肉类新鲜度检测的荧光探针机理研究
Study on the Mechanism of Fluorescent Probes for Meat Freshness Detection
DOI: 10.12677/aac.2025.153034, PDF, HTML, XML,    科研立项经费支持
作者: 姜 茗, 马 悦:锦州医科大学附属第一医院,辽宁 锦州;彭永进, 刘玉玲*:锦州医科大学智能医学学院,辽宁 锦州
关键词: 荧光探针肉类新鲜度尸胺激发态特性电子态密度Fluorescent Probe Meat Freshness Cadaverine Excited-State Characteristics Electronic State Density
摘要: 本研究聚焦肉类新鲜度检测的荧光探针机理,以BM、BHM、BTH三种探针为研究对象。双描述符势计算显示,探针苯环上醛基和1,3-茚满二酮基团易与肉类腐败标志物尸胺(Cad)中NH2发生亲电反应,醛基和1,3-茚满二酮基团为亲电位点、NH2为亲核位点。BM、BHM因含单一反应基团,与尸胺反应生成链状BMP;BTH含双反应基团,与尸胺两端NH2反应生成环状BTHP,且对尸胺检测限更低。激发态电子转移特性方面,BHM、BTH因1,3-茚满二酮吸电子效应,反应前呈电荷转移激发,反应后为局域激发,荧光波长从760 nm缩短至450 nm左右、颜色显著变化;BM反应前后均为局域激发,荧光及颜色变化不明显。电子态密度计算表明,引入1,3-茚满二酮基团改变探针轨道贡献,综合检出限与荧光变化,BTH是检测肉类新鲜度的最优候选荧光探针。
Abstract: This study focuses on the mechanism of fluorescent probes (BM, BHM, and BTH) for detecting meat freshness. Through the calculation of dual descriptor potentials, it is revealed that the aldehyde groups and 1,3-indanedione moieties on the benzene rings of these probes are prone to undergo electrophilic reactions with the NH2 groups in cadaverine (Cad), a key marker of meat spoilage. BM and BHM, each containing a single reactive group (aldehyde or 1,3-indanedione), react with Cad to form the chain-like product BMP. In contrast, BTH, with both aldehyde and 1,3-indanedione groups, reacts with the NH2 groups at both ends of Cad to generate the cyclic product BTHP, exhibiting a lower detection limit for Cad. Regarding the electron transfer characteristics in the excited state, due to the electron-withdrawing effect of the 1,3-indanedione group, BHM and BTH show charge-transfer excitation before the reaction, with a fluorescence wavelength of around 760 nm. After reacting with Cad, they switch to local excitation, and the fluorescence wavelength shortens to approximately 450 nm, accompanied by a distinct color change from red/orange to blue. However, BM, without a strong electron-withdrawing group, shows local excitation both before and after the reaction with Cad, resulting in an insignificant change in fluorescence wavelength (from 489 nm to 473 nm) and color. The calculation of the electronic state density indicates that the introduction of the 1,3-indanedione group alters the contribution of orbitals in the probes. Considering the detection limit of Cad and the degree of fluorescence (color) change, BTH is identified as the most suitable candidate fluorescent probe for detecting meat freshness, providing a theoretical basis for the design of efficient fluorescent probes for meat freshness detection.
文章引用:姜茗, 马悦, 彭永进, 刘玉玲. 肉类新鲜度检测的荧光探针机理研究[J]. 分析化学进展, 2025, 15(3): 352-360. https://doi.org/10.12677/aac.2025.153034

1. 前言

肉类作为人类获取蛋白质等关键营养成分的重要来源,其新鲜度直接关联着食品安全与品质。在肉类的加工、储存及销售等一系列环节中,极易因脂质氧化、蛋白质氧化降解以及微生物滋生引发的腐败现象,导致肉类品质恶化。据相关数据显示,生鲜肉在物流环节因腐败变质引发的损耗率高达8%,每年造成的经济损失超过500亿元。因此,开发高效、快速、精准且便携的肉类新鲜度检测技术,对保障公众健康、减少资源浪费以及推动肉类产业健康发展都有着极为关键的意义[1]-[7]

