壳聚糖/DMAPMA/PVA复合凝胶的制备及其性能研究
Preparation of Chitosan/DMAPMA/PVA Composite Gels and Study of Their Properties
摘要: 本研究以壳聚糖(CS)/N-(3-(二甲氨基)丙基)甲基丙烯酰胺(DMAPMA)聚合物纳米颗粒(CP4NP)、聚乙烯醇(PVA)为原料,通过冻融循环法成功制备了CS/DMAPMA/PVA复合凝胶((CP4NP)vPG)。SEM、XRD和FT-IR表征分析表明,CP4NP显著影响凝胶的结晶性和微观结构,并在吸附孔雀石绿(MG)时表现出16.98 mg/g的最大吸附量,吸附动力学以物理吸附为主。此外,该凝胶具有良好的自愈合能力和pH/温度响应性,实现了溶胶–凝胶可逆转变。
Abstract: In this study, CS/DMAPMA/PVA composite gels (CP4NP) were prepared by freeze-thaw cycling method using chitosan (CS)/N-(3-(dimethylamino)propyl)methacrylamide (DMAPMA) polymer nanoparticles (CP4NP), polyvinyl alcohol ((PVA)vPG). SEM, XRD, and FT-IR characterization analyses showed that CP4NP significantly affected the crystallinity and microstructure of the gel and exhibited a maximum adsorption of 16.98 mg/g for the adsorption of malachite green (MG), and the adsorption kinetics was dominated by physisorption. In addition, the gel showed good self-healing ability and pH/temperature responsiveness, realizing a reversible sol-gel transition.
文章引用:郭凤钏, 郑淼, 武雯雯. 壳聚糖/DMAPMA/PVA复合凝胶的制备及其性能研究[J]. 纳米技术, 2025, 15(3): 88-99. https://doi.org/10.12677/nat.2025.153010

1. 引言

水凝胶是由聚合物分子、颗粒等组成的一大类具有自主自愈的柔性材料,含有大量的亲水基团,具有大的比表面积,稳定的三维多孔网络结构和独特的生物相容性[1]。因此,水凝胶在传感器、药物输送、组织工程支架、废水处理超级电容器等领域被广泛应用[2]-[4]。水凝胶交联通常以氢键等物理相互作用而成,相互作用的动态性质使交联损伤后又重新形成,从而使得材料自主自愈。然而,水凝胶机械性能低、变形性强,易脆等对水凝胶更广泛的应用带来了挑战[5]。克服水凝胶的局限性得到了研究人员的重点关注[6]

纳米技术蓬勃发展于各个领域,其中,在聚合物基质中加入少量纳米填料,可有效调节聚合物的结构,增强机械性及导电性[7] [8]。其中,聚合物纳米粒子用于增强水凝胶机械强度的报道屡见不鲜,如壳聚糖基纳米粒子可有效增强水凝胶以促进骨再生[9]。由于纳米材料高的比表面积、稳定的化学活性成为了提高水凝胶机械强度的理想候选者之一。有机、无机和金属基纳米填料可有效增强凝胶机械强度。

聚乙烯醇(PVA)具有生物相容性,PVA中的-OH可以与H2O建立氢键,使其具有高的结晶度和溶解度,存在物理交联,这也就具有了自主愈合的潜质[10]。在废水处理中,PVA水凝胶的强亲水保障了良好的溶胀性,为污染物的吸附提供大量的活性位点[11]

本文以壳聚糖(CS)/N-(3-(二甲氨基)丙基)甲基丙烯酰胺(DMAPMA)聚合物纳米颗粒CP4NP和PVA为原料,制备了CS/DMAPMA/PVA复合凝胶((CP4NP)vPG,其中v为质量分数为50 ωt%的CP4NP的体积)。制备流程见(图1)。纳米颗粒本身所带的官能团与PVA化学键的相互作用,可有效增强其复合凝胶的机械强度。同时大量的亲水基团保障了溶胀性,比表面积增大提供了更多的活性吸附点[12]。因此,通过改变纳米颗粒的含量研究了(CP4NP)vPG复合凝胶对有机染料的吸附,并通过模拟吸附动力学模型探讨了吸附机理。同时CS、DMAPMA具有pH响应官能团,硼砂具有可逆交联性质。因此探索了(CP4NP)vPG的

