碳青霉烯耐药肺炎克雷伯菌头孢他啶–阿维巴坦耐药机制研究进展综述
A Review of Research Progress on the Mechanisms of Resistance to Ceftazidime-Avibactam in Carbapenem-Resistant Klebsiella pneumoniae
摘要: 头孢他啶–阿维巴坦被称为碳青霉烯耐药肺炎克雷伯菌(Carbapenem-Resistant Klebsiella pneumoniae, CRKP)的最后一道防线,随着临床上的不合理使用,越来越多的耐药机制被报道,最常见的有β-内酰胺酶关键位点氨基酸突变、blaKPC基因过表达及膜孔蛋白突变导致细胞膜通透性障碍。本文详细地总结了头孢他啶–阿维巴坦的药理特点、耐药现状,以及耐药机制,旨在给头孢他啶–阿维巴坦耐药防控及多重耐药肺炎克雷伯杆菌的临床治疗提供科学思路。
Abstract: Ceftazidime-avibactam is regarded as the last line of defense against Carbapenem-resistant Klebsiella pneumoniae (CRKP). However, with its irrational clinical use, an increasing number of resistance mechanisms have been reported. The most common mechanisms include amino acid mutations at critical sites of β-lactamases, overexpression of the blaKPC gene, and mutations in porin proteins that lead to impaired cell membrane permeability. This article provides a detailed summary of the pharmacological characteristics, current resistance status, and resistance mechanisms of ceftazidime-avibactam, aiming to offer scientific insights for the prevention and control of ceftazidime-avibactam resistance and the clinical treatment of multidrug-resistant Klebsiella pneumoniae.
文章引用:陈新维, 俞云松. 碳青霉烯耐药肺炎克雷伯菌头孢他啶–阿维巴坦耐药机制研究进展综述[J]. 临床医学进展, 2025, 15(8): 1827-1835. https://doi.org/10.12677/acm.2025.1582432

1. 引言

随着抗菌药物的使用,碳青霉烯耐药肺炎克雷伯菌(Carbapenem-Resistant Klebsiella pneumoniae, CRKP)作为医院感染的主要病原体之一,它的高耐药性、高传播性、高病死率已对临床的抗感染治疗构成了严峻挑战[1]。2024年,WHO发布的最新细菌优先病原体预警清单中CRKP因为具有转移耐药基因的能力并可以引起严重的感染疾病被分为关键优先级组,被认为是造成重大全球负担的病原体之一[2]。头孢他啶–阿维巴坦(Ceftazidime-Avibactam, CZA)作为新型酶抑制剂合剂,在CRKP及其他多重耐药菌的重症感染中疗效显著。但是由于抗生素的不规范使用,越来越多的头孢他啶/阿维巴坦耐药菌株被报道。故本综述从CRKP的CZA耐药性变迁及可能的机制分析,深度解析CZA耐药CRKP的研究进展,旨在给头孢他啶/阿维巴坦耐药防控及多重耐药肺炎克雷伯杆菌的临床治疗提供科学思路。

2. 头孢他啶–阿维巴坦的药理特点

头孢他啶–阿维巴坦是头孢他啶和阿维巴坦(Avibactam, AVI)组成的新型酶抑制剂合剂,在2019年5月21日获得国家药品监督管理局(CFDA)批准在我国上市,适用于复杂性腹腔感染、医院获得性肺炎和呼吸机相关性肺炎[3]。其中头孢他啶是第三代头孢菌素,通过与细菌细胞中的青霉素结合蛋白相结合,使转肽酶酰化,抑制细菌的细胞壁合成,影响细胞壁粘肽成分的交叉连结,使细菌分裂和生长受到抑制从而杀灭细菌。阿维巴坦则属于二氮杂双环辛酮化合物,是一种新型β-内酰胺酶抑制剂,它通过酰胺键与亲核进攻的β-内酰胺酶丝氨酸开环形成共价结合物,得到稳定的酶抑制剂复合体,且不发生水解,再经环合形成内酰胺环和阿维巴坦。在此过程中,亲核进攻导致开环的速率远远大于环合,致使β-内酰胺酶基本处于抑制状态,而阿维巴坦则可以通过缓慢的可逆共价反应恢复活性,因此具有长效的抑酶作用,能有效阻止头孢他啶被β-内酰胺酶水解失活,保护头孢他啶对产β-内酰胺酶肠杆菌的抗菌活性,这也是它和其他传统的β-内酰胺酶抑制剂相比最大的优势。

它除了对Ambler分类中的B类金属酶(如新德里金属β-内酰胺酶,New Delhi Metallo-β-Lactamase, NDM)没有抑制能力[4]-[6],对A类酶(如肺炎克雷伯菌碳青霉烯酶,Klebsiella pneumoniae Carbapenemase, KPC)、C类酶(如头孢菌素酶,AmpC)和某些D类酶(如苯唑西林酶、Oxacillinase、OXA、OXA-48)都有广泛的抑制活性。中国细菌耐药监测网数据显示,去年收集的CRKP二代测序分析结果中,CRKP的碳青霉烯酶分布特征主要以产KPC酶为主,为85.8%,其次为金属酶(11.1%)、OXA-48酶(0.3%)以及双碳青霉烯酶(2.8%) (http://www.chinets.com/)。此外,相关报道显示儿童患者分离的碳青霉烯酶主要以KPC、NDM和OXA-48酶为主,而成人患者分离的主要以KPC酶为主[7] [8]。因此,头孢他啶–阿维巴坦已成为CRKP感染治疗的较优选择,尤其是在产KPC酶的肺炎克雷伯菌(KPC-producing Klebsiella pneumoniae, KPC-KP)中[9]-[11]