传统肉类新鲜度检测方法涵盖感官检测、化学指标检测以及微生物检测。感官检测依靠检测人员利用视觉、嗅觉、触觉等感觉器官,对肉品的颜色、气味、弹性、黏性等感官特性展开评估。这种方法虽然操作简便、无需复杂仪器,可检测过程受检测人员主观因素影响极大,结果带有较强的主观偏见,难以全面、精准地反映肉品真实品质,目前多作为辅助手段,与其他检测方法联合使用。化学指标检测聚焦于测定与肉品新鲜度紧密相关的化学参数,像总挥发性盐基氮(TVB-N)含量、pH值、粗氨、过氧化物酶、球蛋白沉淀等。其中,TVB-N含量作为评估肉品新鲜度的核心化学指标,其含量与肉品腐败程度呈正相关。不过,传统检测TVB-N量的微量扩散法和半微量凯氏定氮法,需要在实验室进行,存在检测时间长、流程繁琐、操作复杂等弊端,难以契合市场上大量、快速检测肉品的需求[8]-[14]

鉴于传统检测方法的诸多不足,近年来新型肉类新鲜度检测技术不断涌现并取得显著进展。在光谱技术领域,光谱相机通过分析肉类样本在特定波长范围内的光谱反射特性,结合化学与生物指标变化规律,实现无损检测。不同化学成分如水分、蛋白质、脂肪对光的吸收和反射各具独特光谱特征,例如水分在近红外波段(如980 nm)有强吸收峰,脂肪在特定可见光波段(550~650 nm)反射率较高;肉类腐败时,微生物代谢产生的挥发性盐基氮(TVB-N)会改变表面化学环境,致使光谱反射率在特定波段(400~500 nm)发生规律性偏移。光谱相机利用光栅将入射光按波长分散,探测器记录不同波长下的空间反射强度,形成包含空间分布和光谱信息的三维数据立方体,再通过主成分分析(PCA)或偏最小二乘回归(PLSR)筛选与新鲜度相关的特征波段,建立预测模型,实现对肉类新鲜度的高效、精准检测[15]-[20]

在荧光探针检测领域,中国科学院合肥物质科学研究院的研究团队研发出可逆的水凝胶荧光传感器,以柔性水凝胶为基底,附着基于上转换纳米材料的检测探针,当探针与肉类腐败产生的生物胺相遇,探针上二酮基团转化为烯醇离子,使贴片颜色变化,实现食品新鲜度快速检测。中国农业科学院农产品加工研究所还成功研发基于卤素调控荧光碳点的肉品新鲜度智能检测技术,当接触腐败生物胺时,氯掺杂碳点(ClOPD-CDs)荧光颜色从橙红色变为亮黄色(色差ΔE = 44.66,肉眼可辨),灵敏度较传统探针大幅提升,并首次实现400~650 nm全可见光谱覆盖。尽管新型检测技术发展态势良好,但仍存在一些问题亟待解决。例如部分检测仪器体积大、成本高,限制了技术的广泛应用与推广;一些检测方法在实际复杂环境中的稳定性和可靠性有待进一步提升;不同检测技术在检测精度、检测速度以及适用范围等方面,还需要进一步优化和完善[21]-[25]

本研究聚焦于荧光探针检测肉类新鲜度的机理,选取BM、BHM、BTH三种荧光探针[11],深入探究其与肉类腐败主要标志物尸胺的反应机制,从反应位点、产物结构、激发态特性以及电子态密度等多个维度展开剖析,期望为设计更为高效、精准的肉类新鲜度荧光探针提供坚实的理论依据,推动肉类新鲜度检测技术迈向新高度,助力肉类产业在保障食品安全与品质的道路上持续发展。通过这些研究,能为设计高效肉类新鲜度荧光探针提供理论依据,推动食品安全检测技术发展,解决传统检测方法耗时、复杂等问题,满足快速现场检测需求。

