抗氧化剂在卵巢组织玻璃化冷冻保存中的研究进展
Research Progress of Antioxidants in Vitrification Cryopreservation of Ovarian Tissue
DOI: 10.12677/acm.2025.1582394, PDF, HTML, XML,   
作者: 金林平, 徐 键*:浙江大学医学院附属第四医院妇产科,浙江 义乌
关键词: 卵巢玻璃化冷冻氧化性应激抗氧化剂生育力保存Ovary Cryopreservation Oxidative Stress Antioxidant Fertility Preservation
摘要: 本综述探讨了抗氧化剂在卵巢组织玻璃化冷冻保存中的应用进展,旨在保护女性癌症患者的生育能力。癌症治疗如放疗和化疗虽提高了患者的生存率,但也对卵巢功能造成了损害,影响了年轻女性的生育健康。卵巢组织冷冻保存(OCT)作为一种保护生育能力的方法受到了关注,其中玻璃化冷冻技术因其高效性而逐渐流行。然而,冷冻保存过程中的氧化应激导致了细胞损伤和卵泡损失,影响了移植组织的寿命及功能恢复。研究表明,通过添加抗氧化剂(如白藜芦醇、褪黑素、维生素E等)到冷冻介质中,可以有效减少活性氧(ROS)的生成,减轻氧化应激,从而提高胚胎发育率和卵泡存活率。此外,抗氧化剂还能改善卵泡超微结构和形态,增强线粒体活性,并降低DNA损伤。这些发现提示,在冷冻保存介质中使用抗氧化剂是提高卵巢组织保存效果的有效策略,为未来临床应用提供了新的方向。进一步研究需集中在评估抗氧化剂的最佳组合及其临床应用,以优化卵巢组织冷冻保存和移植方案。
Abstract: This review summarizes the recent advances in the application of antioxidants in vitrification of ovarian tissue, aiming to preserve the fertility of female cancer patients. While cancer treatments such as radiotherapy and chemotherapy have significantly improved patient survival rates, they often cause damage to ovarian function, particularly affecting the reproductive health of young women. Ovarian tissue cryopreservation (OCT) has emerged as a promising strategy for fertility preservation, with vitrification gaining popularity due to its high efficiency. However, oxidative stress generated during the cryopreservation process leads to cellular damage and follicular loss, negatively affecting the lifespan and functional recovery of transplanted tissues. Studies have shown that the addition of antioxidants, such as resveratrol, melatonin, and vitamin E, to the cryopreservation medium can effectively reduce the production of reactive oxygen species (ROS), alleviate oxidative stress, and thereby enhance embryo development rates and follicle survival rates. Moreover, antioxidants have been found to improve follicular ultrastructure and morphology, enhance mitochondrial activity, and reduce DNA damage. These findings suggest that the inclusion of antioxidants in cryopreservation media is an effective strategy for improving the outcomes of ovarian tissue preservation, offering new perspectives for future clinical applications. Further research is needed to evaluate the optimal combinations of antioxidants and their translational potential in clinical settings, in order to refine protocols for ovarian tissue cryopreservation and transplantation.
文章引用:金林平, 徐键. 抗氧化剂在卵巢组织玻璃化冷冻保存中的研究进展[J]. 临床医学进展, 2025, 15(8): 1533-1540. https://doi.org/10.12677/acm.2025.1582394

1. 引言

癌症是全球人群死亡的首要原因,2022年全球癌症统计数据结果显示约有五分之一的女性一生中会患上癌症[1]。由于癌症的筛查、诊断及治疗手段的不断进展,人们的寿命显著延长,在发达国家中有超过80%的年轻女性癌症患者存活[2]。尽管大部分的癌症患者均已超过可生育年龄,但仍有约10%的癌症患者为45岁以下的女性[3]。癌症治疗包括手术、放疗和化疗[3],这些治疗手段均会损害卵巢功能进而影响年轻女性未来的生育,约有80%的癌症预后患者存在生育能力受损[4]。这一情况提示我们需要采取更多措施来保护和改善这些女性患者的生育健康,进一步改善癌症预后女性生活质量。