Figure 1. Schematic representation of the preparation of (CP4NP)vPG

1. (CP4NP)vPG的制备示意图

自愈合性及可逆转化性能。

2. 材料及方法

2.1. 实验试剂

壳聚糖(CS,脱乙酰度:90%~95%,粘度:50~800 mpa)购自阿拉丁。醋酸(AR)购自北京化工厂。氢氧化钠(AR)和N-(3-(二甲基氨基)丙基)甲基丙烯酰胺(PDMAPMA, AR)购自大茂化学试剂厂。N,N'-亚甲基双丙烯酰胺和过硫酸铵(APS,纯度:98%)分别购自三工生物技术有限公司和天津市富辰化学试剂厂。孔雀石绿(AR)购自上海麦克林生化有限公司,硼砂(99.5%)购自福兴化学,聚乙烯醇(AR)购自阿拉丁。

2.2. PVA凝胶的制备

称取0.04 g的聚乙烯醇(PVA)颗粒于三颈烧瓶,继续添加100 mL去离子水,在油浴锅中加热至90℃,待完全溶解放置常温得到PVA溶液。移取20 mL的PVA溶液于烧杯中,添加2 mL的硼砂冻融循环三次交联得到聚乙烯醇水凝胶(PVAHG)。

2.3. (CP4NP)vPG复合凝胶的制备

移取质量分数为50 ωt%的不同体积的纳米颗粒分散液加入至20 mL的PVA溶液中,搅拌并超声20 min。然后加入硼砂(Borax)溶液在40℃搅拌30 min进行交联,最后放入冰箱冷冻交联,冻融循环进行三次,再将其冷冻干燥48 h,得到(CP4NP)vPG复合凝胶。

2.4. (CP4NP)vPG复合凝胶的表征

使用粉末X射线衍射仪(Bruker, D8 ADVANCE)在40 kV的工作电压和Cu Kα辐射(λ = 1.5418 Å)下,扫描范围为5˚~50˚,检查了样品的结晶度。将样品研磨成粉末并涂覆在粘附有导电粘合剂的铜柱上,用扫描电子显微镜(SEM, JSM6701F)在5 kV的加速电压下观察样品的微观形貌。样品的傅里叶变换红外光谱用光谱仪(Bruker, VERTEX 70 Switzerland)记录,扫描波长范围为400~4000 cm1

2.5. 孔雀石绿(MG)染料吸附实验

在20 mL染料溶液中分别加入20 mg的PVAHG和(CP4NP)vPG。使用紫外–可见分光光度计在最大波长处测定其吸光度,得到吸附后的染料浓度。计算公式如下:

q t = ( C 0 C t )V m (1)

q e = ( C 0 C e )V m (2)

R= ( C 0 C e ) C 0 ×100% (3)

其中,C0CtCe (mg/L)分别为染料的初始浓度、瞬时浓度和平衡浓度。V(mL)为染料溶液的体积;m (mg)是吸附剂的质量;qt (mg/g)是任意时间t的吸附量;qe (mg/g)为平衡吸附量。

采用准一级动力学模型(PFO)和准二级动力学模型(PSO)研究了复合材料对有机染料的吸附速率及其机理。

准一级吸附动力学: q t = q e ( 1 e k 1 t ) (4)

准二级吸附动力学: q t = q e 2 k 2 t 1+ q e k 2 t (5)

其中,k1 (min1)为准一级动力学吸附速率常数;k2 (g·mg1·min1)为准二级动力学吸附速率常数。

2.6. 溶胀性测试

首先将制备好的水凝胶自然干燥至恒重,室温下,称取约0.2 g样品,质量记为将W0,随后将样品浸泡在25℃的去离子水中,每隔20 min进行称重,质量记为Wt,当水凝胶的质量不发生变化时,停止记录,并通过公式(6)计算水凝胶的溶胀度(SR) (g/g)。