2. 理论方法

本文采用Gaussian-16软件进行量子化学计算,结构优化和激发过程计算分别采用基于B3LYP/def2TZVPP的泛函/基组组合的密度泛函和含时密度泛函方法,该组合及方法被证明适合于有机小分子光激发过程的计算[26] [27]。计算结果分析采用了Multiwfn 3.8 (dev)和VMD1.9.3软件程序[28]-[30]

3. 理论结果

双描述符势计算结果表明在三种荧光探针分子BM、BHM和BTH结构中,苯环上相连的醛基和1,3-茚满二酮基团都较易与肉类腐败的主要标志物尸胺(Cad)中的NH2发生亲电反应。如图1~2中所示,醛基和1,3-茚满二酮基团均具有较高的双描述符势(图1中橙色所示的亲电子反应位点),而尸胺(Cad)中的NH2则具有较低的双描述符势(图2中绿色所示的亲核反应位点)。BM与BHM中均只连接一个醛基或1,3-茚满二酮基团,因此与尸胺(Cad)反应后均产生链状分子BMP (如图3所示)。BTH中苯环同时连接一个醛基和1,3-茚满二酮基团,因此可与尸胺(Cad)中两端的NH2基团同时发生反应而生成环状分子BTHP(如图4所示)。与此同时,这也使得BTH探针对尸胺(Cad)的检测限更低。

由于1,3-茚满二酮基团的吸电子效应,BHM与BTH的S0~S1激发过程中表现出明显的电荷转移激发特性(如图5(b)图5(c)所示),便得二者的荧光波长较长(760 nm),而当二者与尸胺Cad发生反应后,分子中1,3-茚满二酮基团被尸胺Cad取代,产物的S0~S1激发呈现出明显的局域激发特性(如图6所示),从而产物的荧光波长缩短至450 nm左右,与反应前呈现非常明显的颜色变化(由红、橙色变为蓝色)。而BM中反应基团为醛基,其不具有较强的吸电子效应,使得BM与尸胺Cad反应前后都呈明显的局域激发特性(如图5(a)图6(a)所示),其荧光发射波长(从489 nm变化至473 nm)与颜色(蓝色)变化不明显。综合对尸胺Cad目标物的检出限及荧光波长(颜色)变化程度考虑,BTH明显为三者之中最合适的用于检测肉类新鲜度的候选荧光探针。

Figure 1. Dual descriptor potentials of fluorescent probes (a) BM, (b) BHM, (c) BTH (Green and orange indicate nucleophilic and electrophilic reaction sites, respectively)

1. 荧光探针的双描述符势(a) BM;(b) BHM;(c) BTH (绿色和橙色分别表示亲核和亲电子反应位点)

Figure 2. Dual descriptor potential of cadaverine (Cad) (Green indicates nucleophilic nucleophilic reaction sites)

2. 尸胺Cad的双描述符势(绿色表示亲核反应位点)

Figure 3. Structures of fluorescent probes BM and BHM, and their reaction product BMP with cadaverine (In the figure, the red circle in BM indicates the aldehyde group, and the red circle in BHM indicates the 1,3-indanedione moiety)

3. 荧光探针BM、BHM结构及其与尸胺Cad反应后的产物BMP (图中BM中红色圆圈为醛基,BHM中红色圆圈为1,3-茚满二酮基团)

Figure 4. Structure of fluorescent probe BTH and its reaction product BTHP with cadaverine (In the figure, the red circles indicate the aldehyde group and 1,3-indanedione moiety)

4. 荧光探针BTH结构及其与尸胺Cad反应后的产物BTHP(图中红色圆圈为醛基和1,3-茚满二酮基团)

Figure 5. Electron transfer characteristics of fluorescent probes during the excitation process from the ground state to the first excited state (a) BM, (b) BHM, (c) BTH (Orange indicates holes: electrons are excited from this position; Green indicates electrons: electrons are excited to this position)