2. 癌症治疗对女性生殖系统的影响

尽管放疗化疗等治疗手段不断发展成熟,但这些治疗方法仍然存在一定的副作用[5]。放疗及化疗引起的生殖系统毒性主要表现包括卵巢早衰、卵泡储备下降、由于卵巢功能障碍引起的不育症及卵巢内分泌功能失调[6]。这些副作用的严重程度取决于患者的年龄、癌症类型、卵泡储备量和肿瘤治疗的频率及持续时间[3]

化疗可以通过多种机制诱导早发性卵巢功能不全。这些机制包括改变DNA碱基配对、诱导DNA交联和形成DNA单链或双链断裂,这些改变均会导致原始卵泡的凋亡[5]。此外化疗药物还会引起卵巢皮质和髓质的血管损伤,并抑制小血管的生长来间接减少卵巢的卵泡储备[5]。某些化学药物(如环磷酰胺或顺铂)可以通过激活原始卵泡的生长进而激活PI3K/AKT信号通路,这一通路对于维持原始卵泡细胞的休眠状态及卵巢卵泡储备至关重要[5]。因此在接受化疗需要密切关注患者的生殖健康状况,并采取必要的措施来保护其生育能力。

放疗导致的卵巢损伤严重程度与患者的年龄及辐照剂量相关[7]。有效绝育剂量(effective sterilizing dose, ESD)是指导致97.5%的患者卵巢功能衰竭的放疗剂量,其与女性的年龄呈现负相关[7]。据统计,刚出生时的ESD为20.3 Gy;10岁时为18.4 Gy;20岁时为16.5 Gy;30岁时为14.3 Gy [8]。与化疗类似,放疗可以通过诱导不可逆的DNA双链断裂、细胞凋亡、血管损伤、线粒体DNA损害以及卵巢细胞中自由基的生成对卵巢产生直接或间接的细胞毒性作用[9]。粒子辐射主要通过直接断裂DNA双链来损伤细胞,而电离辐射则通过与水分子相互作用产生自由基并进一步导致DNA损伤来间接诱导细胞损害,这些伤害会导致卵巢功能障碍、卵子受损和无法正常受精的问题,进而影响生育能力[10]。一般来说有丝分裂活跃的细胞相比于静止细胞对于辐射更敏感,不过卵子也容易受到辐射损伤[11]。卵母细胞的放射敏感性取决于它们的生长阶段,成熟的大卵泡比原始卵泡更易受到辐射损害[12]。辐射也会损害卵巢间质的血管结构[11]。此外癌症治疗会导致卵巢甾体下降,进而引起相关的更年期症状和骨质疏松症[13]。这些症状可以通过激素替代疗法(hormonal replacement therapies, HRT)缓解,然而激素用量不当会导致患者中风、静脉血栓形成、心脏病及癌症的风险增加[13]。因此,在接受癌症治疗时,患者需要密切关注其更年期症状和骨骼健康,并在医生的指导下进行激素替代治疗。

目前用于保护女性癌症患者生育能力的策略主要包括卵巢移植、卵巢抑制、冷冻卵母细胞[14]。卵巢移植作为一种实验性外科手术方式并不适合正在接受化疗的患者[15];卵巢抑制不属于国际指南推荐的可靠方法[16];相比之下控制性卵巢刺激后卵子或胚胎冷冻是最常用的保育方法之一,具有较高的成功率和较少的卵巢刺激周期数[17]。然而卵巢冷冻保存仍然存在一定的缺点,这种方式并不适合需要紧急保存生育能力的情况,并且一部分患者无法实行这种方法[2]。尽管如此,卵巢冷冻保存仍然是一种有前途的生育率保存方法。通过这种方式,超过95%的情况下内分泌功能得到了恢复,并且怀孕率为40%,活产率为35% [18]。未来的研究应聚焦于技术创新与个性化治疗方案的优化,利用纳米技术和基因编辑等先进手段,进一步提高冷冻保存技术的成功率。