SR= ( Wt W 0 ) W 0 (6)

2.7. 愈合性测试

设计了一个宏观自愈实验来分析复合凝胶的自愈行为。首先,制备了两个圆形水凝胶样品,其中一个用考马斯亮蓝染色。用锋利的美工刀将复合凝胶切成两部分,进行愈合性测试并记录时间。

2.8. 溶胶–凝胶可逆化转变

溶胶凝胶可逆转变是指材料在外界刺激(如温度、光、pH等)下,能够在溶胶(液态)和凝胶(固态)状态之间可逆转换的现象[13]。本实验通过控制pH (4~8)值和温度(15℃~40℃)来观察验证复合材料溶胶–凝胶化行为。

3. 结果与讨论

3.1. (CP4NP)VPG复合凝胶的制备

聚乙烯醇水凝胶的制备方法一般有:(1) 物理交联法,如常见的冻融循环技术,聚合物链通过分子内氢键而形成网络结构[14]。在冷冻环境中PVA溶液,分子链间距变短促进分子内/间氢键的形成,其交联过程具有热可逆性[15]。(2) 化学交联法,通过交联剂在聚合物分子间形成交联位点从而形成凝胶[16]。CP4NP纳米颗粒混合于聚乙烯醇凝胶网络结构中,聚合物间的-OH,-NH2等官能团相互作用形成更具稳定的复合凝胶((CP4NP)vPG),并提供大量活性位点。制备见表1

Table 1. Preparation conditions for (CP4NP)VPG

1. (CP4NP)VPG的制备条件

CS/PDMAPMA/PVA复合凝胶

Adsorbents

CP4NP (mL)

Borax (mL)

PVA (mL)

PVAHG

0

2

20

(CP4NP)5PG

5

(CP4NP)10PG

10

(CP4NP)15PG

15

(CP4NP)20PG

20

注:硼砂的浓度为5%M;CP4NP分散液的质量分数为50 ω%。

3.2. 结晶性(XRD)

图2所示,XRD峰值显示在2θ = 19.5˚有明显的吸收峰,且衍射峰相对较宽,这与文献报道PVA聚合的衍射峰相对应,主要归因于PVA的半结晶性[17]。证实了CP4NP纳米粒子与PVA成功复合得到了(CP4NP)vPG复合凝胶。而随着硼砂的加入, B ( OH ) 4 与PVA的-OH产生强相互作用,它们之间的络合破坏了PVA的有序结构,因此导致19.5˚衍射峰变宽。此外,随着CP4NP含量的增大,衍射峰的宽度逐渐变窄,这归因于PVA及纳米粒子中-OH、-NH2的氢键交联作用的同时,硼酸酯键交联结构也诱导了PVA结晶结构的改变,其中,在10˚ (100)和19.5˚ (101)附近的峰上最为明显,这主要归因于CP4NP与PVA间的相互作用力[18]

3.3. 结构与组成(FT-IR)

图3所示,在1660 cm1处的峰为胺基(-NH2)的特征吸收带[19] [20]。2800~3000为-CH3及-CH2

Figure 2. PXRD spectra of (CP4NP)vPG

2. (CP4NP)vPG的PXRD图谱

Figure 3. FT-IR spectra of (CP4NP)vPG and PVAHG

3. (CP4NP)vPG和PVAHG的FT-IR谱图

伸缩振动峰。3251、2960、1743和1285 cm1分别对应O-H、C-H、C=O和O-C-C,是PVA的主要特征吸收峰[21]。这些峰明显在(CP4NP)vG的图谱中出现,这表明PVA被成功复合于(CP4NP)vPG中。特别的在3251 cm1处显示出一个宽峰。并且随着CP4NP纳米粒子含量的增加峰值逐渐锐利,这种转变归因于PVA中的内氢和纳米粒子上的-OH、-NH2的氢键与硼酸根离子的络合反应[22]

3.4. 微观结构(SEM)