5. 荧光探针由基态到第一激发态激发过程中的电子转移特性(a) BM;(b) BHM;(c) BTH (橙色表示空穴:电子由此位置被激发;绿色表示电子:电子被激发至此处)

Figure 6. Electron transfer characteristics of products BMP and BTHP during the excitation process from the ground state to the first excited state (a) BMP, (b) BTHP (Orange indicates holes: electrons are excited from this position; Green indicates electrons: electrons are excited to this position)

6. 产物BMP和BTHP由基态到第一激发态激发过程中的电子转移特性(a) BMP;(b) BTHP (橙色表示空穴:电子由此位置被激发;绿色表示电子:电子被激发至此处)

对探针的电子态密度计算(如图7所示)表明,在只有醛基的BM探针中,其最高占据轨道(HOMO)和最低非占据轨道(LUMO)间的带宽是2.50 eV。图中Total指该分子总DOS曲线(TDOS),I、II、III (图7(b)图7(c)中)指相应分子基团的局部DOS曲线(PDOS)。从BM探针的PDOS图中可以看出其分子结构中苯并噻唑部分(图7(a)中红色圆圈部分)和苯酚部分(图7(a)中蓝色圆圈部分)对最高占据轨道(HOMO)都有一定的贡献,最低非占据轨道(LUMO)则主要来自苯酚的贡献。而当探针分子BHM和BTH中引入吸电子能力较强的1,3-茚满二酮基团后,苯并噻唑部分(图7(b)图7(c)中红色圆圈部分)不再对HOMO与LUMO有贡献,而HOMO与LUMO主要集中于苯酚(图7(b)图7(c)中蓝色圆圈部分)和1,3-茚满二酮基团部分(图7(b)图7(c)中紫色圆圈部分),同时二者最高占据轨道(HOMO)和最低非占据轨道(LUMO)间的带宽相对探针分子BM也分别降低至2.03 eV和2.23 eV。

Figure 7. Electronic state density of fluorescent probes (a) BM; (b) BHM; (c) BTH

7. 荧光探针的电子态密度(a) BM;(b) BHM;(c) BTH

4. 结论

本研究深入探究肉类新鲜度检测荧光探针BM、BHM、BTH与尸胺(Cad)的作用机理,得出以下关键结论:一、反应位点与产物结构双描述符势计算清晰表明,三种探针苯环上醛基和1,3-茚满二酮基团为亲电反应位点,尸胺中NH2为亲核反应位点,驱动亲电–亲核反应发生。BM、BHM因仅含单一反应基团,与尸胺反应生成链状产物BMP;BTH因含醛基和1,3-茚满二酮双反应基团,可与尸胺两端NH2作用,生成环状产物BTHP。这种结构差异使BTH对尸胺检测限更低,得益于双位点协同作用增强分子识别与结合能力,为高灵敏度检测奠定基础,在肉类新鲜度精准检测中具有一定的优势。二、激发态特性与荧光响应1,3-茚满二酮基团的吸电子效应显著改变BHM、BTH激发态电子转移特性。反应前,该基团使分子呈电荷转移激发特性,荧光波长达760 nm;与尸胺反应后,1,3-茚满二酮基团被取代,转为局域激发,荧光波长缩短至450 nm左右,颜色由红、橙色变为蓝色,变化显著。而BM中醛基吸电子效应弱,反应前后均为局域激发,荧光发射波长从489 nm小幅变至473 nm,颜色(蓝色)变化不明显。这说明含强吸电子基团的探针可通过激发态特性转变,实现荧光波长与颜色的明显变化,提升检测可视化程度,BHM、BTH的荧光响应模式更利于肉眼识别与仪器检测,BM则在这方面表现欠佳。三、电子态密度与探针性能电子态密度计算揭示探针电子结构变化规律。BM中苯并噻唑和苯酚部分对最高占据轨道(HOMO)有贡献,最低非占据轨道(LUMO)主要源于苯酚;引入1,3-茚满二酮基团的BHM、BTH,苯并噻唑部分不再参与HOMO与LUMO贡献,轨道分布集中于苯酚和1,3-茚满二酮基团。这种电子结构重塑影响探针反应活性与光物理性质,结合检出限和荧光变化综合考量,BTH因能生成环状产物、检测限低、荧光颜色变化显著。