3. 碳青霉烯耐药肺炎克雷伯菌头孢他啶–阿维巴坦的耐药现状

随着一线药物碳青霉烯类抗生素的临床使用,CRKP的检出率日益增高。

国际最佳耐药性监测网络(International Network for Optimal Resistance Monitoring, INFORM)报道的数据显示,2012~2014年美国医疗中心收集的34,062株肠杆菌中头孢他啶–阿维巴坦耐药率仅为1.5%,其中CRE对头孢他啶–阿维巴坦的耐药率为16.5%。在这961株CRE中共有609株携带一个或多个碳青霉烯酶并且没有携带产金属β-内酰胺酶(Metallo-β-Lactamase, MBL)菌株,它们对头孢他啶–阿维巴坦的耐药率为1.3% [12]。2015~2017年间欧洲收集的CRE菌株的相关报道中,头孢他啶–阿维巴坦耐药株的检出率分别为27%及21.5%,MBL阴性的菌株仍对其保持较高的敏感性(97.2%) [13] [14]。根据ATLAS结果显示,2017~2019年间拉丁美洲收集的CRE中,头孢他啶–阿维巴坦耐药株的检出率为25.3%。其中,MBL阴性的CRE菌株对其耐药率为0.6%,碳青霉烯酶阴性的CRE对其耐药率为4.2% [15]。据亚太地区报道,肠杆菌对头孢他啶–阿维巴坦的耐药率为0.4%及1.9% [16] [17],而CRE中MBL阴性的菌株耐药率为12.3% [18]。而根据中国的细菌耐药监测网数据显示,我国肺炎克雷伯菌对美罗培南的耐药率从2005年的2.9%已经增长到了2024年的22.1%,在近8年间检出率持续维持在20%以上高位,对头孢他啶–阿维巴坦的耐药率也高达7.8%。其中14,781株CRKP中头孢他啶–阿维巴坦的耐药株检出率为15.8%,这些菌株中产KPC型碳青霉烯酶肺炎克雷伯菌对头孢他啶–阿维巴坦的耐药率为1.3% [19]。由此可见,世界范围内CRE对于头孢他啶–阿维巴坦的耐药率呈现一个缓慢上升的趋势,欧洲及拉丁美洲耐药率则稍偏高。其中大部分CZA耐药的CRE中,blaNDM基因仍为最主要的碳青霉烯酶,而MBL阴性的CRE菌株耐药率仍较低。虽然头孢他啶–阿维巴坦仍是产KPC型CRKP的首选治疗药物,但是目前为止,由于药物的使用、细菌的进化及突变,越来越多的耐药机制被报道,尤其是blaKPC酶变体的产生,目前已有超过150种酶变体被报道,它们的出现正在向全球公共卫生发起严峻的挑战[20]-[26]

4. 耐药机制

CRKP对头孢他啶/阿维巴坦耐药最常见的机制主要有以下几种,最常见的是产生B类金属酶。金属酶其活性依赖于酶中心的金属离子,如锌离子(Zn2+),它共分为3大类,其中B1类是目前临床最多见的MBL,例如NDM (新德里金属内酰胺酶)、IMP (亚胺培南酶)和VIM (维罗纳整合子编码的金属酶)。目前临床上常用的β-内酰胺酶抑制剂(如克拉维酸、他唑巴坦、阿维巴坦等)均无法针对此金属活性中心发挥抑制作用,因此当细菌产生MBL时,头孢菌素仍会被直接水解而导致治疗失效[27]。此外,其他耐药机制主要有:β-内酰胺酶关键位点氨基酸突变;blaKPC基因过表达及膜孔蛋白突变导致细胞膜通透性障碍;以及较少见的外排泵过表达;青霉素结合蛋白等。本综述将详细介绍以下2点。

4.1. β-内酰胺酶关键位点氨基酸突变介导耐药

A类β-内酰胺酶关键位点氨基酸突变是导致头孢他啶–阿维巴坦耐药的另一大重要原因,包括KPC和ESBL。作为肺炎克雷伯菌中最常见的碳青霉烯酶,KPC几乎可以水解全部的β-内酰胺类抗生素[28]。而KPC酶变体的出现是细菌在治疗过程中对头孢他啶–阿维巴坦产生耐药的最普遍原因。Ω环则是构成β-内酰胺酶活性中心的重要结构,它是位于Arg164和Asp179之间的盐桥,在结构的维持以及底物的识别催化中发挥了关键作用。如果它的氨基酸出现替换、缺失、重复等突变,将会导致环中氢键位置和结构的改变,最终从结合能力、催化活性、稳定性等多方面影响β-内酰胺酶的功能[29] [30]。盐桥不但限制了整个环的灵活性,而且由于处于酶活性中心的结构、编码序列的单碱基易突变、富含AT碱基高突变热点的邻近,且突变后能有效增强耐药性等原因,在抗生素压力选择下更易成为“优势突变位点”[31]-[33]