图2所示,利用扫描电镜(SEM)观察复合凝胶的形貌,凝胶显示出褶皱和不太连续的网状多孔结构,这可能归因于在冷冻过程PVA的粘性及强内部相互作用和柔性,阻碍了冰晶的形成所导致的[23]。凝胶的表面和横截面表现出差异性孔隙结构。其中,凝胶表面光滑致密、孔隙率低(图4(a)),而横截面的孔隙则更具连续性和规整性(图4(b)-(d))。随着CP4NP纳米粒子的累积,纳米粒子被完全包裹于(CP4NP)vPG中,表现出褶皱清晰的分层多孔结构结构(图4(e))。更多的小孔保障了三维结构的稳定性,使其不易坍塌。这归因于聚合物间的相互作用,使得CP4NP纳米粒子稳固于孔洞当中。低含量(CP4NP)5PG中纳米粒子包覆更显著,而高含量(CP4NP)20PG出现纳米粒子团聚及孔壁镶嵌现象(图4(f)图4(i)),这表明纳米粒子可作为节点被有效地固定于聚乙烯醇凝胶网络结构中,增强其复合材料的机械性能。此外,纳米粒子增加导致孔径减小,归因于因带正电纳米粒子与负电硼砂离子静电作用形成了紧密网络[24]

Figure 4. SEM images of (a-c) (CP4NP)5PG, (d, e) (CP4NP)10PG, (f, g) (CP4NP)15PG, (h, i) (CP4NP)20PG

4. (a-c) (CP4NP)5PG, (d, e) (CP4NP)10PG, (f, g) (CP4NP)15PG, (h, i) (CP4NP)20PG的SEM图

3.5. 溶胀性能研究

图5所示为PVAHG和(CP4NP)vPG的溶胀曲线图。研究发现PVAHG具有最大的溶胀度达到了9.6 g/g,这可能是因为PVA含有大量的亲水官能团(-OH),当与水接触时形成了大量氢键所导致的。而随着CP4NP纳米颗粒的添加,在前期,(CP4NP)vPG的溶胀速率明显高PVAHG,这可能归因于纳米粒子带来了更丰富的亲水性基团(-OH,-NH2)。而随着纳米粒子含量的进一步的增加,(CP4NP)vPG的溶胀度略有下降,但均保持在7.46 g/g。归因于更多的纳米颗粒团聚至凝胶网络结构中减少了活性位点,从而使其比表面积受限溶胀度降低。

Figure 5. Solubility profiles of (CP4NP)vPG and PVAHG

5. (CP4NP)vPG和PVAHG的溶胀度曲线

3.6. 孔雀石绿的吸附性能研究

(CP4NP)vPG对MG的吸附动力学曲线如图6所示。在吸附初期,CP4NP和(CP4NP)vPG均表现出较高的吸附速率,这主要归因于材料表面丰富的亲水性官能团提供了大量活性位点。随着吸附的进行,活性位点逐渐被MG分子占据,230 min后吸附速率明显减缓并趋于平衡。值得注意的是,(CP4NP)5PG表现出最优异的吸附性能,其最大吸附量达16.98 mg/g。这主要得益于CP4NP纳米颗粒的引入增加了更多的活性基团,从而提供了更多的MG吸附位点。尽管PVAHG和(CP4NP)5PG的最终吸附效率均超过87%,但(CP4NP)5PG的吸附动力学更快,然而(CP4NP)20PG吸附效率略有下降,归因于高含量纳米颗粒易发生团聚,导致部分凝胶孔隙堵塞,从而降低了有效吸附位点的可及性。这一现象进一步证实了纳米颗粒分散性对吸附性能的重要影响。

此外,CP4NP纳米颗粒含有丰富的叔胺基团(-NR₂),随着CP4NP含量的增加,(CP4NP)20PG对MG的去除效率反而降低,这可能归因于MG为阳离子染料,带正电荷,而叔胺基团在一定条件下发生了质子化,也带正电荷,使得(CP4NP)20G与MG的静电斥力增大,从而使其吸附效率降低。最后,采用准一级(PFO)和准二级(PSO)动力学模型对PVAHG和(CP4NP)vPG吸附MG的吸附行为进行拟合(图7表2)。结果表明,PFO模型的相关系数(R2)高于PSO模型,这表明MG的吸附过程更符合一级动力学,以物理

