[1]
|
Dong, N., Yang, X., Chan, E.W., Zhang, R. and Chen, S. (2022) Klebsiella Species: Taxonomy, Hypervirulence and Multidrug Resistance. eBioMedicine, 79, Article ID: 103998. https://doi.org/10.1016/j.ebiom.2022.103998
|
[2]
|
World Health Organization (2024) WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. https://www.who.int/publications/i/item/9789240093461
|
[3]
|
Zhanel, G.G., Lawson, C.D., Adam, H., Schweizer, F., Zelenitsky, S., Lagacé-Wiens, P.R.S., et al. (2013) Ceftazidime-Avibactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Drugs, 73, 159-177. https://doi.org/10.1007/s40265-013-0013-7
|
[4]
|
Nahar, L., Hagiya, H., Gotoh, K., Asaduzzaman, M. and Otsuka, F. (2024) New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. Journal of Clinical Medicine, 13, Article 4199. https://doi.org/10.3390/jcm13144199
|
[5]
|
Zakhour, J., El Ayoubi, L.W. and Kanj, S.S. (2024) Metallo-Beta-Lactamases: Mechanisms, Treatment Challenges, and Future Prospects. Expert Review of Anti-Infective Therapy, 22, 189-201. https://doi.org/10.1080/14787210.2024.2311213
|
[6]
|
Khalid, S., Migliaccio, A., Zarrilli, R. and Khan, A.U. (2023) Efficacy of Novel Combinations of Antibiotics against Multidrug-Resistant—New Delhi Metallo-Beta-Lactamase-Producing Strains of Enterobacterales. Antibiotics, 12, Article 1134. https://doi.org/10.3390/antibiotics12071134
|
[7]
|
喻华, 徐雪松, 李敏, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版) [J]. 中国感染与化疗杂志, 2022, 22(4): 463-474.
|
[8]
|
Yang, Y., Guo, Y., Yin, D., Zheng, Y., Wu, S., Zhu, D., et al. (2020) In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam, and Other Comparators against Clinical Isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii: Results from China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrobial Agents and Chemotherapy, 65, 1-8. https://doi.org/10.1128/aac.01726-20
|
[9]
|
Chen, Y., Huang, H., Peng, J., Weng, L. and Du, B. (2022) Efficacy and Safety of Ceftazidime-Avibactam for the Treatment of Carbapenem-Resistant Enterobacterales Bloodstream Infection: A Systematic Review and Meta-Analysis. Microbiology Spectrum, 10, e02603-21. https://doi.org/10.1128/spectrum.02603-21
|
[10]
|
Davido, B., Crémieux, A., Vaugier, I., Gatin, L., Noussair, L., Massias, L., et al. (2023) Efficacy of Ceftazidime-Avibactam in Various Combinations for the Treatment of Experimental Osteomyelitis Due to Klebsiella pneumoniae Carbapenemase (KPC)-Producing Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 61, Article ID: 106702. https://doi.org/10.1016/j.ijantimicag.2022.106702
|
[11]
|
Almyroudi, M.P., Chang, A., Andrianopoulos, I., Papathanakos, G., Mehta, R., Paramythiotou, E., et al. (2024) Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics, 13, Article 629. https://doi.org/10.3390/antibiotics13070629
|
[12]
|
de Jonge, B.L.M., Karlowsky, J.A., Kazmierczak, K.M., Biedenbach, D.J., Sahm, D.F. and Nichols, W.W. (2016) In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrobial Agents and Chemotherapy, 60, 3163-3169. https://doi.org/10.1128/aac.03042-15
|
[13]
|
