脂代谢紊乱在糖尿病肾病中作用机制的研究进展
Research Progress on the Mechanism of Lipid Metabolism Disorders in Diabetic Nephropathy
DOI: 10.12677/jcpm.2025.44451, PDF, HTML, XML,   
作者: 张 瑜, 刘 卉:西安医学院第一附属医院风湿免疫科,陕西 西安
关键词: 糖尿病肾病脂肪酸代谢胆固醇代谢脂滴铁死亡Diabetic Nephropathy Fatty Acid Metabolism Cholesterol Metabolism Lipid Droplet Ferroptosis
摘要: 糖尿病肾病(Diabetic nephropathy, DN)是糖尿病最常见并发症,是全球引起慢性肾脏病和终末期肾脏病的主要原因之一。DN的发病机制复杂,其中脂代谢紊乱及“脂质肾毒性”是DN发病及进展的重要因素之一。本文从脂代谢中的脂肪酸及胆固醇代谢紊乱、脂滴聚集以及其他DN发病机制方面进行阐述,旨在为今后临床防治DN提供理论参考依据。
Abstract: Diabetic Nephropathy (DN) is one of the most common complications of diabetes, and it is the main cause of Chronic Kidney Disease (CKD) and End-Stage Kidney Disease (ESKD) worldwide. The pathogenesis of DN is relatively complex, among which lipid metabolism disorders and “lipid nephrotoxicity” are important factors for the onset and progression of DN. This article elaborates on the metabolic disorders of fatty acids and cholesterol in lipid metabolism, lipid droplet aggregation, and other mechanisms of DN, aiming to provide theoretical reference for the future clinical prevention and treatment of DN.
文章引用:张瑜, 刘卉. 脂代谢紊乱在糖尿病肾病中作用机制的研究进展[J]. 临床个性化医学, 2025, 4(4): 325-332. https://doi.org/10.12677/jcpm.2025.44451

1. 引言

脂代谢在维持机体正常生理功能及引发病理变化的过程中都起着至关重要的作用。脂代谢异常与许多疾病都存在着极为密切的联系,它是糖尿病、心肌梗塞、脑血管疾病等心血管疾病的重要危险因素[1]-[3],同时也被认为是肝癌、乳腺癌、肺癌等多种癌症的独立危险因素之一[4]-[6]。肾脏与脂质代谢关系非常密切,肾功能损伤与脂质代谢紊乱互为因果。DN患者通常合并血脂代谢紊乱[7],DN患者通常会出现血脂代谢异常,这种情况不仅会导致脂质代谢的失调,还会对肾脏造成进一步的损害,从而加剧DN的发展[8]。DN的发病机制较为复杂,主要涉及糖代谢紊乱,肾素–血管紧张素–醛固酮系统影响血流动力学改变及各种类型细胞内氧化应激的作用。近年来,脂代谢与糖尿病肾病发展的分子机制扮演了重要角色,具体体现在以下几个方面。

2. 肾脏与脂代谢

肾脏是一个高耗能器官,但其糖酵解能力相对较低,因此,在肾脏近端小管细胞中,线粒体中脂肪酸β氧化是肾脏能量的主要来源[9]。其次,由于肾脏脂肪酸合成酶含量较低,从头合成脂肪酸的能力有限,所以主要依靠从循环中摄取甘油三酯或脂肪酸。此外,由于肾脏中也表达有“清道夫受体”,因其对胆固醇有调节作用,故也可以作为脂质代谢调节的重要场所,参与血脂调节[10]