Figure 6. Adsorption of MG by (CP4NP)vPG and PVAHG

6. (CP4NP)vPG和PVAHG对MG的吸附量

Figure 7. Simulation curves of adsorption kinetics of organic dyes adsorbed by PVAHG and (CP4NP)vG (a) PFO/MG, (b) PSO/MG

7. PVAHG和(CP4NP)vPG吸附孔雀石绿的吸附动力学模拟曲线(a) PFO/MG,(b) PSO/MG

Table 2. Simulation parameters for adsorption kinetics

2. 吸附动力学模拟参数

Adsorbents

Pseudo-first order kinetics (PFO)

Pseudo-second order kinetics (PSO)

k1 (min1)

R2

k2 (g·mg1·min1)

R2

PVAHG

0.01300

0.98443

6.36139E−4

0.97513

(CP4NP)5PG

0.02612

0.99401

0.00205

0.9909

(CP4NP)10PG

0.01051

0.99771

4.92506E−4

0.99569

(CP4NP)15PG

0.01228

0.99115

6.67865E−4

0.98846

(CP4NP)20PG

0.01715

0.99647

0.00125

0.99507

吸附为主要吸附形式。

3.7. 愈合性能研究

采用宏观自愈实验评估(CP4NP)10PG复合凝胶的自修复性能。制备两个圆柱形(CP4NP)10PG复合凝胶样品,其中一个经考马斯亮蓝染色,分别对半切开后,将不同色半圆柱的切割面在室温下接触并观察愈合过程。实验结果显示,切割后的水凝胶能在30秒后开始自然的愈合(图8(I)~(IV)表3),并且表现在五次循环后依然愈合性良好,且具有拉伸性能(图8(V)图8(VI))。这归因于Borax与PVA及纳米粒子间-OH及-NH2间的氢键和络合物中动态可逆的硼二醇键,促进了复合水凝胶内化学键的重建[25],同时凝胶染色方有向未染色方蔓延的趋势,这可能是凝胶在愈合过程中加速了染料分子扩散的缘故。随着CP4NP含量的增多,复合凝胶愈合时间的增大归因于纳米粒子的官能团与PVA间相互作用的结果。

Figure 8. Healing effect (I, II, III, IV) and stretching (V, VI) pictures of (CP4NP)10PG

8. (CP4NP)10PG的愈合效果图(I, II, III, IV)和拉伸(V, VI)图片

Table 3. Healing time parameters

3. 愈合时间参数

Sample

T1(min)

T2

T3

T4

T5

PVAHG

0.158

0.167

0.149

0.155

0.151

(CP4NP)5PG

0.313

0.356

0.318

0.320

0.335

(CP4NP)10PG

0.393

0.412

0.381

0.395

0.401

(CP4NP)15PG

0.532

0.522

0.519

0.560

0.573

(CP4NP)20PG

0.812

0.843

0.897

0.876

0.889

3.8. 溶胶–凝胶可逆化转变

温度可逆性测试是表征智能水凝胶温度响应行为的关键手段[26] [27]。如图所示,本研究通过循环温变实验系统考察了(CP4NP)vPG复合凝胶的热可逆特性,结果如图9所示,在15˚C条件下,冻融处理的复合凝胶保持稳定的固态特性,升温至40˚C时,材料发生固–液转变,表现为典型的溶胶态特征,再次降温至15˚C后,凝胶重新恢复固态结构,经过5次完整的加热–冷却循环,材料始终表现出良好的状态