Spiliopoulou, I., Kazmierczak, K. and Stone, G.G. (2019) In Vitro Activity of Ceftazidime/Avibactam against Isolates of Carbapenem-Non-Susceptible Enterobacteriaceae Collected during the INFORM Global Surveillance Programme (2015-17). Journal of Antimicrobial Chemotherapy, 75, 384-391. https://doi.org/10.1093/jac/dkz456
|
[14]
|
Stone, G.G., Seifert, H. and Nord, C.E. (2020) In Vitro Activity of Ceftazidime-Avibactam against Gram-Negative Isolates Collected in 18 European Countries, 2015-2017. International Journal of Antimicrobial Agents, 56, Article ID: 106045. https://doi.org/10.1016/j.ijantimicag.2020.106045
|
[15]
|
Karlowsky, J.A., Kazmierczak, K.M., de Figueiredo Valente, M.L.N., Luengas, E.L., Baudrit, M., Quintana, A., et al. (2021) In Vitro Activity of Ceftazidime-Avibactam against Enterobacterales and Pseudomonas Aeruginosa Isolates Collected in Latin America as Part of the ATLAS Global Surveillance Program, 2017-2019. The Brazilian Journal of Infectious Diseases, 25, Article ID: 101647. https://doi.org/10.1016/j.bjid.2021.101647
|
[16]
|
Bae, I. and Stone, G.G. (2022) In Vitro Activity of Ceftazidime-Avibactam and Comparators against Bacterial Isolates Collected in South Korea as Part of the ATLAS Global Surveillance Program (2016-2018). Diagnostic Microbiology and Infectious Disease, 102, Article ID: 115553. https://doi.org/10.1016/j.diagmicrobio.2021.115553
|
[17]
|
Ko, W. and Stone, G.G. (2020) In Vitro Activity of Ceftazidime-Avibactam and Comparators against Gram-Negative Bacterial Isolates Collected in the Asia-Pacific Region as Part of the INFORM Program (2015-2017). Annals of Clinical Microbiology and Antimicrobials, 19, Article No. 14. https://doi.org/10.1186/s12941-020-00355-1
|
[18]
|
Karlowsky, J.A., Kazmierczak, K.M., Bouchillon, S.K., de Jonge, B.L.M., Stone, G.G. and Sahm, D.F. (2018) In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas Aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrobial Agents and Chemotherapy, 62, e02569-17. https://doi.org/10.1128/aac.02569-17
|
[19]
|
郭燕, 胡付品, 朱德妹, 等. 2023年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2024, 24(6): 627-637.
|
[20]
|
Ding, L., Shen, S., Chen, J., Tian, Z., Shi, Q., Han, R., et al. (2023) Klebsiella pneumoniae Carbapenemase Variants: The New Threat to Global Public Health. Clinical Microbiology Reviews, 36, 1-26. https://doi.org/10.1128/cmr.00008-23
|
[21]
|
Shi, Q., Shen, S., Tang, C., Ding, L., Guo, Y., Yang, Y., et al. (2024) Molecular Mechanisms Responsible Kpc-135-Mediated Resistance to Ceftazidime-Avibactam in ST11-K47 Hypervirulent Klebsiella pneumoniae. Emerging Microbes & Infections, 13, Article ID: 2361007. https://doi.org/10.1080/22221751.2024.2361007
|
[22]
|
Tang, C., Shen, S., Yang, W., Shi, Q., Ding, L., Han, R., et al. (2024) Dynamic Evolution of Ceftazidime-Avibactam Resistance from a Single Patient through the Incx3_ndm-5 Plasmid Transfer and blaKPC Mutation. International Journal of Antimicrobial Agents, 64, Article ID: 107228. https://doi.org/10.1016/j.ijantimicag.2024.107228
|
[23]
|