本研究通过理论计算揭示了BM、BHM、BTH与尸胺的作用机理及性能差异,但仍存在以下局限性:

其一,理论计算的理想化假设与实际环境偏差。本研究基于孤立分子体系的理论计算,未考虑实际肉类基质中的复杂环境影响,如肉类腐败过程中可能共存的其他生物胺(如腐胺、组胺)、蛋白质、脂肪等基质成分对探针–尸胺反应的干扰,也未纳入温度、pH值、离子强度等实际检测条件的影响。而实际检测中,基质干扰和环境因素可能显著改变探针的反应活性与荧光响应特性,理论预测的检出限和选择性需实验验证。

其二,探针关键性能的未覆盖性。研究聚焦于反应机理与荧光响应规律,但未探讨探针的稳定性(如储存过程中的光降解、氧化稳定性)、响应时间(与尸胺反应达到荧光稳定的时长)及可逆性(是否可重复使用)等实用性能。这些性能对探针的实际应用至关重要——例如,若探针在常温下储存易降解,或反应达到平衡需数小时,则难以满足肉类新鲜度快速检测的需求。

其三,实验验证的缺失。本研究结论均基于理论推导,尚未通过实验室合成探针、体外模拟反应及实际肉类样品检测等实验环节验证。理论计算中“BTH检测限更低”“荧光颜色变化显著”等结论需实验数据支撑,而实验过程中可能出现探针合成难度高、实际反应产率低等未预见问题,可能影响其实际应用价值。

目前文献中用于尸胺检测的荧光探针主要分为三类:单一反应位点探针、复合识别位点探针及纳米材料修饰探针。将本研究的探针体系与现有体系对比,可更清晰定位其价值:

1. 与单一反应位点探针的比较

文献中多数尸胺荧光探针为单一反应位点设计(如仅含醛基或酮基),通过亲核加成反应实现识别(如基于席夫碱反应的苯甲醛衍生物探针)。这类探针的优势是结构简单、合成难度低,但普遍存在结合能力弱、检出限较高(多在μM级别)的问题,且荧光响应多为单一波长变化(如仅强度增强/减弱),可视化效果有限。

本研究中的BTH为双反应位点设计,通过醛基与1,3-茚满二酮基团协同结合尸胺,生成环状产物,理论检出限显著低于单一位点的BM (及文献中同类单一位点探针);同时,其荧光颜色从橙色变为蓝色,变化幅度远超文献中单一位点探针的“强度变化为主”模式。这一优势使BTH在检测灵敏度和可视化程度上更具潜力,但需注意:文献中部分单一位点探针通过引入强荧光团(如罗丹明、香豆素)提升信号强度,BTH的实际荧光量子产率仍需与这类探针对比验证。

2. 与复合识别位点探针的比较

文献中少数双位点探针(如含醛基与肼基的双功能探针)通过多点结合提升识别能力,但部分探针因位点间距设计不合理,可能形成分子内氢键而非与靶标结合,导致选择性下降。本研究的BTH通过理论计算优化了双位点(醛基与1,3-茚满二酮)的空间排布,可精准与尸胺两端NH2结合生成环状产物,避免了无效结合;同时,1,3-茚满二酮的强吸电子效应使荧光响应的波长位移(760 nm→450 nm)显著大于文献中双位点探针的“红移/蓝移 ≤ 200 nm”,更利于肉眼识别。

但需注意,文献中部分双位点探针通过引入水溶性基团(如羧基、磺酸基)提升在肉类基质中的分散性,而本研究未涉及BTH的水溶性设计——实际应用中,探针的水溶性可能影响其与尸胺的接触效率,这是BTH需优化的方向。