Figure 9. Temperature reversibility effect of (CP4NP)10PG

9. (CP4NP)10PG的温度可逆化效果图

Figure 10. Effect of pH reversibility for (CP4NP)10PG

10. (CP4NP)10PG的pH可逆化效果图

可逆性。控制温度过程中出现的凝胶–溶胶转变主要归因于PVA分子链间运动导致的粘度变化和温度敏感型氢键和硼酸酯键的动态解离。该热可逆特性表明(CP4NP)vPG在温度响应型药物载体、智能传感等领域具有潜在应用价值[28]

pH敏感性通常是通过引入pH响应基团来实现[29] [30]。如图10所示,纳米颗粒中含有丰富的-NH2、NR3等pH响应性官能团,对(CP4NP)10PG在pH为4和8的条件下进行了5次循环测试,实验发现,(CP4NP)10PG复合凝胶在酸性条件下呈现流体的状态,这可能是因为酸性条件下PVA的粘性降低,其聚合物间的氢键和酯键受到了影响[31]。而在pH为8的碱性条件下,氨基质子化程度降低,静电排斥减弱,硼酸盐以四面体构型稳定存在,从而呈现固态凝胶状态。这也充分说明了通过控制pH可有效实现(CP4NP)10PG复合凝胶的溶胶–凝胶可逆转化。

4. 结论

本研究以壳聚糖/DMAPMA聚合物纳米颗粒CP4NP和PVA为原料,成功制备了CS/DMAPMA/PVA复合凝胶((CP4NP)vPG)。通过SEM、XRD和FT-IR表征发现,纳米颗粒(CP4NP)成功参与凝胶化过程并被完全包裹于(CP4NP)vPG复合凝胶当中。在MG吸附实验中,相较于PVAHG (16.98 mg/g),(CP4NP)vPG更具出色的吸附能力(17.24 mg/g)。此外,(CP4NP)vPG复合凝胶具有优异的愈合性能(30 s),在温度(10℃~40℃)和pH (4~8)值的条件下实现了凝胶–溶胶可逆化,这种智能响应行为具有巨大的应用价值。