在2017年的一项回顾性研究中,Shields等人首次发现了3例在治疗CRE感染过程中出现的KPC-3的KPC-31 (D179/T243M)、KPC-32 (D179Y)和KPC-8 (V240G)突变体,它们使头孢他啶–阿维巴坦的MIC值分别增加了128倍、16倍和4倍[34]。随后他们又在一名肺炎克雷伯菌引起的菌血症患者的脓液中发现了KPC-3的另一种突变体(A177E、D179Y),其在对头孢他啶阿维巴坦耐药后恢复了对美罗培南的敏感性[35]。我国在2019年头孢他啶–阿维巴坦获批临床使用后,KPC突变体在革兰氏阴性杆菌中也呈现急剧增长的趋势,其中肺炎克雷伯菌的占比更是高达73.8% [20]

越来越多的头孢他啶阿维巴坦耐药的KPC突变体被报道,常见的有KPC-2的D179Y突变体KPC-33,它可以扩大底物结合腔从而增强对头孢他啶的亲和力,同时使得阿维巴坦对它的抑制能力下降,最后通过水解β-内酰胺类抗生素的β-内酰胺环,使其失去抗菌活性。与此同时,在突变为KPC-33后,它丧失了水解碳青霉烯类药物的能力。但是现仍有较多临床菌株存在同时携带多个KPC酶的情况,从而同时导致头孢他啶–阿维巴坦以及碳青霉烯类药物MIC值的升高[23]

另外,还有KPC-2来源的D242-GT-243deletion、L169P、D163E、D179N、Y241H、H274N、D179Y、valine insertion after 262 position、Ser182dup、G239_V240del、del166Leu/167Asn and 242Gly/243Thr的突变[36]-[42],还有KPC-3来源的V240A、D179Y、A172T、269-Pro-Asn-Lys-270、Arg-163-Ser、276-Glu-Ala-Val-277、LN169-170H、D179Y、A172T、del168Leu/169Asn and Ser170Pro、179ins Ser的突变[43]-[50]

产ESBL的革兰氏阴性菌是对广谱β-内酰胺类抗生素耐药的主要原因,其中CTX-M酶为最常见的ESBL [51]。目前CTX-M-15在世界范围内占主导地位,其次是CTX-M-14及CTX-M-27,然而随着头孢他啶/阿维巴坦的使用,CTX-M酶突变导致的耐药率呈现上升趋势。Both等人曾在多重耐药的肺炎克雷伯菌分离株中发现CTX-M-14Δ170Δ264的突变体,它在出现两个氨基酸变化后导致头孢他啶和头孢他啶/阿维巴坦的MIC值升高了>64和16倍,原因可能是突变体增强对头孢他啶的水解活性[52]。Livermore等人的报道称[53],在使用2 × MIC头孢他啶 + 1 mg/L的药敏平板筛选产ESBL和AmpC的大肠杆菌时发现了一株CTX-M-15突变株,它在出现Asp182Tyr后,使头孢他啶/阿维巴坦的MIC值上升了8倍。在一些头孢他啶/阿维巴坦耐药的菌株中还发现了,CTX-M突变体的克隆株虽然仍对头孢他啶/阿维巴坦敏感,但是却使MIC值升高8倍,并且可以联合Ompk36膜孔突变使得细菌产生耐药[54]

除A类β-内酰胺酶外,还有较少见的D类β-内酰胺酶,比如OXA-48关键位点氨基酸突变同样可以导致头孢他啶–阿维巴坦耐药。有报道称在大肠杆菌中碳青霉烯酶OXA-48在头孢他啶–阿维巴坦治疗后出现了双氨基酸的替换(P68A和Y211S),这导致了阿维巴坦的抑制能力降低为原来的1/5。其中P68A替换增加了底物结合位点的灵活性和可塑性,Y211S突变则影响了酶的稳定性,二者通过改变氢键提高了细菌对头孢他啶的耐药性[55]。另外,也有携带OXA-40、66、69、88、93、94、95、96、206酶的鲍曼不动杆菌对头孢他啶–阿维巴坦耐药[56]。截至目前,尚未分离出因OXA酶而产生头孢他啶–阿维巴坦耐药性的肺炎克雷伯菌菌株。

4.2. blaKPC基因过表达及孔蛋白突变介导耐药

早在2015年曾报道过,OmpK膜孔蛋白的突变可能是导致KPC-KP菌株头孢他啶/阿维巴坦耐药的原因[57] [58]。第1例头孢他啶/阿维巴坦耐药的菌株被研究,发现它的blaKPC-3的表达量是同源敏感株的3.8 ± 0.2倍,并且它存在OmpK36 (T333N)的突变及合并有OmpK35的截断。当它回补正常的OmpK35和OmpK36后,头孢他啶/阿维巴坦的MIC均出现了明显下降[59]。Castanheira等人在2020年从欧洲、拉丁美洲和亚太地区收集到的286株CRE (其中243株为肺炎克雷伯菌)中研究发现,头孢他啶/阿维巴坦MIC值为4 mg/L的菌株均存在OmpK35缺失以及OmpK36的L3存在突变,并认为同时存在blaKPCβ-内酰胺酶产生突变将引起头孢他啶/阿维巴坦的MIC值升高[60]。随后越来越多的报道也证实了这一点,例如一株ST258的头孢他啶/阿维巴坦耐药的肺炎克雷伯菌被报道,它携带了blaKPC-23,并存在OmpK35缺失和OmpK36突变[43] [61] [62]。我国也有报道在24株仅携带blaKPC的临床分离的肺炎克雷伯菌中发现,blaKPC在MIC值为4 mg/mL~8 mg/mL的菌株中,拷贝数和表达量要比MIC ≤ 2 mg/mL的菌株高4.2~4.8倍。并且在MIC ≥ 1 mg/mL的菌株中发现发生了OmpK35基因突变,并与MIC ≤ 0.5mg/mL的菌株相比,OmpK35的mRNA表达水平下降了28.5倍,然而在回补正常的OmpK35孔蛋白后,它们对头孢他啶和头孢他啶/阿维巴坦的MIC下降了2~4倍[63]