3. 糖尿病肾病中的脂代谢

在病理状态下,足细胞和肾小管细胞容易受到脂质积累的影响。在人体和啮齿动物的脂肪组织以及体外培养的脂肪细胞中均有系统性肾素血管紧张素系统(RAS)多种组分的表达[11] [12]。在DN患者当中,普遍存在系统性RAS活性下降而肾内RAS活性激活的情况[13],表现为循环Renin含量下降,而肾内ANGII及AT1R表达上升。ANGII是RAS的核心分子之一,它不仅对血管收缩有着重要调节作用,还可以导致胰岛素抵抗,刺激转化生长因子β分泌,进而引起间质成纤维细胞、系膜细胞和肾小管上皮细胞增生以及促进细胞外基质的合成[14]-[16]。脂肪细胞在调节全身胰岛素敏感性和能量平衡中具有重要作用。研究表明,肥胖及2型糖尿病患者脂肪细胞中葡萄糖转运蛋白4 (GLUT4)表达量减少,这与全身胰岛素抵抗有密切联系[17]。不同程度的胰岛素抵抗均会使肾小球滤过率升高和基底膜增厚,从而引发肾小球的弥漫性或结节性硬化,最终使患者出现蛋白尿、肾功能衰竭等症状。最近的研究发现,在糖尿病早期,患者足细胞就已经出现了特异性的胰岛素抵抗现象,同时还会出现蛋白尿等肾功能不全的表现[18]。高血糖状态可通过影响葡萄糖的代谢途径使得活性氧过度产生,这种现象导致线粒体的功能紊乱。同时,自由基的作用使得脂质发生过氧化,进而产生一系列氧化代谢产物并对肾脏组织细胞产生损伤,诱导细胞外基质分泌,打破氧化和抗氧化之间的动态平衡。研究发现,DN患者的肾组织中巨噬细胞、淋巴细胞、肥大细胞及其分泌的各种炎症细胞因子表达增强是导致肾纤维化发生发展的主要原因[19]。巨噬细胞的浸润、募集和活化可导致大量炎症因子、促纤维化因子和抗血管生成因子的生成与释放,如肿瘤坏死因子α、活性氧、白细胞介素-1、白细胞介素-6、转化生长因子β和血管内皮生长因子等都可与肾固有细胞相互作用,通过多种信号途径(如p38 MAPK、NF-κB、Toll样受体)或蛋白,共同作用于DN免疫炎性损伤,直接破坏肾脏结构,导致细胞外基质积聚,从而加重肾损伤及炎症反应[20]。糖尿病肾病与脂质代谢相关,主要包括脂肪酸及胆固醇的代谢异常,进而引起“脂质肾毒性”,加快细胞凋亡。

3.1. 上游调控失衡——脂肪酸代谢

乙酰辅酶A是脂肪酸合成的起始物质和碳源。而乙酰辅酶A合成酶2 (ACSS2)主要被认为是乙酰辅酶A合成途径的重要催化酶。研究表明,乙酰辅酶A合成酶2介导的脂肪酸代谢调节在近端肾小管上皮细胞线粒体损伤和DN慢性肾脏炎症中起着明显的作用。机制是乙酰辅酶A合成酶2通过与SIRT1相互作用促进ChREBP通路介导的脂肪生成,从而促进线粒体氧化应激和炎症[21]。在糖尿病肾病中,脂肪酸β-氧化过程受到肉碱棕榈酰转移酶1A (Recombinant Carnitine Palmitoyltransferase 1A, CPT1A)表达调控的影响。CPT1A水平的不足导致细胞内ATP产生减少,这将影响脂肪酸的β-氧化过程,进而对能量代谢及肾脏的整体功能产生不利影响。DN足细胞的复杂结构和功能使其需要大量能量,而这一能量的获得依赖于脂肪酸氧化(Fatty Acid Oxygen, FAO),这一过程受到几种关键酶与信号通路的调控,特别是过氧化物酶体增殖物激活受体α (Peroxisome Proliferator Activates Receptor α, PPARα)和腺苷酸活化蛋白激酶(Monophosphate-Activated Protein Kinase, AMPK)。研究发现,PPARα和PPARγ的表达量减少与DN的发生关联,而激活PPARδ活性可能对糖尿病相关肾脏损伤产生积极影响。在高脂肪饮食诱导的足细胞损伤模型中,AMPK表达降低和脂肪酸(Fatty Acids, FAs)超载会导致FAO降低和脂肪生成增强[22]。有研究表明,过氧化物酶体增殖物激活受体-α (PPARα)激动剂非诺贝特能够诱导肾脏脂肪酸氧化(FAO)增强,使糖尿病患者蛋白尿含量减少,可以作用于DN肾小管脂质代谢和能量代谢方面[23]。CD36是一种长链脂肪酸转运蛋白,在近端和远端上皮细胞、足细胞和系膜细胞中的高度表达。CD36的高表达与肾损伤有关,这一过程涉及通过激活NLR家族中的Pyrin域蛋白3 (Pyrin Domain Containing Protein 3, NLRP3)进而诱导足细胞凋亡。CD36水平升高与活性氧(ROS)产生增加有关,进而导致线粒体功能障碍。细胞膜上CD36的过度表达也可能引起脂毒性及足细胞内脂滴的积累。然而,有研究数据表明,CD36并不参与DN的近端小管脂肪毒性或肾小管萎缩[24]。但是有研究证实,三七皂苷R2 (NR2)可改善线粒体功能障碍,减少脂质沉积和CD36表达方面,并部分通过抑制c-Src延缓了DN的进展。而人参皂苷(Rg1)可能通过与CD36的直接拮抗相互作作用抑制CD36过表达并改善脂质代谢[25]。因此,CD36在DN中的作用需进一步研究。