3. 卵巢组织冷冻保存与移植技术

卵巢组织冷冻保存(Ovarian tissue cryopreservation, OCT)是指将女性的卵巢组织在低温下保存以保护其生育能力[19]。目前卵巢组织冷冻保存主要是通过慢速冷冻和玻璃化冷冻实现的[20]。慢速冷冻是指通过控制冷却速率,在速率低于100℃/min的情况下进行冷冻,是卵巢组织冷冻保存的临床标准方法[20]。近年来由于玻璃化冷冻技术取得了良好的效果,其也逐渐受到了关注。玻璃化冷冻的特点是通过快速冷却和高浓度溶质实现样本的无冰冻固化[21]。无论使用哪种方法冷冻卵巢,都需要使用冷冻保护剂。目前最常用的冷冻保护剂包括二甲基硫代甲烷(dimethyl sulfoxide, DMSO)、乙二醇(ethylene glycol, EG)、1,2-丙二醇(1,2-propanediol, PROH)和蔗糖[20]

卵巢移植是一种用于治疗女性不孕症的方法,其包括原位移植和异位移植[3]。原位移植是最常用的卵巢移植方法,这种方法下卵巢组织被移植到剩余卵巢的位置,经过两到八个月的时间其功能就可以重新恢复正常[3]。然而,在盆腔放射治疗后严重粘连的情况下无法进行原位移植。异位移植是一种更简单的手术方式,这种方式不需要将卵巢组织移植回盆腔区域,其可以将卵巢组织移植到身体其他部位,例如腹部壁、前臂、乳房、直肠肌或腹膜[22]。当无法进行原位移植时可以进行异位移植。虽然异位自体移植后两到九个月卵巢功能可以恢复,但只有在取出成熟卵泡并通过体外受精处理后才能实现正常妊娠[23]

尽管OTC对于保护青春期前患者的生育能力至关重要,但由于其技术较新且成功率较低,应用不如卵子和胚胎冷冻普遍[24]。因此了解并解决冷冻和移植过程中造成的卵巢损伤,对于提高OTC成功率和恢复癌症幸存者的生育能力至关重要。

4. 冷冻保存与移植中的ROS的产生特点

冷冻保存是一种常用于细胞、组织和器官的短期及长期储存方法。然而解冻后常常出现细胞死亡及组织器官功能受损的情况[25]。因此需要更好地了解冷冻保存导致细胞组织损伤的机制并确定保存卵巢组织的最佳方式。冷冻保存引起细胞与组织损伤的主要原因是氧化应激[26]。氧化应激是指活性氧(reactive oxygen species, ROS)与抗氧化剂之间生成不平衡,这是由于ROS过度产生或解毒系统耗竭造成的[27]。冷冻保存过程中产生的ROS会影响细胞信号转导途径,并改变许多细胞内信号转导途径[27]。氧化应激已被证明在多种细胞中会引起细胞凋亡激活[28]。氧化损害可以发生在冷冻保存过程中的任何步骤,低温胁迫会导致脂质过氧化并通过诱导细胞膜损伤,而暴露于冷冻保护剂[29]。因此,在冷冻保存过程中需要注意控制氧化应激,以减少细胞损伤并提高冷冻保存成功率。

在卵母细胞/卵巢组织冷冻保存、复苏及移植的不同阶段,ROS的产生水平存在差异。过量ROS通过损伤线粒体和内质网等细胞器,激活凋亡和铁死亡等程序性细胞死亡通路,最终导致组织损伤及卵泡丢失[30]。在冷冻阶段,组织缺氧状态导致线粒体呼吸链功能障碍,同时冷冻保护剂不仅破坏内质网稳态,其产生的渗透压应激还会损伤内质网及其他细胞器的膜结构。这一阶段,尽管ROS水平较低,但已触发脂质过氧化反应。复苏阶段,由于组织缺血缺氧及解冻过程中的物理损伤(如冰晶形成、渗透压应激),ROS呈爆发性激增。移植后缺血–再灌注期,氧供恢复导致线粒体电子传递链功能障碍,引发“呼吸爆发”,生成大量ROS,进而诱导血管内皮功能障碍、微血管通透性增加、组织水肿及炎症级联反应,最终加重细胞凋亡和组织损伤,形成典型的缺血–再灌注损伤[31]