也有报道称在头孢他啶/阿维巴坦治疗后出现4株耐药菌株发生了KPC酶的突变,同时它们的blaKPC基因表达量和拷贝数出现了增加,可能是导致MIC值最高升高了1024倍的原因。然而,这些耐药菌株和同源的敏感株菌存在OmpK35缺失和OmpK36突变,并且当进行野生型OmpK35、OmpK36的回补后,MIC值并没有出现下降[64]

5. 结论与展望

头孢他啶/阿维巴坦主要用于治疗由肺炎克雷伯菌、阴沟肠杆菌、大肠埃希菌、奇异变形杆菌和铜绿假单胞菌等革兰氏阴性杆菌引起的复杂腹腔内感染、医院获得性肺炎和呼吸机相关肺炎。尤其可用于治疗方案选择有限的CRE、CRPA等耐药菌株引起的感染。作为碳青霉烯耐药菌株的最后一道防线,头孢他啶/阿维巴坦在很大程度上缓解了多重耐药的革兰氏阴性杆菌治疗手段匮乏的现状。但是自CZA-AVI开始应用于临床,全球范围内已陆续有耐药菌株产生的报道,因此需迫切了解关于菌株产生头孢他啶/阿维巴坦耐药性的机制。其中在头孢他啶–阿维巴坦使用过程中出现β-内酰胺酶关键位点的氨基酸突变屡见不鲜,还有blaKPC基因过表达及膜孔蛋白突变、外排泵过表达、青霉素结合蛋白等均可介导耐药性的发生。

现阶段,针对产金属β-内酰胺酶的CAZ-AVI天然耐药菌株已有广谱β-内酰胺酶抑制剂,而针对CAZ-AVI非天然耐药菌株,由于多黏菌素、替加环素在疗效和安全性方面存在一些使用限制,新型β-内酰胺酶抑制剂例如美罗培南–瓦博巴坦、亚胺培南–瑞莱巴坦在国内并未普及,目前临床上多提倡使用抗菌药物联合治疗。故此针对这类患者,需要我们临床工作者和检验科密切合作,加强沟通才能指导这类病人的精准用药。并且我们需要注意,现有越来越多KPC突变体的出现打破了碳青霉烯酶检测的传统实验室思维,使得检测结果出现碳青霉烯酶假阴性从而导致临床医生的误判。故此我们还提倡,对于重症患者,除了碳青霉烯酶的检测,还需同时完善CAZ-AVI药敏试验,尽早开始针对KPC突变体的精准治疗。总之,对于头孢他啶–阿维巴坦不断出现的复杂耐药机制,我们不但需要注意在临床工作中合理使用CZA-AVI以尽量减少细菌耐药性的出现,而且需要持续跟踪细菌耐药性发展的情况并指导开发新的治疗方法。

