell Lung Cancer: A Randomized, Multicenter, Open-Label, Phase III Trial. Signal Transduction and Targeted Therapy, 8, Article No. 301. https://doi.org/10.1038/s41392-023-01538-w
|
[36]
|
Drilon, A., Oxnard, G.R., Tan, D.S.W., Loong, H.H.F., Johnson, M., Gainor, J., et al. (2020) Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 383, 813-824. https://doi.org/10.1056/nejmoa2005653
|
[37]
|
Barlesi, F., Mazieres, J., Merlio, J., Debieuvre, D., Mosser, J., Lena, H., et al. (2016) Routine Molecular Profiling of Patients with Advanced Non-Small-Cell Lung Cancer: Results of a 1-Year Nationwide Programme of the French Cooperative Thoracic Intergroup (IFCT). The Lancet, 387, 1415-1426. https://doi.org/10.1016/s0140-6736(16)00004-0
|
[38]
|
Bonomi, P.D., Gandara, D., Hirsch, F.R., Kerr, K.M., Obasaju, C., Paz-Ares, L., et al. (2018) Predictive Biomarkers for Response to EGFR-Directed Monoclonal Antibodies for Advanced Squamous Cell Lung Cancer. Annals of Oncology, 29, 1701-1709. https://doi.org/10.1093/annonc/mdy196
|
[39]
|
Huang, F., Cui, J., Wan, J., Yuan, X., Zhu, Y., Wu, X., et al. (2023) SLC12A8 Mediates TKI Resistance in EGFR-Mutant Lung Cancer via PDK1/AKT Axis. Journal of Cancer Research and Clinical Oncology, 149, 16729-16739. https://doi.org/10.1007/s00432-023-05416-4
|
[40]
|
Zhang, X., Wu, H. and Wang, S. (2023) [SLC12A8 Promotes Proliferation, Invasiveness, Migration and Epithelial-Mesenchymal Transition of Bladder Cancer Cells by Activating JAK/STAT Singaling]. Journal of Southern Medical University, 43, 1613-1621.
|
[41]
|
Xi, Y. and Xu, P. (2021) Global Colorectal Cancer Burden in 2020 and Projections to 2040. Translational Oncology, 14, Article ID: 101174. https://doi.org/10.1016/j.tranon.2021.101174
|
[42]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[43]
|
Sun, Z., Nie, Z., Xu, Y., Cui, Y., Ma, W. and Zhang, T. (2024) SLC12A8 Upregulation Promotes Colorectal Cancer Progression and Chemoresistance. Translational Cancer Research, 13, 3446-3464. https://doi.org/10.21037/tcr-24-87
|
[44]
|
聂志岩. Slc12a8转运蛋白对结肠癌化疗药物的影响研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2023.
|
[45]
|
Zhang, Q., Liu, Y., Chen, P., Shi, X., Liu, Y., Shi, L., et al. (2021) Solute Carrier Family 12 Member 8 (SLC12A8) Is a Potential Biomarker and Related to Tumor Immune Cell Infiltration in Bladder Cancer. Bioengineered, 12, 4946-4961. https://doi.org/10.1080/21655979.2021.1962485
|