Zhang, P., Shi, Q., Hu, H., Hong, B., Wu, X., Du, X., et al. (2020) Emergence of Ceftazidime/Avibactam Resistance in Carbapenem-Resistant Klebsiella pneumoniae in China. Clinical Microbiology and Infection, 26, 124.E1-124.E4. https://doi.org/10.1016/j.cmi.2019.08.020
|
[24]
|
Tang, C., Shen, S., Yang, W., Shi, Q., Ding, L., Han, R., et al. (2024) Complex Evolutionary Trajectories in Vivo of Two Novel KPC Variants Conferring Ceftazidime-Avibactam Resistance. International Journal of Antimicrobial Agents, 64, Article 107265. https://doi.org/10.1016/j.ijantimicag.2024.107265
|
[25]
|
Yang, W., Xu, H., Zhao, Y., Chen, W., Ma, X. and Hu, F. (2025) Identification of blaKPC-90 in Klebsiella pneumoniae Associated with Ceftazidime-Avibactam Resistance and the Translocation & Truncation of Resistant Genes Mediated by Is26. International Journal of Antimicrobial Agents, 65, Article ID: 107388. https://doi.org/10.1016/j.ijantimicag.2024.107388
|
[26]
|
Zhou, J., Yan, G., Tang, C., Liu, J., Fu, P., Ding, L., et al. (2024) Emergence of Ceftazidime-Avibactam Resistance in blaKPC-33-Harbouring ST11 Klebsiella pneumoniae in a Paediatric Patient. International Journal of Antimicrobial Agents, 63, Article ID: 107163. https://doi.org/10.1016/j.ijantimicag.2024.107163
|
[27]
|
Abboud, M.I., Damblon, C., Brem, J., Smargiasso, N., Mercuri, P., Gilbert, B., et al. (2016) Interaction of Avibactam with Class B Metallo-β-lactamases. Antimicrobial Agents and Chemotherapy, 60, 5655-5662. https://doi.org/10.1128/aac.00897-16
|
[28]
|
Li, S., Feng, X., Li, M. and Shen, Z. (2023) In Vivo Adaptive Antimicrobial Resistance in Klebsiella pneumoniae during Antibiotic Therapy. Frontiers in Microbiology, 14, Article ID: 1159912. https://doi.org/10.3389/fmicb.2023.1159912
|
[29]
|
Barnes, M.D., Winkler, M.L., Taracila, M.A., Page, M.G., Desarbre, E., Kreiswirth, B.N., et al. (2017) Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering. mBio, 8, e00528-17. https://doi.org/10.1128/mbio.00528-17
|
[30]
|
Winkler, M.L., Papp-Wallace, K.M. and Bonomo, R.A. (2015) Activity of Ceftazidime/Avibactam against Isogenic Strains of Escherichia coli Containing KPC and SHV β-Lactamases with Single Amino Acid Substitutions in the Ω-Loop. Journal of Antimicrobial Chemotherapy, 70, 2279-2286. https://doi.org/10.1093/jac/dkv094
|
[31]
|
Alsenani, T.A., Viviani, S.L., Kumar, V., Taracila, M.A., Bethel, C.R., Barnes, M.D., et al. (2022) Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 66, e0241421. https://doi.org/10.1128/aac.02414-21
|
[32]
|
Garsevanyan, S. and Barlow, M. (2023) The Klebsiella pneumoniae Carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam. Antibiotics, 13, Article 40. https://doi.org/10.3390/antibiotics13010040
|
[33]
|
Parwana, D., Gu, J., Chen, S., Bethel, C.R., Marshall, E., Hujer, A.M., et al. (2024) The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. Angewandte Chemie International Edition, 63, e202317315. https://doi.org/10.1002/anie.202317315
|
[34]
|
Shields, R.K., Chen, L., Cheng, S., Chavda, K.D., Press, E.G., Snyder, A., et al. (2017) Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrobial Agents and Chemotherapy, 61, e02097-16. https://doi.org/10.1128/aac.02097-16