虽然OCT技术在女性生育力保护方面具有较高的应用价值,但它也会导致移植组织的寿命较短,目前冷冻保存并移植的组织预期寿命仅为两到五年[24]。因此我们需要特别关注如何提高移植组织的寿命。冷冻保存卵巢组织会导致氧化应激增加,进而通过影响卵泡凋亡、卵泡超微结构和形态异常来降低卵子受精率、胚胎质量和临床妊娠率[32]。而冷冻保存诱导的ROS生成过多会通过增加线粒体损伤、钙振荡和ATP耗竭损害冷冻解冻卵母细胞的发育潜力,补充抗氧化剂可以减轻线粒体功能障碍[33]。总之,卵巢组织冷冻保存技术虽然有助于保护女性生育能力,但其仍具有潜在的不良影响,仍需进一步研究并采取措施来减少氧化应激的影响以确保该技术的安全性和有效性。

5. 抗氧化剂在卵巢组织冷冻保存中的应用

抗氧化剂治疗一直是卵巢保护的研究重点。白藜芦醇是一种强效的自由基清除剂,其可以通过清除ROS显著提高胚胎发育率[34]。此外白藜芦醇还可以改善玻璃化冷冻牛卵巢片段中卵泡的存活率和形态,并降低ROS水平[35]。在大鼠卵巢中,白藜芦醇也被证明能对抗氧化应激及与卵泡闭锁相关的细胞凋亡[36]。多项研究表明,褪黑素能有效保护冷冻解冻移植的卵巢组织,其保护机制包括直接清除ROS、激活解偶联蛋白和抑制MPTPs蛋白活性,以及间接增强抗氧化基因表达和提高呼吸链复合物活性[37]。褪黑素能通过调节Nrf2/HO-1信号通路和上调Hsp90表达,减轻氧化应激和细胞凋亡[38]。另一项研究显示,在非等渗溶液中添加0.1 µM褪黑素可减少人卵巢基质细胞中的ROS并增加总抗氧化能力[39]。这些发现均支持褪黑素在卵巢组织冷冻保存中具有巨大应用潜力。

早期的研究显示使用维生素E处理人类卵巢组织可减少脂质过氧化并提高卵泡存活率[40]。Trolox是一种维生素E的类似物,在减轻人类和非人灵长类动物卵巢组织冷冻保存损伤方面具有重要意义[41]。冷冻介质中添加Trolox可以防止卷尾猴卵巢组织冷冻解冻后细胞质空泡化,并增强卵泡活力[42]。在冷冻保存介质中添加0.1 mM Trolox或10或20 IU/mL过氧化氢酶能够保持山羊卵巢组织中的卵泡形态[43]。这些研究表明,Trolox和其他抗氧化剂在保护冷冻保存卵巢组织方面具有潜在的应用价值。

除此之外,其他的一些抗氧化剂也具有保护卵巢组织的作用。在卵巢组织玻璃化冷冻介质中添加过氧化氢酶能够有效维持山羊卵巢前窦卵泡的稳定性[44]。通过在绵羊冷冻保存介质中添加过氧化氢酶不仅降低了ROS水平,还减少了DNA损伤标志物的水平,并增强了基质细胞密度[45]。另一项研究表明,使用天然抗氧化剂茴香脑或罗宾宁作为玻璃化溶液的补充,可以降低ROS水平并保持线粒体活性,从而对绵羊卵巢组织中的基质细胞和前窦卵泡产生积极作用[26]。这些研究强调了不同抗氧化剂在保护冷冻保存卵巢组织方面的潜在作用及其机制。

6. 临床转化的挑战

尽管抗氧化剂在卵巢组织玻璃化冷冻保存中展现出潜在的保护作用,但其临床转化仍面临多重挑战[30]。首先,抗氧化剂的安全性和有效浓度范围需严格界定,不同抗氧化剂的毒性阈值存在显著差异,需通过系统评估以规避潜在风险。例如,高浓度白藜芦醇可能抑制线粒体呼吸链功能,导致细胞能量代谢障碍和凋亡。而过量摄入维生素E可能干扰维生素K依赖性凝血因子,增加出血风险。褪黑素虽安全性较高,但长期高剂量使用可能影响下丘脑–垂体–卵巢轴的内分泌平衡[46]。因此,需通过体外细胞毒性试验和动物体内毒性研究,确定各抗氧化剂的安全有效浓度范围[47]。给药策略方面,体外给药可精准控制浓度,但需确保抗氧化剂在冷冻–复苏过程中稳定;体内给药可能提升组织整体抗氧化能力,但需考虑全身分布带来的副作用,需结合药代动力学研究优化给药量及浓度。伦理层面,研究对象多为癌症患者等脆弱群体,需严格遵循知情同意原则,明确告知潜在风险。此外,卵巢组织移植涉及生育权与肿瘤复发风险的权衡,需通过伦理审查平衡技术获益与患者权益,同时建立长期随访机制以评估子代安全性。

