[1]
|
Athyros, V.G., Doumas, M., Imprialos, K.P., Stavropoulos, K., Georgianou, E., Katsimardou, A., et al. (2018) Diabetes and Lipid Metabolism. Hormones, 17, 61-67. https://doi.org/10.1007/s42000-018-0014-8
|
[2]
|
Deprince, A., Haas, J.T. and Staels, B. (2020) Dysregulated Lipid Metabolism Links NAFLD to Cardiovascular Disease. Molecular Metabolism, 42, Article ID: 101092. https://doi.org/10.1016/j.molmet.2020.101092
|
[3]
|
Haley, M.J., White, C.S., Roberts, D., O’Toole, K., Cunningham, C.J., Rivers-Auty, J., et al. (2019) Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Translational Stroke Research, 11, 837-850. https://doi.org/10.1007/s12975-019-00763-2
|
[4]
|
Alannan, M., Fayyad-Kazan, H., Trézéguet, V. and Merched, A. (2020) Targeting Lipid Metabolism in Liver Cancer. Biochemistry, 59, 3951-3964. https://doi.org/10.1021/acs.biochem.0c00477
|
[5]
|
Blücher, C. and Stadler, S.C. (2017) Obesity and Breast Cancer: Current Insights on the Role of Fatty Acids and Lipid Metabolism in Promoting Breast Cancer Growth and Progression. Frontiers in Endocrinology, 8, Article 293. https://doi.org/10.3389/fendo.2017.00293
|
[6]
|
Merino Salvador, M., Gómez de Cedrón, M., Moreno Rubio, J., Falagán Martínez, S., Sánchez Martínez, R., Casado, E., et al. (2017) Lipid Metabolism and Lung Cancer. Critical Reviews in Oncology/Hematology, 112, 31-40. https://doi.org/10.1016/j.critrevonc.2017.02.001
|
[7]
|
Russo, G., Piscitelli, P., Giandalia, A., Viazzi, F., Pontremoli, R., Fioretto, P., et al. (2020) Atherogenic Dyslipidemia and Diabetic Nephropathy. Journal of Nephrology, 33, 1001-1008. https://doi.org/10.1007/s40620-020-00739-8
|
[8]
|
Wang, L., Gao, P., Zhang, M., Huang, Z., Zhang, D., Deng, Q., et al. (2017) Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA, 317, 2515-2523. https://doi.org/10.1001/jama.2017.7596
|
[9]
|
Jang, H., Noh, M.R., Kim, J. and Padanilam, B.J. (2020) Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Frontiers in Medicine, 7, Article 65. https://doi.org/10.3389/fmed.2020.00065
|
[10]
|
Yokoi, H. and Yanagita, M. (2016) Targeting the Fatty Acid Transport Protein CD36, a Class B Scavenger Receptor, in the Treatment of Renal Disease. Kidney International, 89, 740-742. https://doi.org/10.1016/j.kint.2016.01.009
|
[11]
|
Engeli, S., Gorzelniak, K., Kreutz, R., Runkel, N., Distler, A. and Sharma, A.M. (1999) Co-Expression of Renin-Angiotensin System Genes in Human Adipose Tissue. Journal of Hypertension, 17, 555-560. https://doi.org/10.1097/00004872-199917040-00014
|
[12]
|
Jones, B.H., Standridge, M.K., Taylor, J.W. and Moustaid, N. (1997) Angiotensinogen Gene Expression in Adipose Tissue: Analysis of Obese Models and Hormonal and Nutritional Control. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 273, R236-R242. https://doi.org/10.1152/ajpregu.1997.273.1.r236
|
[13]
|
Price, D.A., Porter, L.E., Gordon, M., Fisher, N.D.L., De’Oliveira, J.M.F., Laffel, L.M.B., et al. (1999) The Paradox of the Low-Renin State in Diabetic Nephropathy. Journal of the American Society of Nephrology, 10, 2382-2391. https://doi.org/10.1681/asn.v10112382
|
[14]
|
Olivares-Reyes, J.A., Arellano-Plancarte, A. and Castillo-Hernandez, J.R. (2009) Angiotensin II and the Development of Insulin Resistance: Implications for Diabetes. Molecular and Cellular Endocrinology, 302, 128-139. https://doi.org/10.1016/j.mce.2008.12.011
|
[15]
|
Wolf, G. (1998) Link between Angiotensin II and TGF-β in the Kidney. Mineral and Electrolyte Metabolism, 24, 174-180. https://doi.org/10.1159/000057367
|
[16]
|
Zhu, Y., Cui, H., Lv, J., Liang, H., Zheng, Y., Wang, S., et al. (2019) AT1 and AT2 Receptors Modulate Renal Tubular Cell Necroptosis in Angiotensin II-Infused Renal Injury Mice. Scientific Reports, 9, Article No. 19450. https://doi.org/10.1038/s41598-019-55550-8
|
[17]
|
Santoro, A. and Kahn, B.B. (2023) Adipocyte Regulation of Insulin Sensitivity and the Risk of Type 2 Diabetes. New England Journal of Medicine, 388, 2071-2085. https://doi.org/10.1056/nejmra2216691
|
[18]
|
Rogacka, D. (2021) Insulin Resistance in Glomerular Podocytes: Potential Mechanisms of Induction. Archives of Biochemistry and Biophysics, 710, Article ID: 109005. https://doi.org/10.1016/j.abb.2021.109005
|
[19]
|
黄力, 葛永纯. 免疫炎症与糖尿病肾病[J]. 肾脏病与透析肾移植杂志, 2019, 28(3): 247-251.
