[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Cai, H., Jing, C., Chang, X., Ding, D., Han, T., Yang, J., et al. (2019) Mutational Landscape of Gastric Cancer and Clin-ical Application of Genomic Profiling Based on Target Next-Generation Sequencing. Journal of Translational Medi-cine, 17, Article No. 189. https://doi.org/10.1186/s12967-019-1941-0
|
[3]
|
Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N.D. and Kamangar, F. (2014) Gastric Cancer: Descriptive Epi-demiology, Risk Factors, Screening, and Prevention. Cancer Epidemiology, Biomarkers & Prevention, 23, 700-713. https://doi.org/10.1158/1055-9965.epi-13-1057
|
[4]
|
王畏, 张新鑫, 王广辉, 等. TMSB10促进胃癌细胞增殖及糖酵解: 基于激活AMPK/mTOR信号通路[J]. 实用医学杂志, 2024, 40(11): 1519-1525.
|
[5]
|
Zhao, W., Lin, J., Cheng, S., Li, H., Shu, Y. and Xu, C. (2023) Comprehensive Analysis of COMMD10 as a Novel Prognostic Biomarker for Gastric Cancer. PeerJ, 11, e14645. https://doi.org/10.7717/peerj.14645
|
[6]
|
李雨贤, 段振铨, 王莹, 谭雪玲, 余小红, 张媛媛, 朱宝行, 邱远, 彭六生, 邹全明. 胃癌患者肿瘤组织中B细胞的浸润及其免疫抑制功能的研究[J]. 陆军军医大学学报, 2024, 46(9): 1034-1040.
|
[7]
|
Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590. https://doi.org/10.1097/cm9.0000000000002108
|
[8]
|
肖无双, 洪林杰, 余针, 等. S100A7A在胃癌中的表达及对增殖转移的影响[J]. 实用医学杂志, 2024, 40(10): 1344-1350.
|
[9]
|
Turan, S. and Bastepe, M. (2015) GNAS Spectrum of Disorders. Current Osteoporosis Reports, 13, 146-158. https://doi.org/10.1007/s11914-015-0268-x
|
[10]
|
Tang, J., Peng, W., Ji, J., Peng, C., Wang, T., Yang, P., et al. (2023) GPR176 Promotes Cancer Progression by Interacting with G Protein GNAS to Restrain Cell Mitophagy in Colorectal Cancer. Advanced Science, 10, Article 2205627. https://doi.org/10.1002/advs.202205627
|
[11]
|
Li, C., Shen, W., Xu, Z., Li, C., Liu, Q., Pang, Y., et al. (2023) The Discovery of the New Mechanism: Celastrol Improves Spinal Cord Injury by Increasing Camp through VIP-ADCYAP1R1-GNAS Pathway. Biomedicine & Pharmacotherapy, 165, Article 115250. https://doi.org/10.1016/j.biopha.2023.115250
|
[12]
|
Kim, H., Shim, J. and Heo, C. (2023) A Rare Skeletal Disorder, Fibrous Dysplasia: A Review of Its Pathogenesis and Therapeutic Prospects. International Journal of Molecular Sciences, 24, Article 15591. https://doi.org/10.3390/ijms242115591
|
[13]
|
Desai, R. and Muthuswamy, S. (2023) Oncogenic GNAS uses PKA-Dependent and Independent Mechanisms to Induce Cell Proliferation in Human Pancreatic Ductal and Acinar Organoids. bioRxiv Preprint. https://doi.org/10.1101/2023.01.16.524220
|
[14]
|
Swieringa, F., Solari, F.A., Pagel, O., Beck, F., Huang, J., Feijge, M.A.H., et al. (2020) Impaired Iloprost-Induced Platelet Inhibition and Phosphoproteome Changes in Patients with Confirmed Pseudohypoparathyroidism Type IA, Linked to Genetic Mutations in Gnas. Scientific Reports, 10, Article No. 11389. https://doi.org/10.1038/s41598-020-68379-3
|
[15]
|
Nummela, P., Zafar, S., Veikkolainen, E., Ukkola, I., Cinella, V., Ayo, A., et al. (2024) GNAS Mutation Inhibits Growth and Induces Phosphodiesterase 4D Expression in Colorectal Cancer Cell Lines. International Journal of Cancer, 154, 1987-1998. https://doi.org/10.1002/ijc.34865
|
[16]
|
Nitschke, C., Tölle, M., Walter, P., Meißner, K., Goetz, M., Kropidlowski, J., et al. (2024) KRAS and GNAS Mutations in Cell-Free DNA and in Circulating Epithelial Cells in Patients with Intraductal Papillary Mucinous Neoplasms—An Observational Pilot Study. Pancreatology, 24, e157-e158. https://doi.org/10.1016/j.pan.2024.05.423
|
[17]
|
Tanaka, J., Nakagawa, T., Ono, Y., Kamura, Y., Ishida, T., Kawabata, H., et al. (2025) Highly Multiplexed Digital PCR Assay for Simultaneous Quantification of Variant Allele Frequencies and Copy Number Alterations of KRAS and GNAS in Pancreatic Cancer Precursors. Molecular Oncology. https://doi.org/10.1002/1878-0261.70011
|
[18]
|
Johannet, P., Abdelfattah, S., Wilde, C., Patel, S., Walch, H., Rousseau, B., et al. (2024) Molecular and Clinicopathologic Impact of GNAS Variants across Solid Tumors. Journal of Clinical Oncology, 42, 3847-3857. https://doi.org/10.1200/jco.24.00186
|
[19]
|
Afolabi, H., Md Salleh, S., Zakaria, Z., Seng, C.E., Mohd Nafil, S.N.B., Abdul Aziz, A.A.B., et al. (2022) A Systematic Review and Meta-Analysis on the Occurrence of Biomarker Mutation in Colorectal Cancer among the Asian Population. BioMed Research International, 2022, Article ID: 5824183. https://doi.org/10.1155/2022/5824183
|
[20]
|
Li, K., Zhang, A., Li, X., Zhang, H. and Zhao, L. (2021) Advances in Clinical Immunotherapy for Gastric Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1876, Article 188615. https://doi.org/10.1016/j.bbcan.2021.188615
|
[21]
|
宋永波, 杜小明, 张艳苓, 等. HER2阴性晚期胃癌患者PD-1抑制剂信迪利单抗治疗过程中癌胚抗原变化及其与预后的关系[J]. 中国免疫学杂志, 2025, 41(2): 402-407.