7. 总结与展望

卵巢组织冷冻保存和移植已成为年轻女性癌症患者在化疗或放疗后保护生育能力的重要手段。尽管该技术已取得了显著进展,但仍然存在大规模卵泡损失等问题。研究表明,冷冻保存过程中有害ROS水平升高所导致氧化应激增强是造成卵泡损失的主要原因之一。通过抗氧化处理来减轻氧化应激,是解决卵泡损伤的有效策略。本综述揭示了氧化应激与卵巢组织冷冻保存的紧密联系,并表明在冷冻保存介质中添加抗氧化剂或对移植受体给予抗氧化剂可以有效保护山羊、小鼠、大鼠和人类的卵泡及基质细胞质量。

未来的研究需要进一步评估抗氧化剂的临床应用及其组合效果,以确定最佳的卵巢组织冷冻保存和移植方案。有几种潜在的策略来保护卵巢组织。在冷冻保存介质中(体外)或通过口服(体内)使用抗氧化剂可以直接减少ROS的生成。我们还可以进行靶向线粒体治疗,这种方式可以在降低ROS生成的同时不影响ATP的生成。调控ROS和抗氧化相关基因表达也是一种可行的策略,其可以增强细胞自身的抗氧化防御机制。同时可以开发阻断剂针对氧化应激诱导的信号分子,以避免损伤过程的激活。最后,利用数学模型优化细胞和组织冷冻保存协议时,并充分考虑渗透压应激引起的氧化损伤。这些综合措施有望显著减轻冷冻保存和移植卵巢组织中的氧化损伤,提高其存活率和功能恢复,为未来的临床应用提供坚实的基础。通过不断优化这些策略,我们能够更好地保护患者的生育能力,为她们带来新的希望。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Lee, S., Ozkavukcu, S. and Ku, S. (2021) Current and Future Perspectives for Improving Ovarian Tissue Cryopreservation and Transplantation Outcomes for Cancer Patients. Reproductive Sciences, 28, 1746-1758.
https://doi.org/10.1007/s43032-021-00517-2
[3] Dolmans, M. and Donnez, J. (2021) Fertility Preservation in Women for Medical and Social Reasons: Oocytes vs Ovarian Tissue. Best Practice & Research Clinical Obstetrics & Gynaecology, 70, 63-80.
https://doi.org/10.1016/j.bpobgyn.2020.06.011
[4] Salama, M. and Woodruff, T.K. (2017) Anticancer Treatments and Female Fertility: Clinical Concerns and Role of Oncologists in Oncofertility Practice. Expert Review of Anticancer Therapy, 17, 687-692.
https://doi.org/10.1080/14737140.2017.1335199
[5] Spears, N., Lopes, F., Stefansdottir, A., Rossi, V., De Felici, M., Anderson, R.A., et al. (2019) Ovarian Damage from Chemotherapy and Current Approaches to Its Protection. Human Reproduction Update, 25, 673-693.
https://doi.org/10.1093/humupd/dmz027
[6] Griffiths, M.J., Winship, A.L. and Hutt, K.J. (2019) Do Cancer Therapies Damage the Uterus and Compromise Fertility? Human Reproduction Update, 26, 161-173.
https://doi.org/10.1093/humupd/dmz041
[7] Wo, J.Y. and Viswanathan, A.N. (2009) Impact of Radiotherapy on Fertility, Pregnancy, and Neonatal Outcomes in Female Cancer Patients. International Journal of Radiation Oncology Biology Physics, 73, 1304-1312.
https://doi.org/10.1016/j.ijrobp.2008.12.016
[8] Wallace, W.H.B., Thomson, A.B., Saran, F. and Kelsey, T.W. (2005) Predicting Age of Ovarian Failure after Radiation to a Field That Includes the Ovaries. International Journal of Radiation Oncology Biology Physics, 62, 738-744.
https://doi.org/10.1016/j.ijrobp.2004.11.038
[9] Wei, C. and Crowne, E. (2019) The Impact of Childhood Cancer and Its Treatment on Puberty and Subsequent Hypothalamic Pituitary and Gonadal Function, in Both Boys and Girls. Best Practice & Research Clinical Endocrinology & Metabolism, 33, Article ID: 101291.
https://doi.org/10.1016/j.beem.2019.101291
[10] Green, D.M., Kawashima, T., Stovall, M., Leisenring, W., Sklar, C.A., Mertens, A.C., et al. (2009) Fertility of Female Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 27, 2677-2685.
https://doi.org/10.1200/jco.2008.20.1541
[11] Stroud, J.S., Mutch, D., Rader, J., Powell, M., Thaker, P.H. and Grigsby, P.W. (2009) Effects of Cancer Treatment on Ovarian Function. Fertility and Sterility, 92, 417-427.