参考文献

[1] Yuan, Y., Zhang, Q., Lin, S. and Li, J. (2025) Water: The Soul of Hydrogels. Progress in Materials Science, 148, Article ID: 101378.
https://doi.org/10.1016/j.pmatsci.2024.101378
[2] Pirsa, S., Khodaei, S.M., Karimi Sani, I., Ghasemi, Y., Jawhar, Z.H. and Eghbaljoo, H. (2022) Hydrogels and Biohydrogels: Investigation of Origin of Production, Production Methods, and Application. Polymer Bulletin, 80, 10593-10632.
https://doi.org/10.1007/s00289-022-04580-w
[3] Cheng, W., Wu, X., Zhang, Y., Wu, D., Meng, L., Chen, Y., et al. (2022) Recent Applications of Hydrogels in Food Safety Sensing: Role of Hydrogels. Trends in Food Science & Technology, 129, 244-257.
https://doi.org/10.1016/j.tifs.2022.10.004
[4] Chen, Z., Xu, C., Chen, X., Huang, J. and Guo, Z. (2024) Advances in Electrically Conductive Hydrogels: Performance and Applications. Small Methods, 9, Article ID: 2401156.
https://doi.org/10.1002/smtd.202401156
[5] Foudazi, R., Zowada, R., Manas-Zloczower, I. and Feke, D.L. (2023) Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir, 39, 2092-2111.
https://doi.org/10.1021/acs.langmuir.2c02253
[6] Kaur, P., Agrawal, R., Pfeffer, F.M., Williams, R. and Bohidar, H.B. (2023) Hydrogels in Agriculture: Prospects and Challenges. Journal of Polymers and the Environment, 31, 3701-3718.
https://doi.org/10.1007/s10924-023-02859-1
[7] Aslam, M., Kalyar, M.A. and Raza, Z.A. (2017) Graphene Oxides Nanosheets Mediation of Poly(vinyl Alcohol) Films in Tuning Their Structural and Opto-Mechanical Attributes. Journal of Materials Science: Materials in Electronics, 28, 13401-13413.
https://doi.org/10.1007/s10854-017-7177-y
[8] Raza, Z.A., Aslam, M., Azeem, A. and Maqsood, H.S. (2019) Development and Characterization of Nano‐Crystalline Cellulose Incorporated Poly(lactic Acid) Composite Films. Materialwissenschaft und Werkstofftechnik, 50, 64-73.
https://doi.org/10.1002/mawe.201800081
[9] Mahanta, A.K., Senapati, S., Paliwal, P., Krishnamurthy, S., Hemalatha, S. and Maiti, P. (2018) Nanoparticle-Induced Controlled Drug Delivery Using Chitosan-Based Hydrogel and Scaffold: Application to Bone Regeneration. Molecular Pharmaceutics, 16, 327-338.
https://doi.org/10.1021/acs.molpharmaceut.8b00995
[10] Luo, J., Ma, X., Zhou, X. and Xu, Y. (2021) Construction of Physically Crosslinked Cellulose Nanofibrils/Alkali Lignin/Montmorillonoite/Polyvinyl Alcohol Network Hydrogel and Its Application in Methylene Blue Removal. Cellulose, 28, 5531-5543.
https://doi.org/10.1007/s10570-021-03847-1
[11] Zhou, H., Wang, Z., Cao, H., Hu, H., Luo, Z., Yang, X., et al. (2019) Genipin-Crosslinked Polyvinyl Alcohol/Silk Fibroin/Nano-Hydroxyapatite Hydrogel for Fabrication of Artificial Cornea Scaffolds—A Novel Approach to Corneal Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 30, 1604-1619.
https://doi.org/10.1080/09205063.2019.1652418
[12] Scott, H.R., Davis, A.N. and Peters, G.M. (2023) Cooperative Crosslinking in Polyvinyl Alcohol Organogels. Soft Matter, 19, 5602-5608.
https://doi.org/10.1039/d3sm00695f
[13] Hermans, T.M. and Singh, N. (2023) Chemically Fueled Autonomous Sol → Gel → Sol → Gel → Sol Transitions. Angewandte Chemie International Edition, 62, e202301529.
https://doi.org/10.1002/anie.202301529
[14] Ivanov, A.E. and Ljunggren, L. (2019) Thin Poly(vinyl Alcohol) Cryogels: Reactive Groups, Macropores and Translucency in Microtiter Plate Assays. Heliyon, 5, e02913.
https://doi.org/10.1016/j.heliyon.2019.e02913
[15] Wahab, A.H.A., Saad, A.P.M., Harun, M.N., Syahrom, A., Ramlee, M.H., Sulong, M.A., et al. (2019) Developing Functionally Graded PVA Hydrogel Using Simple Freeze-Thaw Method for Artificial Glenoid Labrum. Journal of the Mechanical Behavior of Biomedical Materials, 91, 406-415.
https://doi.org/10.1016/j.jmbbm.2018.12.033
[16] Zhu, X., Zhang, Y., Deng, J. and Luo, X. (2018) Effect of Glycerol on the Properties of the Cross‐Linked Polyvinyl Alcohol Hydrogel Beads. ChemistrySelect, 3, 467-470.
https://doi.org/10.1002/slct.201701975