|
[35]
|
Shields, R.K., Nguyen, M.H., Press, E.G., Chen, L., Kreiswirth, B.N. and Clancy, C.J. (2017) Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K Pneumoniae: A Case Report and Review of Literature. Open Forum Infectious Diseases, 4, ofx101. https://doi.org/10.1093/ofid/ofx101
|
[36]
|
Oueslati, S., Iorga, B.I., Tlili, L., Exilie, C., Zavala, A., Dortet, L., et al. (2019) Unravelling Ceftazidime/Avibactam Resistance of KPC-28, a KPC-2 Variant Lacking Carbapenemase Activity. Journal of Antimicrobial Chemotherapy, 74, 2239-2246. https://doi.org/10.1093/jac/dkz209
|
[37]
|
Hemarajata, P. and Humphries, R.M. (2019) Ceftazidime/Avibactam Resistance Associated with L169P Mutation in the Omega Loop of KPC-2. Journal of Antimicrobial Chemotherapy, 74, 1241-1243. https://doi.org/10.1093/jac/dkz026
|
[38]
|
Shi, Q., Yin, D., Han, R., Guo, Y., Zheng, Y., Wu, S., et al. (2020) Emergence and Recovery of Ceftazidime-Avibactam Resistance In blaKPC-33-Harboring Klebsiella pneumoniae Sequence Type 11 Isolates in China. Clinical Infectious Diseases, 71, S436-S439. https://doi.org/10.1093/cid/ciaa1521
|
[39]
|
Gaibani, P., Ambretti, S., Campoli, C., Viale, P. and Re, M.C. (2020) Genomic Characterization of a Klebsiella pneumoniae ST1519 Resistant to Ceftazidime/Avibactam Carrying a Novel KPC Variant (kpc-36). International Journal of Antimicrobial Agents, 55, Article ID: 105816. https://doi.org/10.1016/j.ijantimicag.2019.09.020
|
[40]
|
Sun, L., Chen, W., Li, H., Li, L., Zou, X., Zhao, J., et al. (2020) Phenotypic and Genotypic Analysis of KPC-51 and KPC-52, Two Novel KPC-2 Variants Conferring Resistance to Ceftazidime/Avibactam in the KPC-Producing Klebsiella pneumoniae ST11 Clone Background. Journal of Antimicrobial Chemotherapy, 75, 3072-3074. https://doi.org/10.1093/jac/dkaa241
|
[41]
|
Li, X., Ke, H., Wu, W., Tu, Y., Zhou, H. and Yu, Y. (2021) Molecular Mechanisms Driving the in Vivo Development of Kpc-71-Mediated Resistance to Ceftazidime-Avibactam during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. mSphere, 6, e0085921. https://doi.org/10.1128/msphere.00859-21
|
[42]
|
Shen, S., Tang, C., Ding, L., Han, R., Yin, D., Yang, W., et al. (2022) Identification of KPC-112 from an ST15 Klebsiella pneumoniae Strain Conferring Resistance to Ceftazidime-Avibactam. mSphere, 7, e0048722. https://doi.org/10.1128/msphere.00487-22
|
[43]
|
Galani, I., Antoniadou, A., Karaiskos, I., Kontopoulou, K., Giamarellou, H. and Souli, M. (2019) Genomic Characterization of a KPC-23-Producing Klebsiella pneumoniae ST258 Clinical Isolate Resistant to Ceftazidime-Avibactam. Clinical Microbiology and Infection, 25, 763.E5-763.E8. https://doi.org/10.1016/j.cmi.2019.03.011
|
[44]
|
Antonelli, A., Giani, T., Di Pilato, V., Riccobono, E., Perriello, G., Mencacci, A., et al. (2019) KPC-31 Expressed in a Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae Is Associated with Relevant Detection Issues. Journal of Antimicrobial Chemotherapy, 74, 2464-2466. https://doi.org/10.1093/jac/dkz156
|
[45]
|