NOTES

*通讯作者。

参考文献

[1] Dong, N., Yang, X., Chan, E.W., Zhang, R. and Chen, S. (2022) Klebsiella Species: Taxonomy, Hypervirulence and Multidrug Resistance. eBioMedicine, 79, Article ID: 103998.
https://doi.org/10.1016/j.ebiom.2022.103998
[2] World Health Organization (2024) WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance.
https://www.who.int/publications/i/item/9789240093461
[3] Zhanel, G.G., Lawson, C.D., Adam, H., Schweizer, F., Zelenitsky, S., Lagacé-Wiens, P.R.S., et al. (2013) Ceftazidime-Avibactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Drugs, 73, 159-177.
https://doi.org/10.1007/s40265-013-0013-7
[4] Nahar, L., Hagiya, H., Gotoh, K., Asaduzzaman, M. and Otsuka, F. (2024) New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. Journal of Clinical Medicine, 13, Article 4199.
https://doi.org/10.3390/jcm13144199
[5] Zakhour, J., El Ayoubi, L.W. and Kanj, S.S. (2024) Metallo-Beta-Lactamases: Mechanisms, Treatment Challenges, and Future Prospects. Expert Review of Anti-Infective Therapy, 22, 189-201.
https://doi.org/10.1080/14787210.2024.2311213
[6] Khalid, S., Migliaccio, A., Zarrilli, R. and Khan, A.U. (2023) Efficacy of Novel Combinations of Antibiotics against Multidrug-Resistant—New Delhi Metallo-Beta-Lactamase-Producing Strains of Enterobacterales. Antibiotics, 12, Article 1134.
https://doi.org/10.3390/antibiotics12071134
[7] 喻华, 徐雪松, 李敏, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版) [J]. 中国感染与化疗杂志, 2022, 22(4): 463-474.
[8] Yang, Y., Guo, Y., Yin, D., Zheng, Y., Wu, S., Zhu, D., et al. (2020) In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam, and Other Comparators against Clinical Isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii: Results from China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrobial Agents and Chemotherapy, 65, 1-8.
https://doi.org/10.1128/aac.01726-20
[9] Chen, Y., Huang, H., Peng, J., Weng, L. and Du, B. (2022) Efficacy and Safety of Ceftazidime-Avibactam for the Treatment of Carbapenem-Resistant Enterobacterales Bloodstream Infection: A Systematic Review and Meta-Analysis. Microbiology Spectrum, 10, e02603-21.
https://doi.org/10.1128/spectrum.02603-21
[10] Davido, B., Crémieux, A., Vaugier, I., Gatin, L., Noussair, L., Massias, L., et al. (2023) Efficacy of Ceftazidime-Avibactam in Various Combinations for the Treatment of Experimental Osteomyelitis Due to Klebsiella pneumoniae Carbapenemase (KPC)-Producing Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 61, Article ID: 106702.
https://doi.org/10.1016/j.ijantimicag.2022.106702
[11] Almyroudi, M.P., Chang, A., Andrianopoulos, I., Papathanakos, G., Mehta, R., Paramythiotou, E., et al. (2024) Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics, 13, Article 629.
https://doi.org/10.3390/antibiotics13070629
[12] de Jonge, B.L.M., Karlowsky, J.A., Kazmierczak, K.M., Biedenbach, D.J., Sahm, D.F. and Nichols, W.W. (2016) In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrobial Agents and Chemotherapy, 60, 3163-3169.
https://doi.org/10.1128/aac.03042-15
[13] Spiliopoulou, I., Kazmierczak, K. and Stone, G.G. (2019) In Vitro Activity of Ceftazidime/Avibactam against Isolates of Carbapenem-Non-Susceptible Enterobacteriaceae Collected during the INFORM Global Surveillance Programme (2015-17). Journal of Antimicrobial Chemotherapy, 75, 384-391.
https://doi.org/10.1093/jac/dkz456
[14] Stone, G.G., Seifert, H. and Nord, C.E. (2020) In Vitro Activity of Ceftazidime-Avibactam against Gram-Negative Isolates Collected in 18 European Countries, 2015-2017. International Journal of Antimicrobial Agents, 56, Article ID: 106045.
https://doi.org/10.1016/j.ijantimicag.2020.106045
[15] Karlowsky, J.A., Kazmierczak, K.M., de Figueiredo Valente, M.L.N., Luengas, E.L., Baudrit, M., Quintana, A., et al. (2021) In Vitro Activity of Ceftazidime-Avibactam against Enterobacterales and Pseudomonas Aeruginosa Isolates Collected in Latin America as Part of the ATLAS Global Surveillance Program, 2017-2019. The Brazilian Journal of Infectious Diseases, 25, Article ID: 101647.
https://doi.org/10.1016/j.bjid.2021.101647
[16] Bae, I. and Stone, G.G. (2022) In Vitro Activity of Ceftazidime-Avibactam and Comparators against Bacterial Isolates Collected in South Korea as Part of the ATLAS Global Surveillance Program (2016-2018). Diagnostic Microbiology and Infectious Disease, 102, Article ID: 115553.
https://doi.org/10.1016/j.diagmicrobio.2021.115553
[17] Ko, W. and Stone, G.G. (2020) In Vitro Activity of Ceftazidime-Avibactam and Comparators against Gram-Negative Bacterial Isolates Collected in the Asia-Pacific Region as Part of the INFORM Program (2015-2017). Annals of Clinical Microbiology and Antimicrobials, 19, Article No. 14.