3.2. 上游调控失衡——胆固醇代谢

细胞内胆固醇的稳态主要受转录因子甾醇调控元件结合蛋白(Sterol Regulatory Element Binding Proteins, SREBPs)与转录因子肝X受体(Liver X Receptors, LXRs)的共同调控。转录因子包括SREBP1a、SREBP1c和SREBP2,其中SREBP2在调节胆固醇平衡方面发挥关键作用[26]。SREBP2主要调控一些关键基因,这些靶基因与胆固醇合成途径相关,例如胆固醇生物合成途径中的限速酶3-羟基-3-甲基戊二酰辅酶A还原酶(3-Hydroxy-3-Methylglutaryl-Coenzyme Reductase, HMGCR),以及促使胆固醇从细胞外进入细胞内的膜蛋白LDLR。法尼酯X激活受体(Farnesoid X Activated Receptor, FXR)是肾脏胆固醇稳态的关键调节因子。在早期的研究中,FXR激动剂能下调SREBP1c、硬脂酰CoA去饱和酶-1和乙酰CoA羧化酶合成,上调PPARα、CPT1α、转录共激活因子(PGC-1α)、解耦连蛋白2(UCP-2)和脂蛋白脂肪酶(LPL)发挥保护肾脏作用。此外,FXR和G蛋白偶联胆汁酸受体TGR5在糖尿病和DN小鼠模型中具有保护作用[22]。在大部分组织的细胞中,多余的胆固醇能通过ATP结合盒(ABC)转运蛋白家族蛋白ABCA1与ABCG1外排至血液,与载脂蛋白ApoA-I形成高密度脂蛋白(HDL)。过量的胆固醇还可被胆固醇酯化酶(ACAT)转变成胆固醇酯(Cholesteryl Ester, CE)储存在脂滴中,或包裹到脂蛋白,包括乳糜微粒、极低密度脂蛋白、低密度脂蛋白和高密度脂蛋白[27]。ApoA1是HDL-C的主要结构和功能蛋白,它是HDL-C的特征性载脂蛋白,其水平与HDL-C水平呈强正相关。ApoA1与ATP结合盒转运蛋白A1 (ABCA1)相互作用细胞,促进胆固醇从血管壁运输回肝脏,最终以胆汁酸的形式排出。ApoA1具有抗炎特性,可减少DN中脂质代谢紊乱引起的炎症相关肾损伤。一项关于DN与脂质代谢的孟德尔研究发现ApoA1与DN呈负相关,但未发现因果关系[28]。肝脏X受体(LXR)和视黄醛X受体(RXR)共同控制ATP结合盒转运体(ABCA1和ABCG1)的表达,这些转运体负责胆固醇外泄,降低炎症介质的表达,并控制肾脏Na-Pi酸盐转运体的活性[22]。Liu等人在患有糖尿病肾病和2型糖尿病的汉族人群中,发现LXR-α rs7120118与较高的DN风险显著相关,ABCA1rs2230806与中国汉族个体无高胆固醇血症的DN风险较高显著相关[29]。前蛋白转化酶枯草杆菌蛋白酶/kexin 9型(Subtilisin/Kexin Type-9, PCSK9)在成人肝细胞中高表达,通过促进LDL受体(LDLR)的降解,缺乏PCSK9表达的小鼠在肝脏中表现出更高水平的LDLR和更低的血清胆固醇,而PCSK9的过表达会降低LDLR并导致血清胆固醇升高[30] [31]