[17] Xiang, L., Yu, X., Xiang, A., Lu, X., Zhang, M. and Zhou, H. (2024) Pore Structure Evolution and Adsorption Behaviors of Porous Poly(vinyl Alcohol) Hydrogel Prepared Using Na2SO4 and CaCO3 as Porogens. Polymer Engineering & Science, 64, 3488-3504.
https://doi.org/10.1002/pen.26765
[18] Lawrence, M.B., Desa, J.A.E. and Aswal, V.K. (2018) Reentrant Behaviour in Polyvinyl Alcohol-Borax Hydrogels. Materials Research Express, 5, Article ID: 015315.
https://doi.org/10.1088/2053-1591/aaa6e6
[19] Yu, C., Liu, X., Pei, J. and Wang, Y. (2020) Grafting of Laccase-Catalysed Oxidation of Butyl Paraben and P-Coumaric Acid onto Chitosan to Improve Its Antioxidant and Antibacterial Activities. Reactive and Functional Polymers, 149, Article ID: 104511.
https://doi.org/10.1016/j.reactfunctpolym.2020.104511
[20] Hu, X., Cheng, W. and Shao, Z. (2015) Novel Authigenic Gas Foaming Hydrogels for Preventing Coal Spontaneous Combustion. e-Polymers, 15, 361-368.
https://doi.org/10.1515/epoly-2015-0156
[21] Shao, K., Li, X., Tan, B., Wang, Q., Guo, Z., Liu, T., et al. (2023) Polyvinyl Alcohol Composite Gel Membrane Modified by Natural Polysaccharide and Waterborne Polyurethane. Polymer Engineering & Science, 63, 3731-3742.
https://doi.org/10.1002/pen.26480
[22] Li, Y., Liu, X., Gong, Q., Xia, Z., Yang, Y., Chen, C., et al. (2021) Facile Preparation of Stretchable and Self-Healable Conductive Hydrogels Based on Sodium Alginate/Polypyrrole Nanofibers for Use in Flexible Supercapacitor and Strain Sensors. International Journal of Biological Macromolecules, 172, 41-54.
https://doi.org/10.1016/j.ijbiomac.2021.01.017
[23] Nabipour, H., Nie, S., Wang, X., Song, L. and Hu, Y. (2020) Zeolitic Imidazolate Framework-8/Polyvinyl Alcohol Hybrid Aerogels with Excellent Flame Retardancy. Composites Part A: Applied Science and Manufacturing, 129, Article ID: 105720.
https://doi.org/10.1016/j.compositesa.2019.105720
[24] Han, J., Yue, Y., Wu, Q., Huang, C., Pan, H., Zhan, X., et al. (2017) Effects of Nanocellulose on the Structure and Properties of Poly(vinyl Alcohol)-Borax Hybrid Foams. Cellulose, 24, 4433-4448.
https://doi.org/10.1007/s10570-017-1409-4
[25] Zhang, Y., Ren, E., Li, A., Cui, C., Guo, R., Tang, H., et al. (2021) A Porous Self-Healing Hydrogel with an Island-Bridge Structure for Strain and Pressure Sensors. Journal of Materials Chemistry B, 9, 719-730.
https://doi.org/10.1039/d0tb01926g
[26] Wright, R.A.E., Henn, D.M. and Zhao, B. (2016) Thermally Reversible Physically Cross-Linked Hybrid Network Hydrogels Formed by Thermosensitive Hairy Nanoparticles. The Journal of Physical Chemistry B, 120, 8036-8045.
https://doi.org/10.1021/acs.jpcb.6b06009
[27] Jesorka, A., Markström, M. and Orwar, O. (2005) Controlling the Internal Structure of Giant Unilamellar Vesicles by Means of Reversible Temperature Dependent Sol-Gel Transition of Internalized Poly(n-Isopropyl Acrylamide). Langmuir, 21, 1230-1237.
https://doi.org/10.1021/la047822k
[28] Feng, T., Wu, H., Ma, W., Wang, Z., Wang, C., Wang, Y., et al. (2022) An Injectable Thermosensitive Hydrogel with a Self-Assembled Peptide Coupled with an Antimicrobial Peptide for Enhanced Wound Healing. Journal of Materials Chemistry B, 10, 6143-6157.
https://doi.org/10.1039/d2tb00644h
[29] Han, Y., Liu, S., Mao, H., Tian, L. and Ning, W. (2016) Synthesis of Novel Temperature-and pH-Sensitive ABA Triblock Copolymers P(DEAEMA-co-MEO2MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA): Micellization, Sol-Gel Transitions, and Sustained BSA Release. Polymers, 8, Article No. 367.
https://doi.org/10.3390/polym8110367
[30] Li, J., Li, W., Xia, D., Xiang, C., Chen, Y. and Li, G. (2019) Dynamic Coordination of Natural Amino Acids-Lanthanides to Control Reversible Luminescent Switching of Hybrid Hydrogels and Anti-Counterfeiting. Dyes and Pigments, 166, 375-380.
https://doi.org/10.1016/j.dyepig.2019.03.044
[31] Pamfil, D., Butnaru, E. and Vasile, C. (2016) Poly(vinyl Alcohol)/Chitosan Cryogels as PH Responsive Ciprofloxacin Carriers. Journal of Polymer Research, 23, 1-14.
https://doi.org/10.1007/s10965-016-1042-1