https://doi.org/10.1016/j.fertnstert.2008.07.1714
[12] Wallace, W.H.B., Thomson, A.B. and Kelsey, T.W. (2003) The Radiosensitivity of the Human Oocyte. Human Reproduction, 18, 117-121.
https://doi.org/10.1093/humrep/deg016
[13] Rivas Leonel, E.C., Lucci, C.M. and Amorim, C.A. (2019) Cryopreservation of Human Ovarian Tissue: A Review. Transfusion Medicine and Hemotherapy, 46, 173-181.
https://doi.org/10.1159/000499054
[14] Arian, S.E., Goodman, L., Flyckt, R.L. and Falcone, T. (2017) Ovarian Transposition: A Surgical Option for Fertility Preservation. Fertility and Sterility, 107, e15.
https://doi.org/10.1016/j.fertnstert.2017.01.010
[15] Rajabi, Z., Aliakbari, F. and Yazdekhasti, H. (2018) Female Fertility Preservation, Clinical and Experimental Options. Journal of Reproduction & Infertility, 19, 125-132.
[16] Mauri, D., Gazouli, I., Zarkavelis, G., Papadaki, A., Mavroeidis, L., Gkoura, S., et al. (2020) Chemotherapy Associated Ovarian Failure. Frontiers in Endocrinology, 11, Article 572388.
https://doi.org/10.3389/fendo.2020.572388
[17] Iussig, B., Maggiulli, R., Fabozzi, G., Bertelle, S., Vaiarelli, A., Cimadomo, D., et al. (2019) A Brief History of Oocyte Cryopreservation: Arguments and Facts. Acta Obstetricia et Gynecologica Scandinavica, 98, 550-558.
https://doi.org/10.1111/aogs.13569
[18] Marin, L., Bedoschi, G., Kawahara, T. and Oktay, K.H. (2020) History, Evolution and Current State of Ovarian Tissue Auto-Transplantation with Cryopreserved Tissue: A Successful Translational Research Journey from 1999 to 2020. Reproductive Sciences, 27, 955-962.
https://doi.org/10.1007/s43032-019-00066-9
[19] Parkes, A.S. and Smith, A.U. (1953) Regeneration of Rat Ovarian Tissue Grafted after Exposure to Low Temperatures. Proceedings of the Royal Society of London. Series BBiological Sciences, 140, 455-470.
https://doi.org/10.1098/rspb.1953.0002
[20] Amorim, C.A., Curaba, M., Van Langendonckt, A., Dolmans, M. and Donnez, J. (2011) Vitrification as an Alternative Means of Cryopreserving Ovarian Tissue. Reproductive BioMedicine Online, 23, 160-186.
https://doi.org/10.1016/j.rbmo.2011.04.005
[21] Fahy, G.M. and Wowk, B. (2020) Principles of Ice-Free Cryopreservation by Vitrification. In: Wolkers, W.F. and Oldenhof, H., Eds., Cryopreservation and Freeze-Drying Protocols, Springer, 27-97.
https://doi.org/10.1007/978-1-0716-0783-1_2
[22] Kim, S.S. (2012) Assessment of Long Term Endocrine Function after Transplantation of Frozen-Thawed Human Ovarian Tissue to the Heterotopic Site: 10 Year Longitudinal Follow-Up Study. Journal of Assisted Reproduction and Genetics, 29, 489-493.
https://doi.org/10.1007/s10815-012-9757-3
[23] Lotz, L., Dittrich, R., Hoffmann, I. and Beckmann, M.W. (2019) Ovarian Tissue Transplantation: Experience from Germany and Worldwide Efficacy. Clinical Medicine Insights: Reproductive Health, 13, 1-8.
https://doi.org/10.1177/1179558119867357
[24] Dolmans, M., Donnez, J. and Cacciottola, L. (2021) Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends in Molecular Medicine, 27, 777-791.
https://doi.org/10.1016/j.molmed.2020.11.003