|
[20]
|
Vasanth Rao, V.R., Tan, S.H., Candasamy, M. and Bhattamisra, S.K. (2019) Diabetic Nephropathy: An Update on Pathogenesis and Drug Development. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 754-762. https://doi.org/10.1016/j.dsx.2018.11.054
|
[21]
|
Lu, J., Li, X., Chen, P., Zhang, J., Li, L., Wang, G., et al. (2023) Acetyl-CoA Synthetase 2 Promotes Diabetic Renal Tubular Injury in Mice by Rewiring Fatty Acid Metabolism through SIRT1/ChREBP Pathway. Acta Pharmacologica Sinica, 45, 366-377. https://doi.org/10.1038/s41401-023-01160-0
|
[22]
|
Mitrofanova, A., Merscher, S. and Fornoni, A. (2023) Kidney Lipid Dysmetabolism and Lipid Droplet Accumulation in Chronic Kidney Disease. Nature Reviews Nephrology, 19, 629-645. https://doi.org/10.1038/s41581-023-00741-w
|
[23]
|
Martin, W.P., Nair, M., Chuah, Y.H.D., Malmodin, D., Pedersen, A., Abrahamsson, S., et al. (2022) Dietary Restriction and Medical Therapy Drives PPARα-Regulated Improvements in Early Diabetic Kidney Disease in Male Rats. Clinical Science, 136, 1485-1511. https://doi.org/10.1042/cs20220205
|
[24]
|
Schelling, J.R. (2022) The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells, 11, Article 3236. https://doi.org/10.3390/cells11203236
|
[25]
|
Xie, P., Xie, W., Wang, Z., Guo, Z., Tang, R., Yang, H., et al. (2025) Association of Diabetic Nephropathy with Lipid Metabolism: A Mendelian Randomization Study. Diabetology & Metabolic Syndrome, 17, Article No. 102. https://doi.org/10.1186/s13098-025-01641-8
|
[26]
|
Guo, C., Chi, Z., Jiang, D., Xu, T., Yu, W., Wang, Z., et al. (2018) Cholesterol Homeostatic Regulator SCAP-SREBP2 Integrates NLRP3 Inflammasome Activation and Cholesterol Biosynthetic Signaling in Macrophages. Immunity, 49, 842-856.e7. https://doi.org/10.1016/j.immuni.2018.08.021
|
[27]
|
Luo, J., Yang, H. and Song, B. (2019) Mechanisms and Regulation of Cholesterol Homeostasis. Nature Reviews Molecular Cell Biology, 21, 225-245. https://doi.org/10.1038/s41580-019-0190-7
|
[28]
|
Guo, X., Yang, L., An, X., Hu, M., Shen, Y., Wang, N., et al. (2025) Protective Effects of Notoginsenoside R2 on Reducing Lipid Accumulation and Mitochondrial Dysfunction in Diabetic Nephropathy through Regulation of c-Src. Chinese Medicine, 20, Article No. 10. https://doi.org/10.1186/s13020-024-01057-y
|
[29]
|
Liu, P., Ma, L., Zhao, H., Shen, Z., Zhou, X., Yan, M., et al. (2020) Association between LXR-α and ABCA1 Gene Polymorphisms and the Risk of Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus in a Chinese Han Population. Journal of Diabetes Research, 2020, Article ID: 8721536. https://doi.org/10.1155/2020/8721536
|
[30]
|
Horton, J.D., Cohen, J.C. and Hobbs, H.H. (2009) PCSK9: A Convertase That Coordinates LDL Catabolism. Journal of Lipid Research, 50, S172-S177. https://doi.org/10.1194/jlr.r800091-jlr200
|
[31]
|
Hoogeveen, R.M., Opstal, T.S.J., Kaiser, Y., Stiekema, L.C.A., Kroon, J., Knol, R.J.J., et al. (2019) PCSK9 Antibody Alirocumab Attenuates Arterial Wall Inflammation without Changes in Circulating Inflammatory Markers. JACC: Cardiovascular Imaging, 12, 2571-2573. https://doi.org/10.1016/j.jcmg.2019.06.022
|
[32]
|
Shi, L., Xiao, C., Zhang, Y., Xia, Y., Zha, H., Zhu, J., et al. (2022) Vitamin D/Vitamin D Receptor/Atg16L1 Axis Maintains Podocyte Autophagy and Survival in Diabetic Kidney Disease. Renal Failure, 44, 694-705. https://doi.org/10.1080/0886022x.2022.2063744
|
[33]
|
Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. and Gafter, U. (2014) Altered Renal Lipid Metabolism and Renal Lipid Accumulation in Human Diabetic Nephropathy. Journal of Lipid Research, 55, 561-572. https://doi.org/10.1194/jlr.p040501
|
[34]
|
Pu, M., Zheng, W., Zhang, H., et al. (2023) ORP8 Acts as a Lipophagy Receptor to Mediate Lipid Droplet Turnover. Protein Cell, 14, 653-667.