Carattoli, A., Arcari, G., Bibbolino, G., Sacco, F., Tomolillo, D., Di Lella, F.M., et al. (2021) Evolutionary Trajectories toward Ceftazidime-Avibactam Resistance in Klebsiella pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 65, e0057421. https://doi.org/10.1128/aac.00574-21
|
[46]
|
Mueller, L., Masseron, A., Prod’Hom, G., Galperine, T., Greub, G., Poirel, L., et al. (2019) Phenotypic, Biochemical, and Genetic Analysis of KPC-41, a KPC-3 Variant Conferring Resistance to Ceftazidime-Avibactam and Exhibiting Reduced Carbapenemase Activity. Antimicrobial Agents and Chemotherapy, 63, e01111-19. https://doi.org/10.1128/aac.01111-19
|
[47]
|
Poirel, L., Vuillemin, X., Juhas, M., Masseron, A., Bechtel-Grosch, U., Tiziani, S., et al. (2020) KPC-50 Confers Resistance to Ceftazidime-Avibactam Associated with Reduced Carbapenemase Activity. Antimicrobial Agents and Chemotherapy, 64, e00321-20. https://doi.org/10.1128/aac.00321-20
|
[48]
|
Guzmán-Puche, J., Pérez-Nadales, E., Pérez-Vázquez, M., Causse, M., Gracia-Ahufinger, I., Mendez-Natera, A., et al. (2022) In Vivo Selection of KPC-94 and KPC-95 in Klebsiella pneumoniae Isolates from Patients Treated with Ceftazidime/Avibactam. International Journal of Antimicrobial Agents, 59, Article ID: 106524. https://doi.org/10.1016/j.ijantimicag.2022.106524
|
[49]
|
Nicola, F., Cejas, D., González-Espinosa, F., Relloso, S., Herrera, F., Bonvehí, P., et al. (2022) Outbreak of Klebsiella pneumoniae ST11 Resistant to Ceftazidime-Avibactam Producing KPC-31 and the Novel Variant KPC-115 during COVID-19 Pandemic in Argentina. Microbiology Spectrum, 10, e0373322. https://doi.org/10.1128/spectrum.03733-22
|
[50]
|
Gaibani, P., Amadesi, S., Lazzarotto, T. and Ambretti, S. (2022) Genome Characterization of a Klebsiella pneumoniae Co-Producing OXA-181 and KPC-121 Resistant to Ceftazidime/Avibactam, Meropenem/Vaborbactam, Imipenem/Relebactam and Cefiderocol Isolated from a Critically Ill Patient. Journal of Global Antimicrobial Resistance, 30, 262-264. https://doi.org/10.1016/j.jgar.2022.06.021
|
[51]
|
Castanheira, M., Simner, P.J. and Bradford, P.A. (2021) Extended-Spectrum β-Lactamases: An Update on Their Characteristics, Epidemiology and Detection. JAC-Antimicrobial Resistance, 3, dlab092. https://doi.org/10.1093/jacamr/dlab092
|
[52]
|
Both, A., Büttner, H., Huang, J., Perbandt, M., Belmar Campos, C., Christner, M., et al. (2017) Emergence of Ceftazidime/Avibactam Non-Susceptibility in an MDR Klebsiella pneumoniae Isolate. Journal of Antimicrobial Chemotherapy, 72, 2483-2488. https://doi.org/10.1093/jac/dkx179
|
[53]
|
Livermore, D.M., Mushtaq, S., Doumith, M., Jamrozy, D., Nichols, W.W. and Woodford, N. (2018) Selection of Mutants with Resistance or Diminished Susceptibility to Ceftazidime/Avibactam from ESBL-and AmpC-Producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73, 3336-3345. https://doi.org/10.1093/jac/dky363
|
[54]
|
Zhao, J., Pu, D., Li, Z., Zhang, Y., Liu, X., Zhuo, X., et al. (2024) Loss and Gain of Ceftazidime-Avibactam Susceptibility in a Non-Carbapenemase-Producing K1-ST23 Hypervirulent klebsiella pneumoniae. Virulence, 15, Article ID: 2348251. https://doi.org/10.1080/21505594.2024.2348251