4. 核心病理改变——脂滴聚集

脂滴(Lipid Droplets, LDs)作为真核细胞中中性脂质的主要储存库,在细胞脂质代谢中起着关键作用。足细胞是高度分化的上皮细胞,通常表现出高水平的自噬。自噬则会清除聚集的蛋白质和受损的细胞器来保持细胞稳态。研究表明,活性维生素D3 (aVitD3)可通过维持Atg16L的表达和自噬活性来减轻足细胞损伤,从而阻止DN的进展[32]。DN的病理过程中,肾脏固有细胞的自噬受损是促进肾小球硬化及肾间质纤维化病理改变的重要因素,另外,研究也显示在DN中,肾脏的脂质代谢紊乱与脂质异位沉积及脂毒性损害密切相关[33]。Zheng等人发现ORP8的缺失或ORP8-LC3/GABARAP相互作用的中断会导致脂滴的聚集并引起细胞内甘油三酯水平的上升[34]。ORP8是一种脂肪吞噬受体,在细胞脂质代谢中起关键作用。脂滴包被蛋白(PLIN)是脂滴外壳中最具特征的蛋白。研究表明,PLIN2的表达增高影响线粒体的有氧呼吸,介导了葡萄糖引起的肾小管上皮细胞中脂滴的蓄积,进而促进DKD的进展[35]。一些调控自噬水平的经典通路如AMPK所介导AMPK-SIRT1-MTOR通路及SIRT1-FOXO1通路均在DN状态下被抑制[36],这些通路对脂滴自噬过程具有重要的影响。

5. 下游功能结局

5.1. 细胞铁死亡

铁死亡是由于谷胱甘肽系统代谢受损、脂质过氧化及线粒体功能衰竭而引起的一种细胞死亡形式。目前铁死亡主要代谢调控途径是通过SystemXc/GSH/GPX4轴进行。SystemXc是胱氨酸/谷氨酸反向转运体,它的作用是在细胞中引入外部的胱氨酸,同时将谷氨酸排出细胞外,从而帮助细胞维持氧化还原状态,并参与后期的抗氧化反应。Wang等[37]研究发现,在DN小鼠模型,肾小管细胞谷胱甘肽过氧化物酶4 (Glutathione Peroxidase 4, GPX4)表达降低,酰基辅酶A合酶长链家族成员4 (Acyl-CoA Synthetase Long Chain Family Member 4, ACSL4)、脂质过氧化产物及铁含量升高,另外,非诺贝特可以上调DN小鼠核转录因子红系2相关因子2 (Nuclear Factor-Erythroid 2-Related Factor 2, Nrf2)表达,抑制铁死亡,从而延缓DN进展[38]。Zhang等[39]发现,槲皮素作用于STZ诱导的DKD大鼠模型,可通过激活Nfr2通路显著抑制铁死亡的发生,具体表现为GPX4表达上调、ACSL4表达下调。研究发现,GPX4在减少细胞膜磷脂氢过氧化物方面具有显著作用。Kagan等[40]在实验中通过RSL3诱导小鼠胚胎成纤维细胞中的GPX4缺陷,观察到铁死亡水平较对照组显著升高。Feng等[41]在糖尿病小鼠中发现,铁死亡或通过低氧诱导因子1α (Hypoxia-Inducible Factor 1α, HIF-1α)/HO-1途径加重蛋白尿,导致肾小管并促进肾脏纤维化,而铁死亡抑制剂Ferrostatin-1可抑制HIF-1α/HO-1水平,减少肾脏活性氧生成及铁蓄积,减少尿白蛋白及肾小管损伤。Wang等[42]发现,维生素D受体(VDR)激动剂帕立骨化醇可通过激活Nrf2/HO-1轴抑制铁死亡的发生,减轻DKD的肾损伤。研究发现p53可以通过转录和非转录方式抑制SLC7A11表达,干扰GSH的合成,影响GPX4活性,从而增加细胞对铁死亡的敏感性,诱发铁死亡[43],还发现可通过作用于脂质过氧化合成酶产生大量脂质过氧化物进而诱导细胞发生铁死亡[44]。NAD(P)H/FSP1/CoQ10通路是与GPX4通路平行且独立共同参与维护细胞内的氧化还原平衡。其中铁死亡抑制蛋白1 (FSP1)是重要的抗氧化蛋白,而CoQ10是FSP1的重要底物,通过FSP1的活性,以NAD(P)H作为电子共体,将电子传递给CoQ10,进而抑制脂质和蛋白质的过氧化,保护细胞免受氧化应激损害[45]

