|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lee, S., Ozkavukcu, S. and Ku, S. (2021) Current and Future Perspectives for Improving Ovarian Tissue Cryopreservation and Transplantation Outcomes for Cancer Patients. Reproductive Sciences, 28, 1746-1758. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dolmans, M. and Donnez, J. (2021) Fertility Preservation in Women for Medical and Social Reasons: Oocytes vs Ovarian Tissue. Best Practice & Research Clinical Obstetrics & Gynaecology, 70, 63-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Salama, M. and Woodruff, T.K. (2017) Anticancer Treatments and Female Fertility: Clinical Concerns and Role of Oncologists in Oncofertility Practice. Expert Review of Anticancer Therapy, 17, 687-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Spears, N., Lopes, F., Stefansdottir, A., Rossi, V., De Felici, M., Anderson, R.A., et al. (2019) Ovarian Damage from Chemotherapy and Current Approaches to Its Protection. Human Reproduction Update, 25, 673-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Griffiths, M.J., Winship, A.L. and Hutt, K.J. (2019) Do Cancer Therapies Damage the Uterus and Compromise Fertility? Human Reproduction Update, 26, 161-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wo, J.Y. and Viswanathan, A.N. (2009) Impact of Radiotherapy on Fertility, Pregnancy, and Neonatal Outcomes in Female Cancer Patients. International Journal of Radiation Oncology Biology Physics, 73, 1304-1312. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wallace, W.H.B., Thomson, A.B., Saran, F. and Kelsey, T.W. (2005) Predicting Age of Ovarian Failure after Radiation to a Field That Includes the Ovaries. International Journal of Radiation Oncology Biology Physics, 62, 738-744. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wei, C. and Crowne, E. (2019) The Impact of Childhood Cancer and Its Treatment on Puberty and Subsequent Hypothalamic Pituitary and Gonadal Function, in Both Boys and Girls. Best Practice & Research Clinical Endocrinology & Metabolism, 33, Article ID: 101291. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Green, D.M., Kawashima, T., Stovall, M., Leisenring, W., Sklar, C.A., Mertens, A.C., et al. (2009) Fertility of Female Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 27, 2677-2685. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Stroud, J.S., Mutch, D., Rader, J., Powell, M., Thaker, P.H. and Grigsby, P.W. (2009) Effects of Cancer Treatment on Ovarian Function. Fertility and Sterility, 92, 417-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wallace, W.H.B., Thomson, A.B. and Kelsey, T.W. (2003) The Radiosensitivity of the Human Oocyte. Human Reproduction, 18, 117-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rivas Leonel, E.C., Lucci, C.M. and Amorim, C.A. (2019) Cryopreservation of Human Ovarian Tissue: A Review. Transfusion Medicine and Hemotherapy, 46, 173-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Arian, S.E., Goodman, L., Flyckt, R.L. and Falcone, T. (2017) Ovarian Transposition: A Surgical Option for Fertility Preservation. Fertility and Sterility, 107, e15. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rajabi, Z., Aliakbari, F. and Yazdekhasti, H. (2018) Female Fertility Preservation, Clinical and Experimental Options. Journal of Reproduction & Infertility, 19, 125-132.