[25] Bissoyi, A., Nayak, B., Pramanik, K. and Sarangi, S.K. (2014) Targeting Cryopreservation-Induced Cell Death: A Review. Biopreservation and Biobanking, 12, 23-34.
https://doi.org/10.1089/bio.2013.0032
[26] dos Santos Morais, M.L.G., de Brito, D.C.C., Pinto, Y., Mascena Silva, L., Montano Vizcarra, D., Silva, R.F., et al. (2019) Natural Antioxidants in the Vitrification Solution Improve the Ovine Ovarian Tissue Preservation. Reproductive Biology, 19, 270-278.
https://doi.org/10.1016/j.repbio.2019.07.008
[27] Matés, J.M., Segura, J.A., Alonso, F.J. and Márquez, J. (2008) Intracellular Redox Status and Oxidative Stress: Implications for Cell Proliferation, Apoptosis, and Carcinogenesis. Archives of Toxicology, 82, 273-299.
https://doi.org/10.1007/s00204-008-0304-z
[28] Baust, J.G., Gao, D. and Baust, J.M. (2009) Cryopreservation: An Emerging Paradigm Change. Organogenesis, 5, 90-96.
https://doi.org/10.4161/org.5.3.10021
[29] Li, P., Li, Z., Dzyuba, B., Hulak, M., Rodina, M. and Linhart, O. (2010) Evaluating the Impacts of Osmotic and Oxidative Stress on Common Carp (Cyprinus carpio, L.) Sperm Caused by Cryopreservation Techniques. Biology of Reproduction, 83, 852-858.
https://doi.org/10.1095/biolreprod.110.085852
[30] Cao, B., Qin, J., Pan, B., Qazi, I.H., Ye, J., Fang, Y., et al. (2022) Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells, 11, Article 3573.
https://doi.org/10.3390/cells11223573
[31] Mathias, F.J., D’Souza, F., Uppangala, S., Salian, S.R., Kalthur, G. and Adiga, S.K. (2014) Ovarian Tissue Vitrification Is More Efficient than Slow Freezing in Protecting Oocyte and Granulosa Cell DNA Integrity. Systems Biology in Reproductive Medicine, 60, 317-322.
https://doi.org/10.3109/19396368.2014.923542
[32] Sun, T.C., Liu, X.C., Yang, S.H., Song, L.L., Zhou, S.J., Deng, S.L., et al. (2020) Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway. Frontiers in Molecular Biosciences, 7, Article 163.
https://doi.org/10.3389/fmolb.2020.00163
[33] Gupta, M.K., Uhm, S.J. and Lee, H.T. (2010) Effect of Vitrification and β-Mercaptoethanol on Reactive Oxygen Species Activity and in Vitro Development of Oocytes Vitrified before or after in Vitro Fertilization. Fertility and Sterility, 93, 2602-2607.
https://doi.org/10.1016/j.fertnstert.2010.01.043
[34] Piras, A.R., Ariu, F., Falchi, L., Zedda, M.T., Pau, S., Schianchi, E., et al. (2020) Resveratrol Treatment during Maturation Enhances Developmental Competence of Oocytes after Prolonged Ovary Storage at 4 °C in the Domestic Cat Model. Theriogenology, 144, 152-157.
https://doi.org/10.1016/j.theriogenology.2020.01.009
[35] Rocha, C.D., Soares, M.M., de Cássia Antonino, D., Júnior, J.M., Freitas Mohallem, R.F., Ribeiro Rodrigues, A.P., et al. (2018) Positive Effect of Resveratrol against Preantral Follicles Degeneration after Ovarian Tissue Vitrification. Theriogenology, 114, 244-251.
https://doi.org/10.1016/j.theriogenology.2018.04.004
[36] Özcan, P., Fıçıcıoğlu, C., Yıldırım, Ö.K., Özkan, F., Akkaya, H. and Aslan, İ. (2015) Protective Effect of Resveratrol against Oxidative Damage to Ovarian Reserve in Female Sprague-Dawley Rats. Reproductive BioMedicine Online, 31, 404-410.