https://doi.org/10.1186/s12941-020-00355-1
[18] Karlowsky, J.A., Kazmierczak, K.M., Bouchillon, S.K., de Jonge, B.L.M., Stone, G.G. and Sahm, D.F. (2018) In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas Aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrobial Agents and Chemotherapy, 62, e02569-17.
https://doi.org/10.1128/aac.02569-17
[19] 郭燕, 胡付品, 朱德妹, 等. 2023年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2024, 24(6): 627-637.
[20] Ding, L., Shen, S., Chen, J., Tian, Z., Shi, Q., Han, R., et al. (2023) Klebsiella pneumoniae Carbapenemase Variants: The New Threat to Global Public Health. Clinical Microbiology Reviews, 36, 1-26.
https://doi.org/10.1128/cmr.00008-23
[21] Shi, Q., Shen, S., Tang, C., Ding, L., Guo, Y., Yang, Y., et al. (2024) Molecular Mechanisms Responsible Kpc-135-Mediated Resistance to Ceftazidime-Avibactam in ST11-K47 Hypervirulent Klebsiella pneumoniae. Emerging Microbes & Infections, 13, Article ID: 2361007.
https://doi.org/10.1080/22221751.2024.2361007
[22] Tang, C., Shen, S., Yang, W., Shi, Q., Ding, L., Han, R., et al. (2024) Dynamic Evolution of Ceftazidime-Avibactam Resistance from a Single Patient through the Incx3_ndm-5 Plasmid Transfer and blaKPC Mutation. International Journal of Antimicrobial Agents, 64, Article ID: 107228.
https://doi.org/10.1016/j.ijantimicag.2024.107228
[23] Zhang, P., Shi, Q., Hu, H., Hong, B., Wu, X., Du, X., et al. (2020) Emergence of Ceftazidime/Avibactam Resistance in Carbapenem-Resistant Klebsiella pneumoniae in China. Clinical Microbiology and Infection, 26, 124.E1-124.E4.
https://doi.org/10.1016/j.cmi.2019.08.020
[24] Tang, C., Shen, S., Yang, W., Shi, Q., Ding, L., Han, R., et al. (2024) Complex Evolutionary Trajectories in Vivo of Two Novel KPC Variants Conferring Ceftazidime-Avibactam Resistance. International Journal of Antimicrobial Agents, 64, Article 107265.
https://doi.org/10.1016/j.ijantimicag.2024.107265
[25] Yang, W., Xu, H., Zhao, Y., Chen, W., Ma, X. and Hu, F. (2025) Identification of blaKPC-90 in Klebsiella pneumoniae Associated with Ceftazidime-Avibactam Resistance and the Translocation & Truncation of Resistant Genes Mediated by Is26. International Journal of Antimicrobial Agents, 65, Article ID: 107388.
https://doi.org/10.1016/j.ijantimicag.2024.107388
[26] Zhou, J., Yan, G., Tang, C., Liu, J., Fu, P., Ding, L., et al. (2024) Emergence of Ceftazidime-Avibactam Resistance in blaKPC-33-Harbouring ST11 Klebsiella pneumoniae in a Paediatric Patient. International Journal of Antimicrobial Agents, 63, Article ID: 107163.
https://doi.org/10.1016/j.ijantimicag.2024.107163
[27] Abboud, M.I., Damblon, C., Brem, J., Smargiasso, N., Mercuri, P., Gilbert, B., et al. (2016) Interaction of Avibactam with Class B Metallo-β-lactamases. Antimicrobial Agents and Chemotherapy, 60, 5655-5662.
https://doi.org/10.1128/aac.00897-16
[28] Li, S., Feng, X., Li, M. and Shen, Z. (2023) In Vivo Adaptive Antimicrobial Resistance in Klebsiella pneumoniae during Antibiotic Therapy. Frontiers in Microbiology, 14, Article ID: 1159912.
https://doi.org/10.3389/fmicb.2023.1159912
[29] Barnes, M.D., Winkler, M.L., Taracila, M.A., Page, M.G., Desarbre, E., Kreiswirth, B.N., et al. (2017) Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering. mBio, 8, e00528-17.
https://doi.org/10.1128/mbio.00528-17
[30] Winkler, M.L., Papp-Wallace, K.M. and Bonomo, R.A. (2015) Activity of Ceftazidime/Avibactam against Isogenic Strains of Escherichia coli Containing KPC and SHV β-Lactamases with Single Amino Acid Substitutions in the Ω-Loop. Journal of Antimicrobial Chemotherapy, 70, 2279-2286.
https://doi.org/10.1093/jac/dkv094
[31] Alsenani, T.A., Viviani, S.L., Kumar, V., Taracila, M.A., Bethel, C.R., Barnes, M.D., et al. (2022) Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 66, e0241421.
https://doi.org/10.1128/aac.02414-21
[32] Garsevanyan, S. and Barlow, M. (2023) The Klebsiella pneumoniae Carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam. Antibiotics, 13, Article 40.
https://doi.org/10.3390/antibiotics13010040
[33] Parwana, D., Gu, J., Chen, S., Bethel, C.R., Marshall, E., Hujer, A.M., et al. (2024) The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. Angewandte Chemie International Edition, 63, e202317315.
https://doi.org/10.1002/anie.202317315
[34] Shields, R.K., Chen, L., Cheng, S., Chavda, K.D., Press, E.G., Snyder, A., et al. (2017) Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrobial Agents and Chemotherapy, 61, e02097-16.