|
|
[16]
|
Mauri, D., Gazouli, I., Zarkavelis, G., Papadaki, A., Mavroeidis, L., Gkoura, S., et al. (2020) Chemotherapy Associated Ovarian Failure. Frontiers in Endocrinology, 11, Article 572388. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Iussig, B., Maggiulli, R., Fabozzi, G., Bertelle, S., Vaiarelli, A., Cimadomo, D., et al. (2019) A Brief History of Oocyte Cryopreservation: Arguments and Facts. Acta Obstetricia et Gynecologica Scandinavica, 98, 550-558. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Marin, L., Bedoschi, G., Kawahara, T. and Oktay, K.H. (2020) History, Evolution and Current State of Ovarian Tissue Auto-Transplantation with Cryopreserved Tissue: A Successful Translational Research Journey from 1999 to 2020. Reproductive Sciences, 27, 955-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Parkes, A.S. and Smith, A.U. (1953) Regeneration of Rat Ovarian Tissue Grafted after Exposure to Low Temperatures. Proceedings of the Royal Society of London. Series B—Biological Sciences, 140, 455-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Amorim, C.A., Curaba, M., Van Langendonckt, A., Dolmans, M. and Donnez, J. (2011) Vitrification as an Alternative Means of Cryopreserving Ovarian Tissue. Reproductive BioMedicine Online, 23, 160-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Fahy, G.M. and Wowk, B. (2020) Principles of Ice-Free Cryopreservation by Vitrification. In: Wolkers, W.F. and Oldenhof, H., Eds., Cryopreservation and Freeze-Drying Protocols, Springer, 27-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kim, S.S. (2012) Assessment of Long Term Endocrine Function after Transplantation of Frozen-Thawed Human Ovarian Tissue to the Heterotopic Site: 10 Year Longitudinal Follow-Up Study. Journal of Assisted Reproduction and Genetics, 29, 489-493. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lotz, L., Dittrich, R., Hoffmann, I. and Beckmann, M.W. (2019) Ovarian Tissue Transplantation: Experience from Germany and Worldwide Efficacy. Clinical Medicine Insights: Reproductive Health, 13, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dolmans, M., Donnez, J. and Cacciottola, L. (2021) Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends in Molecular Medicine, 27, 777-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bissoyi, A., Nayak, B., Pramanik, K. and Sarangi, S.K. (2014) Targeting Cryopreservation-Induced Cell Death: A Review. Biopreservation and Biobanking, 12, 23-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
dos Santos Morais, M.L.G., de Brito, D.C.C., Pinto, Y., Mascena Silva, L., Montano Vizcarra, D., Silva, R.F., et al. (2019) Natural Antioxidants in the Vitrification Solution Improve the Ovine Ovarian Tissue Preservation. Reproductive Biology, 19, 270-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Matés, J.M., Segura, J.A., Alonso, F.J. and Márquez, J. (2008) Intracellular Redox Status and Oxidative Stress: Implications for Cell Proliferation, Apoptosis, and Carcinogenesis. Archives of Toxicology, 82, 273-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Baust, J.G., Gao, D. and Baust, J.M. (2009) Cryopreservation: An Emerging Paradigm Change. Organogenesis, 5, 90-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, P., Li, Z., Dzyuba, B., Hulak, M., Rodina, M. and Linhart, O. (2010) Evaluating the Impacts of Osmotic and Oxidative Stress on Common Carp (Cyprinus carpio, L.) Sperm Caused by Cryopreservation Techniques. Biology of Reproduction, 83, 852-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cao, B., Qin, J., Pan, B., Qazi, I.H., Ye, J., Fang, Y., et al. (2022) Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells, 11, Article 3573. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mathias, F.J., D’Souza, F., Uppangala, S., Salian, S.R., Kalthur, G. and Adiga, S.K. (2014) Ovarian Tissue Vitrification Is More Efficient than Slow Freezing in Protecting Oocyte and Granulosa Cell DNA Integrity. Systems Biology in Reproductive Medicine, 60, 317-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sun, T.C., Liu, X.C., Yang, S.H., Song, L.L., Zhou, S.J., Deng, S.L., et al. (2020) Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway. Frontiers in Molecular Biosciences, 7, Article 163. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gupta, M.K., Uhm, S.J. and Lee, H.T. (2010) Effect of Vitrification and β-Mercaptoethanol on Reactive Oxygen Species Activity and in Vitro Development of Oocytes Vitrified before or after in Vitro Fertilization. Fertility and Sterility, 93, 2602-2607. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Piras, A.R., Ariu, F., Falchi, L., Zedda, M.T., Pau, S., Schianchi, E., et al. (2020) Resveratrol Treatment during Maturation Enhances Developmental Competence of Oocytes after Prolonged Ovary Storage at 4 °C in the Domestic Cat Model. Theriogenology, 144, 152-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rocha, C.D., Soares, M.M., de Cássia Antonino, D., Júnior, J.M., Freitas Mohallem, R.F., Ribeiro Rodrigues, A.P., et al. (2018) Positive Effect of Resveratrol against Preantral Follicles Degeneration after Ovarian Tissue Vitrification. Theriogenology, 114, 244-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Özcan, P., Fıçıcıoğlu, C., Yıldırım, Ö.K., Özkan, F., Akkaya, H. and Aslan, İ. (2015) Protective Effect of Resveratrol against Oxidative Damage to Ovarian Reserve in Female Sprague-Dawley Rats. Reproductive BioMedicine Online, 31, 404-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Marcantonini, G., Bartolini, D., Zatini, L., Costa, S., Passerini, M., Rende, M., et al. (2022) Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules, 27, Article 3254. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Cheng, L.Y., Sun, T.C., Liu, X.C., Yu, H., Zhou, S.J., Tian, L., et al. (2021) Melatonin Induction of HSP90 Expression Exerts Cryoprotective Effect on Ovarian Tissue. Cryobiology, 98, 134-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Asadi, E., Najafi, A. and Benson, J.D. (2022) Exogenous Melatonin Ameliorates the Negative Effect of Osmotic Stress in Human and Bovine Ovarian Stromal Cells. Antioxidants, 11, Article 1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Nugent, D., Newton, H., Gallivan, L. and Gosden, R.G. (1998) Protective Effect of Vitamin E on Ischaemia-Reperfusion Injury in Ovarian Grafts. Reproduction, 114, 341-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Oskam, I., Lund, T. and Santos, R. (2011) Irreversible Damage in Ovine Ovarian Tissue after Cryopreservation in Propanediol: Analyses after in Vitro Culture and Xenotransplantation. Reproduction in Domestic Animals, 46, 793-799. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Brito, D.C., Brito, A.B., Scalercio, S.R.R.A., Percário, S., Miranda, M.S., Rocha, R.M., et al. (2013) Vitamin E-Analog Trolox Prevents Endoplasmic Reticulum Stress in Frozen-Thawed Ovarian Tissue of Capuchin Monkey (Sapajus apella). Cell and Tissue Research, 355, 471-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Luz, H.K.M., Santos, R.R., Wanderley, L.S., Faustino, L.R., Silva, C.M.G., Carvalho, A.A., et al. (2012) Catalase Prevents Lipid Peroxidation and Enhances Survival of Caprine Preantral Follicles Cryopreserved in a 1,2-Propanediol-Freezing Medium. Biopreservation and Biobanking, 10, 338-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Carvalho, A.A., Faustino, L.R., Silva, C.M.G., Castro, S.V., Lobo, C.H., Santos, F.W., et al. (2014) Catalase Addition to Vitrification Solutions Maintains Goat Ovarian Preantral Follicles Stability. Research in Veterinary Science, 97, 140-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Silva, L.M., Mbemya, G.T., Guerreiro, D.D., Brito, D.C.C., Donfack, N.J., Morais, M.L.G.S., et al. (2018) Effect of Catalase or Alpha Lipoic Acid Supplementation in the Vitrification Solution of Ovine Ovarian Tissue. Biopreservation and Biobanking, 16, 258-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, Z., Mu, Y., Ding, D., Zou, W., Li, X., Chen, B., et al. (2020) Melatonin Improves the Effect of Cryopreservation on Human Oocytes by Suppressing Oxidative Stress and Maintaining the Permeability of the Oolemma. Journal of Pineal Research, 70, e12707. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Feng, Q., Wang, J., Yi, D., Li, S., Cheng, Y., Chen, Z., et al. (2025) Epigallocatechin Gallate Cooperated with Hydrogel Encapsulation Enables High-Performance Cryopreservation of Mouse Ovaries. Materials Today Bio, 32, Article ID: 101883. [Google Scholar] [CrossRef] [PubMed]
|