5.2. 脂质代谢重编程

代谢重编程(Metabolic Reprogramming, MR)是一个生物学上的概念,指的是细胞或生物体在适应不同环境或应对内外部压力时,通过调整和改变其代谢途径和代谢产物的分配,从而实现生命功能的重新编程。新近研究发现DN中存在代谢重编程,包括葡萄糖代谢途径紊乱、三羧酸循环(Tricarboxylic Acid Cycle, TCA Cycle)障碍、核苷酸代谢中断、脂质代谢失调、氧化还原和钠稳态的破坏等[46]。这些代谢途径的改变能诱发基因表达变化,引起氧化应激、炎症、纤维化和血管改变,推动DN的发生和进展[47]。研究表明,高血糖导致糖酵解增加,糖酵解随后上调四种不同的代谢路径:多元醇途径、磷酸戊糖通路、己糖胺途径、晚期糖基化终末产物(Advanced Glycation End Products, AGEs)的产生和蛋白激酶C (Protein Kinase C, PKC)的激活[48]。研究发现,在糖尿病小鼠模型中,与内源性果糖水平较低的小鼠相比,通过多元醇途径产生的内源性果糖导致蛋白尿增加、肾小球滤过率降低以及肾小球和近端肾小管损伤增加[49]。针对肾活检样本和尿外泌体的研究表明,与对照组相比,DN患者的线粒体蛋白和线粒体DNA水平显著降低。这些结果表明DN患者肾脏中线粒体合成的总体水平显著下滑,这可能导致TCA循环中代谢物的减少,并引发糖酵解过程中可能发生的转变。线粒体功能、改变代谢酶活性的代谢中间产物、鞘磷脂信号、糖酵解中的限速酶等均与DN中的代谢重编程有关,针对这些因素进行调控,从而为DN治疗寻求新的可能性。

6. 结语

综上,脂代谢异常导致糖尿病肾病发生发展。虽然我们已经对糖尿病肾病脂质代谢的进展有了了解,但是由于DN发病机理复杂多样,仍有许多未解答的问题需要我们去研究。如脂质对在多种细胞类型中的功能作用机制、以及炎症和脂质积累两者谁是DN发病的首发因素,到底是炎症触发脂质积累还是脂质诱导的炎症,都是需要深入研究的关键问题。目前在DN的预防和治疗中,仍然面临诸多挑战,这些问题都值得我们去思考。