https://doi.org/10.1016/j.rbmo.2015.06.007
[37] Marcantonini, G., Bartolini, D., Zatini, L., Costa, S., Passerini, M., Rende, M., et al. (2022) Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules, 27, Article 3254.
https://doi.org/10.3390/molecules27103254
[38] Cheng, L.Y., Sun, T.C., Liu, X.C., Yu, H., Zhou, S.J., Tian, L., et al. (2021) Melatonin Induction of HSP90 Expression Exerts Cryoprotective Effect on Ovarian Tissue. Cryobiology, 98, 134-138.
https://doi.org/10.1016/j.cryobiol.2020.12.002
[39] Asadi, E., Najafi, A. and Benson, J.D. (2022) Exogenous Melatonin Ameliorates the Negative Effect of Osmotic Stress in Human and Bovine Ovarian Stromal Cells. Antioxidants, 11, Article 1054.
https://doi.org/10.3390/antiox11061054
[40] Nugent, D., Newton, H., Gallivan, L. and Gosden, R.G. (1998) Protective Effect of Vitamin E on Ischaemia-Reperfusion Injury in Ovarian Grafts. Reproduction, 114, 341-346.
https://doi.org/10.1530/jrf.0.1140341
[41] Oskam, I., Lund, T. and Santos, R. (2011) Irreversible Damage in Ovine Ovarian Tissue after Cryopreservation in Propanediol: Analyses after in Vitro Culture and Xenotransplantation. Reproduction in Domestic Animals, 46, 793-799.
https://doi.org/10.1111/j.1439-0531.2010.01743.x
[42] Brito, D.C., Brito, A.B., Scalercio, S.R.R.A., Percário, S., Miranda, M.S., Rocha, R.M., et al. (2013) Vitamin E-Analog Trolox Prevents Endoplasmic Reticulum Stress in Frozen-Thawed Ovarian Tissue of Capuchin Monkey (Sapajus apella). Cell and Tissue Research, 355, 471-480.
https://doi.org/10.1007/s00441-013-1764-x
[43] Luz, H.K.M., Santos, R.R., Wanderley, L.S., Faustino, L.R., Silva, C.M.G., Carvalho, A.A., et al. (2012) Catalase Prevents Lipid Peroxidation and Enhances Survival of Caprine Preantral Follicles Cryopreserved in a 1,2-Propanediol-Freezing Medium. Biopreservation and Biobanking, 10, 338-342.
https://doi.org/10.1089/bio.2011.0046
[44] Carvalho, A.A., Faustino, L.R., Silva, C.M.G., Castro, S.V., Lobo, C.H., Santos, F.W., et al. (2014) Catalase Addition to Vitrification Solutions Maintains Goat Ovarian Preantral Follicles Stability. Research in Veterinary Science, 97, 140-147.
https://doi.org/10.1016/j.rvsc.2014.05.006
[45] Silva, L.M., Mbemya, G.T., Guerreiro, D.D., Brito, D.C.C., Donfack, N.J., Morais, M.L.G.S., et al. (2018) Effect of Catalase or Alpha Lipoic Acid Supplementation in the Vitrification Solution of Ovine Ovarian Tissue. Biopreservation and Biobanking, 16, 258-269.
https://doi.org/10.1089/bio.2017.0122
[46] Zhang, Z., Mu, Y., Ding, D., Zou, W., Li, X., Chen, B., et al. (2020) Melatonin Improves the Effect of Cryopreservation on Human Oocytes by Suppressing Oxidative Stress and Maintaining the Permeability of the Oolemma. Journal of Pineal Research, 70, e12707.
https://doi.org/10.1111/jpi.12707
[47] Feng, Q., Wang, J., Yi, D., Li, S., Cheng, Y., Chen, Z., et al. (2025) Epigallocatechin Gallate Cooperated with Hydrogel Encapsulation Enables High-Performance Cryopreservation of Mouse Ovaries. Materials Today Bio, 32, Article ID: 101883.
https://doi.org/10.1016/j.mtbio.2025.101883