https://doi.org/10.1128/aac.02097-16
[35] Shields, R.K., Nguyen, M.H., Press, E.G., Chen, L., Kreiswirth, B.N. and Clancy, C.J. (2017) Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K Pneumoniae: A Case Report and Review of Literature. Open Forum Infectious Diseases, 4, ofx101.
https://doi.org/10.1093/ofid/ofx101
[36] Oueslati, S., Iorga, B.I., Tlili, L., Exilie, C., Zavala, A., Dortet, L., et al. (2019) Unravelling Ceftazidime/Avibactam Resistance of KPC-28, a KPC-2 Variant Lacking Carbapenemase Activity. Journal of Antimicrobial Chemotherapy, 74, 2239-2246.
https://doi.org/10.1093/jac/dkz209
[37] Hemarajata, P. and Humphries, R.M. (2019) Ceftazidime/Avibactam Resistance Associated with L169P Mutation in the Omega Loop of KPC-2. Journal of Antimicrobial Chemotherapy, 74, 1241-1243.
https://doi.org/10.1093/jac/dkz026
[38] Shi, Q., Yin, D., Han, R., Guo, Y., Zheng, Y., Wu, S., et al. (2020) Emergence and Recovery of Ceftazidime-Avibactam Resistance In blaKPC-33-Harboring Klebsiella pneumoniae Sequence Type 11 Isolates in China. Clinical Infectious Diseases, 71, S436-S439.
https://doi.org/10.1093/cid/ciaa1521
[39] Gaibani, P., Ambretti, S., Campoli, C., Viale, P. and Re, M.C. (2020) Genomic Characterization of a Klebsiella pneumoniae ST1519 Resistant to Ceftazidime/Avibactam Carrying a Novel KPC Variant (kpc-36). International Journal of Antimicrobial Agents, 55, Article ID: 105816.
https://doi.org/10.1016/j.ijantimicag.2019.09.020
[40] Sun, L., Chen, W., Li, H., Li, L., Zou, X., Zhao, J., et al. (2020) Phenotypic and Genotypic Analysis of KPC-51 and KPC-52, Two Novel KPC-2 Variants Conferring Resistance to Ceftazidime/Avibactam in the KPC-Producing Klebsiella pneumoniae ST11 Clone Background. Journal of Antimicrobial Chemotherapy, 75, 3072-3074.
https://doi.org/10.1093/jac/dkaa241
[41] Li, X., Ke, H., Wu, W., Tu, Y., Zhou, H. and Yu, Y. (2021) Molecular Mechanisms Driving the in Vivo Development of Kpc-71-Mediated Resistance to Ceftazidime-Avibactam during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. mSphere, 6, e0085921.
https://doi.org/10.1128/msphere.00859-21
[42] Shen, S., Tang, C., Ding, L., Han, R., Yin, D., Yang, W., et al. (2022) Identification of KPC-112 from an ST15 Klebsiella pneumoniae Strain Conferring Resistance to Ceftazidime-Avibactam. mSphere, 7, e0048722.
https://doi.org/10.1128/msphere.00487-22
[43] Galani, I., Antoniadou, A., Karaiskos, I., Kontopoulou, K., Giamarellou, H. and Souli, M. (2019) Genomic Characterization of a KPC-23-Producing Klebsiella pneumoniae ST258 Clinical Isolate Resistant to Ceftazidime-Avibactam. Clinical Microbiology and Infection, 25, 763.E5-763.E8.
https://doi.org/10.1016/j.cmi.2019.03.011
[44] Antonelli, A., Giani, T., Di Pilato, V., Riccobono, E., Perriello, G., Mencacci, A., et al. (2019) KPC-31 Expressed in a Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae Is Associated with Relevant Detection Issues. Journal of Antimicrobial Chemotherapy, 74, 2464-2466.
https://doi.org/10.1093/jac/dkz156
[45] Carattoli, A., Arcari, G., Bibbolino, G., Sacco, F., Tomolillo, D., Di Lella, F.M., et al. (2021) Evolutionary Trajectories toward Ceftazidime-Avibactam Resistance in Klebsiella pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 65, e0057421.
https://doi.org/10.1128/aac.00574-21
[46] Mueller, L., Masseron, A., Prod’Hom, G., Galperine, T., Greub, G., Poirel, L., et al. (2019) Phenotypic, Biochemical, and Genetic Analysis of KPC-41, a KPC-3 Variant Conferring Resistance to Ceftazidime-Avibactam and Exhibiting Reduced Carbapenemase Activity. Antimicrobial Agents and Chemotherapy, 63, e01111-19.
https://doi.org/10.1128/aac.01111-19
[47] Poirel, L., Vuillemin, X., Juhas, M., Masseron, A., Bechtel-Grosch, U., Tiziani, S., et al. (2020) KPC-50 Confers Resistance to Ceftazidime-Avibactam Associated with Reduced Carbapenemase Activity. Antimicrobial Agents and Chemotherapy, 64, e00321-20.
https://doi.org/10.1128/aac.00321-20
[48] Guzmán-Puche, J., Pérez-Nadales, E., Pérez-Vázquez, M., Causse, M., Gracia-Ahufinger, I., Mendez-Natera, A., et al. (2022) In Vivo Selection of KPC-94 and KPC-95 in Klebsiella pneumoniae Isolates from Patients Treated with Ceftazidime/Avibactam. International Journal of Antimicrobial Agents, 59, Article ID: 106524.
https://doi.org/10.1016/j.ijantimicag.2022.106524
[49] Nicola, F., Cejas, D., González-Espinosa, F., Relloso, S., Herrera, F., Bonvehí, P., et al. (2022) Outbreak of Klebsiella pneumoniae ST11 Resistant to Ceftazidime-Avibactam Producing KPC-31 and the Novel Variant KPC-115 during COVID-19 Pandemic in Argentina. Microbiology Spectrum, 10, e0373322.