参考文献

[1] Athyros, V.G., Doumas, M., Imprialos, K.P., Stavropoulos, K., Georgianou, E., Katsimardou, A., et al. (2018) Diabetes and Lipid Metabolism. Hormones, 17, 61-67.
https://doi.org/10.1007/s42000-018-0014-8
[2] Deprince, A., Haas, J.T. and Staels, B. (2020) Dysregulated Lipid Metabolism Links NAFLD to Cardiovascular Disease. Molecular Metabolism, 42, Article ID: 101092.
https://doi.org/10.1016/j.molmet.2020.101092
[3] Haley, M.J., White, C.S., Roberts, D., O’Toole, K., Cunningham, C.J., Rivers-Auty, J., et al. (2019) Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Translational Stroke Research, 11, 837-850.
https://doi.org/10.1007/s12975-019-00763-2
[4] Alannan, M., Fayyad-Kazan, H., Trézéguet, V. and Merched, A. (2020) Targeting Lipid Metabolism in Liver Cancer. Biochemistry, 59, 3951-3964.
https://doi.org/10.1021/acs.biochem.0c00477
[5] Blücher, C. and Stadler, S.C. (2017) Obesity and Breast Cancer: Current Insights on the Role of Fatty Acids and Lipid Metabolism in Promoting Breast Cancer Growth and Progression. Frontiers in Endocrinology, 8, Article 293.
https://doi.org/10.3389/fendo.2017.00293
[6] Merino Salvador, M., Gómez de Cedrón, M., Moreno Rubio, J., Falagán Martínez, S., Sánchez Martínez, R., Casado, E., et al. (2017) Lipid Metabolism and Lung Cancer. Critical Reviews in Oncology/Hematology, 112, 31-40.
https://doi.org/10.1016/j.critrevonc.2017.02.001
[7] Russo, G., Piscitelli, P., Giandalia, A., Viazzi, F., Pontremoli, R., Fioretto, P., et al. (2020) Atherogenic Dyslipidemia and Diabetic Nephropathy. Journal of Nephrology, 33, 1001-1008.
https://doi.org/10.1007/s40620-020-00739-8
[8] Wang, L., Gao, P., Zhang, M., Huang, Z., Zhang, D., Deng, Q., et al. (2017) Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA, 317, 2515-2523.
https://doi.org/10.1001/jama.2017.7596
[9] Jang, H., Noh, M.R., Kim, J. and Padanilam, B.J. (2020) Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Frontiers in Medicine, 7, Article 65.
https://doi.org/10.3389/fmed.2020.00065
[10] Yokoi, H. and Yanagita, M. (2016) Targeting the Fatty Acid Transport Protein CD36, a Class B Scavenger Receptor, in the Treatment of Renal Disease. Kidney International, 89, 740-742.
https://doi.org/10.1016/j.kint.2016.01.009
[11] Engeli, S., Gorzelniak, K., Kreutz, R., Runkel, N., Distler, A. and Sharma, A.M. (1999) Co-Expression of Renin-Angiotensin System Genes in Human Adipose Tissue. Journal of Hypertension, 17, 555-560.
https://doi.org/10.1097/00004872-199917040-00014
[12] Jones, B.H., Standridge, M.K., Taylor, J.W. and Moustaid, N. (1997) Angiotensinogen Gene Expression in Adipose Tissue: Analysis of Obese Models and Hormonal and Nutritional Control. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 273, R236-R242.
https://doi.org/10.1152/ajpregu.1997.273.1.r236
[13] Price, D.A., Porter, L.E., Gordon, M., Fisher, N.D.L., De’Oliveira, J.M.F., Laffel, L.M.B., et al. (1999) The Paradox of the Low-Renin State in Diabetic Nephropathy. Journal of the American Society of Nephrology, 10, 2382-2391.
https://doi.org/10.1681/asn.v10112382
[14] Olivares-Reyes, J.A., Arellano-Plancarte, A. and Castillo-Hernandez, J.R. (2009) Angiotensin II and the Development of Insulin Resistance: Implications for Diabetes. Molecular and Cellular Endocrinology, 302, 128-139.
https://doi.org/10.1016/j.mce.2008.12.011
[15] Wolf, G. (1998) Link between Angiotensin II and TGF-β in the Kidney. Mineral and Electrolyte Metabolism, 24, 174-180.
https://doi.org/10.1159/000057367
[16] Zhu, Y., Cui, H., Lv, J., Liang, H., Zheng, Y., Wang, S., et al. (2019) AT1 and AT2 Receptors Modulate Renal Tubular Cell Necroptosis in Angiotensin II-Infused Renal Injury Mice. Scientific Reports, 9, Article No. 19450.