|
[55]
|
Fröhlich, C., Sørum, V., Thomassen, A.M., Johnsen, P.J., Leiros, H.S. and Samuelsen, Ø. (2019) OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere, 4, e00024-19. https://doi.org/10.1128/msphere.00024-19
|
[56]
|
Yoshizumi, A., Ishii, Y., Aoki, K., Testa, R., Nichols, W.W. and Tateda, K. (2015) In Vitro Susceptibility of Characterized β-Lactamase-Producing Gram-Negative Bacteria Isolated in Japan to Ceftazidime-, Ceftaroline-, and Aztreonam-Avibactam Combinations. Journal of Infection and Chemotherapy, 21, 148-151. https://doi.org/10.1016/j.jiac.2014.08.028
|
[57]
|
Shields, R.K., Clancy, C.J., Hao, B., Chen, L., Press, E.G., Iovine, N.M., et al. (2015) Effects of Klebsiella pneumoniae Carbapenemase Subtypes, Extended-Spectrum β-Lactamases, and Porin Mutations on the in Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant K. Pneumoniae. Antimicrobial Agents and Chemotherapy, 59, 5793-5797. https://doi.org/10.1128/aac.00548-15
|
[58]
|
Humphries, R.M., Yang, S., Hemarajata, P., Ward, K.W., Hindler, J.A., Miller, S.A., et al. (2015) First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate. Antimicrobial Agents and Chemotherapy, 59, 6605-6607. https://doi.org/10.1128/aac.01165-15
|
[59]
|
Humphries, R.M. and Hemarajata, P. (2017) Resistance to Ceftazidime-Avibactam in Klebsiella pneumoniae Due to Porin Mutations and the Increased Expression of KPC-3. Antimicrobial Agents and Chemotherapy, 61, e00537-17. https://doi.org/10.1128/aac.00537-17
|
[60]
|
Castanheira, M., Doyle, T.B., Hubler, C., Sader, H.S. and Mendes, R.E. (2020) Ceftazidime-Avibactam Activity against a Challenge Set of Carbapenem-Resistant Enterobacterales: Ompk36 L3 Alterations and β-Lactamases with Ceftazidime Hydrolytic Activity Lead to Elevated MIC Values. International Journal of Antimicrobial Agents, 56, Article ID: 106011. https://doi.org/10.1016/j.ijantimicag.2020.106011
|
[61]
|
Shi, Q., Han, R., Guo, Y., Yang, Y., Wu, S., Ding, L., et al. (2022) Multiple Novel Ceftazidime-Avibactam-Resistant Variants of blaKPC-2-Positive Klebsiella pneumoniae in Two Patients. Microbiology Spectrum, 10, e0171421. https://doi.org/10.1128/spectrum.01714-21
|
[62]
|
Gong, G., Chen, Q., Luo, J., Wang, Y., Li, X., Zhang, F., et al. (2023) Characteristics of a Ceftadine/Avibatam Resistance Kpc-33-Producing Klebsiella pneumoniae Strain with Capsular Serotype K19 Belonging to St15. Journal of Global Antimicrobial Resistance, 35, 159-162. https://doi.org/10.1016/j.jgar.2023.09.013
|
[63]
|
Shen, Z., Ding, B., Ye, M., Wang, P., Bi, Y., Wu, S., et al. (2017) High Ceftazidime Hydrolysis Activity and Porin Ompk35 Deficiency Contribute to the Decreased Susceptibility to Ceftazidime/Avibactam in KPC-Producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 72, 1930-1936. https://doi.org/10.1093/jac/dkx066
|
[64]
|
Sun, L., Li, H., Wang, Q., Liu, Y. and Cao, B. (2021) Increased Gene Expression and Copy Number of Mutated blaKPC Lead to High-Level Ceftazidime/Avibactam Resistance in Klebsiella pneumoniae. BMC Microbiology, 21, Article No. 230. https://doi.org/10.1186/s12866-021-02293-0
|