https://doi.org/10.1128/spectrum.03733-22
[50] Gaibani, P., Amadesi, S., Lazzarotto, T. and Ambretti, S. (2022) Genome Characterization of a Klebsiella pneumoniae Co-Producing OXA-181 and KPC-121 Resistant to Ceftazidime/Avibactam, Meropenem/Vaborbactam, Imipenem/Relebactam and Cefiderocol Isolated from a Critically Ill Patient. Journal of Global Antimicrobial Resistance, 30, 262-264.
https://doi.org/10.1016/j.jgar.2022.06.021
[51] Castanheira, M., Simner, P.J. and Bradford, P.A. (2021) Extended-Spectrum β-Lactamases: An Update on Their Characteristics, Epidemiology and Detection. JAC-Antimicrobial Resistance, 3, dlab092.
https://doi.org/10.1093/jacamr/dlab092
[52] Both, A., Büttner, H., Huang, J., Perbandt, M., Belmar Campos, C., Christner, M., et al. (2017) Emergence of Ceftazidime/Avibactam Non-Susceptibility in an MDR Klebsiella pneumoniae Isolate. Journal of Antimicrobial Chemotherapy, 72, 2483-2488.
https://doi.org/10.1093/jac/dkx179
[53] Livermore, D.M., Mushtaq, S., Doumith, M., Jamrozy, D., Nichols, W.W. and Woodford, N. (2018) Selection of Mutants with Resistance or Diminished Susceptibility to Ceftazidime/Avibactam from ESBL-and AmpC-Producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73, 3336-3345.
https://doi.org/10.1093/jac/dky363
[54] Zhao, J., Pu, D., Li, Z., Zhang, Y., Liu, X., Zhuo, X., et al. (2024) Loss and Gain of Ceftazidime-Avibactam Susceptibility in a Non-Carbapenemase-Producing K1-ST23 Hypervirulent klebsiella pneumoniae. Virulence, 15, Article ID: 2348251.
https://doi.org/10.1080/21505594.2024.2348251
[55] Fröhlich, C., Sørum, V., Thomassen, A.M., Johnsen, P.J., Leiros, H.S. and Samuelsen, Ø. (2019) OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere, 4, e00024-19.
https://doi.org/10.1128/msphere.00024-19
[56] Yoshizumi, A., Ishii, Y., Aoki, K., Testa, R., Nichols, W.W. and Tateda, K. (2015) In Vitro Susceptibility of Characterized β-Lactamase-Producing Gram-Negative Bacteria Isolated in Japan to Ceftazidime-, Ceftaroline-, and Aztreonam-Avibactam Combinations. Journal of Infection and Chemotherapy, 21, 148-151.
https://doi.org/10.1016/j.jiac.2014.08.028
[57] Shields, R.K., Clancy, C.J., Hao, B., Chen, L., Press, E.G., Iovine, N.M., et al. (2015) Effects of Klebsiella pneumoniae Carbapenemase Subtypes, Extended-Spectrum β-Lactamases, and Porin Mutations on the in Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant K. Pneumoniae. Antimicrobial Agents and Chemotherapy, 59, 5793-5797.
https://doi.org/10.1128/aac.00548-15
[58] Humphries, R.M., Yang, S., Hemarajata, P., Ward, K.W., Hindler, J.A., Miller, S.A., et al. (2015) First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate. Antimicrobial Agents and Chemotherapy, 59, 6605-6607.
https://doi.org/10.1128/aac.01165-15
[59] Humphries, R.M. and Hemarajata, P. (2017) Resistance to Ceftazidime-Avibactam in Klebsiella pneumoniae Due to Porin Mutations and the Increased Expression of KPC-3. Antimicrobial Agents and Chemotherapy, 61, e00537-17.
https://doi.org/10.1128/aac.00537-17
[60] Castanheira, M., Doyle, T.B., Hubler, C., Sader, H.S. and Mendes, R.E. (2020) Ceftazidime-Avibactam Activity against a Challenge Set of Carbapenem-Resistant Enterobacterales: Ompk36 L3 Alterations and β-Lactamases with Ceftazidime Hydrolytic Activity Lead to Elevated MIC Values. International Journal of Antimicrobial Agents, 56, Article ID: 106011.
https://doi.org/10.1016/j.ijantimicag.2020.106011
[61] Shi, Q., Han, R., Guo, Y., Yang, Y., Wu, S., Ding, L., et al. (2022) Multiple Novel Ceftazidime-Avibactam-Resistant Variants of blaKPC-2-Positive Klebsiella pneumoniae in Two Patients. Microbiology Spectrum, 10, e0171421.
https://doi.org/10.1128/spectrum.01714-21
[62] Gong, G., Chen, Q., Luo, J., Wang, Y., Li, X., Zhang, F., et al. (2023) Characteristics of a Ceftadine/Avibatam Resistance Kpc-33-Producing Klebsiella pneumoniae Strain with Capsular Serotype K19 Belonging to St15. Journal of Global Antimicrobial Resistance, 35, 159-162.
https://doi.org/10.1016/j.jgar.2023.09.013
[63] Shen, Z., Ding, B., Ye, M., Wang, P., Bi, Y., Wu, S., et al. (2017) High Ceftazidime Hydrolysis Activity and Porin Ompk35 Deficiency Contribute to the Decreased Susceptibility to Ceftazidime/Avibactam in KPC-Producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 72, 1930-1936.
https://doi.org/10.1093/jac/dkx066
[64] Sun, L., Li, H., Wang, Q., Liu, Y. and Cao, B. (2021) Increased Gene Expression and Copy Number of Mutated blaKPC Lead to High-Level Ceftazidime/Avibactam Resistance in Klebsiella pneumoniae. BMC Microbiology, 21, Article No. 230.
https://doi.org/10.1186/s12866-021-02293-0