https://doi.org/10.1038/s41598-019-55550-8
[17] Santoro, A. and Kahn, B.B. (2023) Adipocyte Regulation of Insulin Sensitivity and the Risk of Type 2 Diabetes. New England Journal of Medicine, 388, 2071-2085.
https://doi.org/10.1056/nejmra2216691
[18] Rogacka, D. (2021) Insulin Resistance in Glomerular Podocytes: Potential Mechanisms of Induction. Archives of Biochemistry and Biophysics, 710, Article ID: 109005.
https://doi.org/10.1016/j.abb.2021.109005
[19] 黄力, 葛永纯. 免疫炎症与糖尿病肾病[J]. 肾脏病与透析肾移植杂志, 2019, 28(3): 247-251.
[20] Vasanth Rao, V.R., Tan, S.H., Candasamy, M. and Bhattamisra, S.K. (2019) Diabetic Nephropathy: An Update on Pathogenesis and Drug Development. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 754-762.
https://doi.org/10.1016/j.dsx.2018.11.054
[21] Lu, J., Li, X., Chen, P., Zhang, J., Li, L., Wang, G., et al. (2023) Acetyl-CoA Synthetase 2 Promotes Diabetic Renal Tubular Injury in Mice by Rewiring Fatty Acid Metabolism through SIRT1/ChREBP Pathway. Acta Pharmacologica Sinica, 45, 366-377.
https://doi.org/10.1038/s41401-023-01160-0
[22] Mitrofanova, A., Merscher, S. and Fornoni, A. (2023) Kidney Lipid Dysmetabolism and Lipid Droplet Accumulation in Chronic Kidney Disease. Nature Reviews Nephrology, 19, 629-645.
https://doi.org/10.1038/s41581-023-00741-w
[23] Martin, W.P., Nair, M., Chuah, Y.H.D., Malmodin, D., Pedersen, A., Abrahamsson, S., et al. (2022) Dietary Restriction and Medical Therapy Drives PPARα-Regulated Improvements in Early Diabetic Kidney Disease in Male Rats. Clinical Science, 136, 1485-1511.
https://doi.org/10.1042/cs20220205
[24] Schelling, J.R. (2022) The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells, 11, Article 3236.
https://doi.org/10.3390/cells11203236
[25] Xie, P., Xie, W., Wang, Z., Guo, Z., Tang, R., Yang, H., et al. (2025) Association of Diabetic Nephropathy with Lipid Metabolism: A Mendelian Randomization Study. Diabetology & Metabolic Syndrome, 17, Article No. 102.
https://doi.org/10.1186/s13098-025-01641-8
[26] Guo, C., Chi, Z., Jiang, D., Xu, T., Yu, W., Wang, Z., et al. (2018) Cholesterol Homeostatic Regulator SCAP-SREBP2 Integrates NLRP3 Inflammasome Activation and Cholesterol Biosynthetic Signaling in Macrophages. Immunity, 49, 842-856.e7.
https://doi.org/10.1016/j.immuni.2018.08.021
[27] Luo, J., Yang, H. and Song, B. (2019) Mechanisms and Regulation of Cholesterol Homeostasis. Nature Reviews Molecular Cell Biology, 21, 225-245.
https://doi.org/10.1038/s41580-019-0190-7
[28] Guo, X., Yang, L., An, X., Hu, M., Shen, Y., Wang, N., et al. (2025) Protective Effects of Notoginsenoside R2 on Reducing Lipid Accumulation and Mitochondrial Dysfunction in Diabetic Nephropathy through Regulation of c-Src. Chinese Medicine, 20, Article No. 10.
https://doi.org/10.1186/s13020-024-01057-y
[29] Liu, P., Ma, L., Zhao, H., Shen, Z., Zhou, X., Yan, M., et al. (2020) Association between LXR-α and ABCA1 Gene Polymorphisms and the Risk of Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus in a Chinese Han Population. Journal of Diabetes Research, 2020, Article ID: 8721536.
https://doi.org/10.1155/2020/8721536
[30] Horton, J.D., Cohen, J.C. and Hobbs, H.H. (2009) PCSK9: A Convertase That Coordinates LDL Catabolism. Journal of Lipid Research, 50, S172-S177.
https://doi.org/10.1194/jlr.r800091-jlr200
[31] Hoogeveen, R.M., Opstal, T.S.J., Kaiser, Y., Stiekema, L.C.A., Kroon, J., Knol, R.J.J., et al. (2019) PCSK9 Antibody Alirocumab Attenuates Arterial Wall Inflammation without Changes in Circulating Inflammatory Markers. JACC: Cardiovascular Imaging, 12, 2571-2573.
https://doi.org/10.1016/j.jcmg.2019.06.022