|
[22]
|
Thrift, A.P., Wenker, T.N. and El-Serag, H.B. (2023) Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention. Nature Reviews Clinical Oncology, 20, 338-349. https://doi.org/10.1038/s41571-023-00747-0
|
[23]
|
陈翠晓, 付宝红, 曹丽艳, 等. 阿帕替尼联合SOX方案治疗晚期胃癌患者的疗效、不良反应及预后的影响因素分析[J]. 临床和实验医学杂志, 2025, 24(3): 241-245.
|
[24]
|
Patel, T.H. and Cecchini, M. (2020) Targeted Therapies in Advanced Gastric Cancer. Current Treatment Options in Oncology, 21, Article No. 70. https://doi.org/10.1007/s11864-020-00774-4
|
[25]
|
Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N.D. and Kamangar, F. (2014) Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiology, Biomarkers & Prevention, 23, 700-713. https://doi.org/10.1158/1055-9965.epi-13-1057
|
[26]
|
Tahara, T. and Arisawa, T. (2015) DNA Methylation as a Molecular Biomarker in Gastric Cancer. Epigenomics, 7, 475-486. https://doi.org/10.2217/epi.15.4
|
[27]
|
Wu, D., Zhang, P., Ma, J., Xu, J., Yang, L., Xu, W., et al. (2019) Serum Biomarker Panels for the Diagnosis of Gastric Cancer. Cancer Medicine, 8, 1576-1583. https://doi.org/10.1002/cam4.2055
|
[28]
|
Raut, P., Mathivanan, P., Batra, S.K. and Ponnusamy, M.P. (2025) Contract to Kill: GNAS Mutation. Molecular Cancer, 24, Article No. 70. https://doi.org/10.1186/s12943-025-02247-4
|
[29]
|
Coles, G.L., Cristea, S., Webber, J.T., Levin, R.S., Moss, S.M., He, A., et al. (2020) Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell, 38, 129-143.E7. https://doi.org/10.1016/j.ccell.2020.05.003
|
[30]
|
Patra, K.C., Kato, Y., Mizukami, Y., Widholz, S., Boukhali, M., Revenco, I., et al. (2018) Mutant GNAS Drives Pancreatic Tumourigenesis by Inducing PKA-Mediated SIK Suppression and Reprogramming Lipid Metabolism. Nature Cell Biology, 20, 811-822. https://doi.org/10.1038/s41556-018-0122-3
|
[31]
|
卢淮武, 徐冬冬, 赵喜博, 彭宣玮, 叶栋栋, 吴斌, 霍楚莹, 林仲秋.《2024 NCCN卵巢癌包括输卵管癌及原发性腹膜癌临床实践指南(第1版)》解读[J]. 中国实用妇科与产科杂志, 2024, 40(2): 187-197.
|
[32]
|
杨文君, 龙晓丹, 莫朝晖, 等. GNAS基因突变致2例假性甲状旁腺功能减退症Ia型[J]. 中华骨质疏松和骨矿盐疾病杂志, 2021, 14(6): 601-606.
|
[33]
|
Ding, H., Zhang, X., Su, Y., Jia, C. and Dai, C. (2020) GNAS Promotes Inflammation-Related Hepatocellular Carcinoma Progression by Promoting STAT3 Activation. Cellular & Molecular Biology Letters, 25, Article No. 8. https://doi.org/10.1186/s11658-020-00204-1
|
[34]
|
Li, X., Wu, N., Wang, C., Pei, B., Ma, X., Xie, J., et al. (2025) NALCN Expression Is Down-Regulated and Associated with Immune Infiltration in Gastric Cancer. Frontiers in Immunology, 16, Article ID: 1512107. https://doi.org/10.3389/fimmu.2025.1512107
|
[35]
|
Frisbie, L., Buckanovich, R.J. and Coffman, L. (2022) Carcinoma-Associated Mesenchymal Stem/Stromal Cells: Architects of the Pro-Tumorigenic Tumor Microenvironment. Stem Cells, 40, 705-715. https://doi.org/10.1093/stmcls/sxac036
|
[36]
|
Chen, X. and Song, E. (2019) Turning Foes to Friends: Targeting Cancer-Associated Fibroblasts. Nature Reviews Drug Discovery, 18, 99-115. https://doi.org/10.1038/s41573-018-0004-1
|
[37]
|
Xu, M., Li, Y., Li, W., Zhao, Q., Zhang, Q., Le, K., et al. (2020) Immune and Stroma Related Genes in Breast Cancer: A Comprehensive Analysis of Tumor Microenvironment Based on the Cancer Genome Atlas (TCGA) Database. Frontiers in Medicine, 7, Article 64. https://doi.org/10.3389/fmed.2020.00064
|