|
[35]
|
沈蕊, 于心, 石彩凤, 等. 肾小管脂滴包被蛋白2在预测糖尿病肾脏病进展中的作用及机制[J]. 中国病理生理杂志, 2024, 40(5): 882-889.
|
[36]
|
Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., Fakhri, F., et al. (2022) AMPK Signaling in Diabetes Mellitus, Insulin Resistance and Diabetic Complications: A Pre-Clinical and Clinical Investigation. Biomedicine & Pharmacotherapy, 146, Article ID: 112563. https://doi.org/10.1016/j.biopha.2021.112563
|
[37]
|
Wang, Y., Bi, R., Quan, F., Cao, Q., Lin, Y., Yue, C., et al. (2020) Ferroptosis Involves in Renal Tubular Cell Death in Diabetic Nephropathy. European Journal of Pharmacology, 888, Article ID: 173574. https://doi.org/10.1016/j.ejphar.2020.173574
|
[38]
|
Li, S., Zheng, L., Zhang, J., Liu, X. and Wu, Z. (2021) Inhibition of Ferroptosis by Up-Regulating Nrf2 Delayed the Progression of Diabetic Nephropathy. Free Radical Biology and Medicine, 162, 435-449. https://doi.org/10.1016/j.freeradbiomed.2020.10.323
|
[39]
|
Zhang, L., Wang, X., Chang, L., Ren, Y., Sui, M., Fu, Y., et al. (2024) Quercetin Improves Diabetic Kidney Disease by Inhibiting Ferroptosis and Regulating the Nrf2 in Streptozotocin-Induced Diabetic Rats. Renal Failure, 46, Article ID: 2327495. https://doi.org/10.1080/0886022x.2024.2327495
|
[40]
|
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. https://doi.org/10.1038/nchembio.2238
|
[41]
|
Feng, X., Wang, S., Sun, Z., Dong, H., Yu, H., Huang, M., et al. (2021) Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1α/HO-1 Pathway in db/db Mice. Frontiers in Endocrinology, 12, Article 626390. https://doi.org/10.3389/fendo.2021.626390
|
[42]
|
Wang, H., Yu, X., Liu, D., et al. (2024) VDR Activation Attenuates Renal Tubular Epithelial Cell Ferroptosis by Regulating Nrf2/HO-1 Signaling Pathway in Diabetic Nephropathy. Advanced Science, 11, e2305563.
|
[43]
|
Wang, Y., Yang, L., Zhang, X., et al. (2019) Epigenetic Regulation of Ferroptosis by H2B Monoubiquitination and p53. EMBO Reports, 20, e47563.
|
[44]
|
Liu, M., Kong, X., Yao, Y., Wang, X., Yang, W., Wu, H., et al. (2022) The Critical Role and Molecular Mechanisms of Ferroptosis in Antioxidant Systems: A Narrative Review. Annals of Translational Medicine, 10, 368-368. https://doi.org/10.21037/atm-21-6942
|
[45]
|
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. https://doi.org/10.1038/s41586-019-1707-0
|
[46]
|
Wang, Z., Fu, W., Huo, M., He, B., Liu, Y., Tian, L., et al. (2021) Spatial-Resolved Metabolomics Reveals Tissue-Specific Metabolic Reprogramming in Diabetic Nephropathy by Using Mass Spectrometry Imaging. Acta Pharmaceutica Sinica B, 11, 3665-3677. https://doi.org/10.1016/j.apsb.2021.05.013
|
[47]
|
Duan, S., Lu, F., Song, D., Zhang, C., Zhang, B., Xing, C., et al. (2021) Current Challenges and Future Perspectives of Renal Tubular Dysfunction in Diabetic Kidney Disease. Frontiers in Endocrinology, 12, Article 661185. https://doi.org/10.3389/fendo.2021.661185
|
[48]
|
Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820. https://doi.org/10.1038/414813a
|
[49]
|
Beckerman, P. and Susztak, K. (2014) Sweet Debate: Fructose versus Glucose in Diabetic Kidney Disease. Journal of the American Society of Nephrology, 25, 2386-2388. https://doi.org/10.1681/asn.2014050433
|