[32] Shi, L., Xiao, C., Zhang, Y., Xia, Y., Zha, H., Zhu, J., et al. (2022) Vitamin D/Vitamin D Receptor/Atg16L1 Axis Maintains Podocyte Autophagy and Survival in Diabetic Kidney Disease. Renal Failure, 44, 694-705.
https://doi.org/10.1080/0886022x.2022.2063744
[33] Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. and Gafter, U. (2014) Altered Renal Lipid Metabolism and Renal Lipid Accumulation in Human Diabetic Nephropathy. Journal of Lipid Research, 55, 561-572.
https://doi.org/10.1194/jlr.p040501
[34] Pu, M., Zheng, W., Zhang, H., et al. (2023) ORP8 Acts as a Lipophagy Receptor to Mediate Lipid Droplet Turnover. Protein Cell, 14, 653-667.
[35] 沈蕊, 于心, 石彩凤, 等. 肾小管脂滴包被蛋白2在预测糖尿病肾脏病进展中的作用及机制[J]. 中国病理生理杂志, 2024, 40(5): 882-889.
[36] Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., Fakhri, F., et al. (2022) AMPK Signaling in Diabetes Mellitus, Insulin Resistance and Diabetic Complications: A Pre-Clinical and Clinical Investigation. Biomedicine & Pharmacotherapy, 146, Article ID: 112563.
https://doi.org/10.1016/j.biopha.2021.112563
[37] Wang, Y., Bi, R., Quan, F., Cao, Q., Lin, Y., Yue, C., et al. (2020) Ferroptosis Involves in Renal Tubular Cell Death in Diabetic Nephropathy. European Journal of Pharmacology, 888, Article ID: 173574.
https://doi.org/10.1016/j.ejphar.2020.173574
[38] Li, S., Zheng, L., Zhang, J., Liu, X. and Wu, Z. (2021) Inhibition of Ferroptosis by Up-Regulating Nrf2 Delayed the Progression of Diabetic Nephropathy. Free Radical Biology and Medicine, 162, 435-449.
https://doi.org/10.1016/j.freeradbiomed.2020.10.323
[39] Zhang, L., Wang, X., Chang, L., Ren, Y., Sui, M., Fu, Y., et al. (2024) Quercetin Improves Diabetic Kidney Disease by Inhibiting Ferroptosis and Regulating the Nrf2 in Streptozotocin-Induced Diabetic Rats. Renal Failure, 46, Article ID: 2327495.
https://doi.org/10.1080/0886022x.2024.2327495
[40] Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90.
https://doi.org/10.1038/nchembio.2238
[41] Feng, X., Wang, S., Sun, Z., Dong, H., Yu, H., Huang, M., et al. (2021) Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1α/HO-1 Pathway in db/db Mice. Frontiers in Endocrinology, 12, Article 626390.
https://doi.org/10.3389/fendo.2021.626390
[42] Wang, H., Yu, X., Liu, D., et al. (2024) VDR Activation Attenuates Renal Tubular Epithelial Cell Ferroptosis by Regulating Nrf2/HO-1 Signaling Pathway in Diabetic Nephropathy. Advanced Science, 11, e2305563.
[43] Wang, Y., Yang, L., Zhang, X., et al. (2019) Epigenetic Regulation of Ferroptosis by H2B Monoubiquitination and p53. EMBO Reports, 20, e47563.
[44] Liu, M., Kong, X., Yao, Y., Wang, X., Yang, W., Wu, H., et al. (2022) The Critical Role and Molecular Mechanisms of Ferroptosis in Antioxidant Systems: A Narrative Review. Annals of Translational Medicine, 10, 368-368.
https://doi.org/10.21037/atm-21-6942
[45] Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698.
https://doi.org/10.1038/s41586-019-1707-0
[46] Wang, Z., Fu, W., Huo, M., He, B., Liu, Y., Tian, L., et al. (2021) Spatial-Resolved Metabolomics Reveals Tissue-Specific Metabolic Reprogramming in Diabetic Nephropathy by Using Mass Spectrometry Imaging. Acta Pharmaceutica Sinica B, 11, 3665-3677.
https://doi.org/10.1016/j.apsb.2021.05.013
[47] Duan, S., Lu, F., Song, D., Zhang, C., Zhang, B., Xing, C., et al. (2021) Current Challenges and Future Perspectives of Renal Tubular Dysfunction in Diabetic Kidney Disease. Frontiers in Endocrinology, 12, Article 661185.
https://doi.org/10.3389/fendo.2021.661185
[48] Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820.
https://doi.org/10.1038/414813a
[49] Beckerman, P. and Susztak, K. (2014) Sweet Debate: Fructose versus Glucose in Diabetic Kidney Disease. Journal of the American Society of Nephrology, 25, 2386-2388.
https://doi.org/10.1681/asn.2014050433