3. 与纳米材料修饰探针的比较

纳米材料(如量子点、金属有机框架)修饰的探针是近年研究热点,其优势是通过纳米材料的高比表面积提升结合能力,且荧光稳定性强。但这类探针存在合成步骤复杂、成本高、可能引入纳米颗粒毒性等问题,且多数依赖“纳米材料–探针”的复合结构,反应机理较难通过理论计算解析。

本研究的BTH为小分子探针,结构明确、合成路线可预测(基于醛基与1,3-茚满二酮的常规偶联反应),且作用机理通过理论计算清晰阐明,便于后续结构优化(如通过修饰基团提升水溶性);同时,小分子探针的低成本、低毒性潜力优于纳米材料探针。但文献中纳米探针的检出限可低至nM级别,BTH的理论检出限需进一步优化以接近这一水平。

本研究通过理论计算首次揭示了“双反应位点 + 强吸电子基团”设计对尸胺检测探针性能的提升机制,明确BTH的优势,其价值体现在:

理论创新:从反应位点协同作用、激发态特性转变、电子态密度重塑三个维度,建立了探针结构–性能的关联规律,为后续探针设计提供了“双位点协同 + 强吸电子基团引入”的明确方向,弥补了现有研究中“结构优化依赖经验试错”的不足。

应用潜力:相比文献中单一位点探针,BTH在灵敏度和可视化上更优;相比纳米探针,其结构简单性和机理明确性更利于实用化;相比部分双位点探针,其环状产物设计和显著荧光变化更具检测优势。

同时,研究需正视局限性:未来需通过实验验证理论结论,优化BTH的水溶性与稳定性,并在实际肉类基质中评估其抗干扰能力。总体而言,本研究并非替代现有探针体系,而是为肉类新鲜度检测提供了“高灵敏度 + 可视化”的新型探针设计思路,其理论成果可与实验研究结合,推动食品安全检测技术从“经验设计”向“理性设计”升级。

综上,理论计算表明,BTH因其独特的双反应位点和显著的激发态转变,展现出作为肉类新鲜度检测探针的巨大潜力,是未来实验研究的优先候选对象。本研究为后续高效荧光探针设计与肉类新鲜度检测技术优化提供理论支撑,有望推动食品安全快速检测领域发展,助力构建更高效、精准的肉类品质管控体系。

基金项目

2024年辽宁省自然科学基金项目2024-MSLH-147。

NOTES

*通讯作者。

参考文献

[1] Zhang, J., Tian, H., Gong, M., Zhang, L., Zhao, K., Yu, Y., et al. (2025) Rapid Determination of Lamb Meat Freshness Using the Hyperspectral Imaging Combined with Symmetric Stacking Ensemble Algorithm. Meat Science, 228, Article 109892.
https://doi.org/10.1016/j.meatsci.2025.109892
[2] Zhang, J., Tian, H., Gong, M., Zhang, L., Zhao, K. and Yu, Y. (2025) Machine Learning-Optimized Techniques for Enhancing Freshness Assessment in Lamb Meat Using Hyperspectral Imaging. Journal of Food Composition and Analysis, 144, Article 107752.
https://doi.org/10.1016/j.jfca.2025.107752
[3] Yang, L., Xie, J. and Ding, Z. (2025) Recent Studies of Metal-Organic Frameworks as Meat Freshness Sensors. Microchemical Journal, 212, Article 113184.
https://doi.org/10.1016/j.microc.2025.113184
[4] Shen, X., Xing, L., Pan, L., Miao, Y. and Zhang, W. (2025) Prediction of Chicken Breast Meat Freshness Based on Hyperspectral Imaging Technique and High-Throughput Sequencing. Poultry Science, 104, Article 104999.
https://doi.org/10.1016/j.psj.2025.104999
[5] Cheng, J., Shen, Y., Gu, Y., Xiang, T., Shen, H., Wang, Y., et al. (2025) Metal-Polyphenol Multistage Competitive Coordination System for Colorimetric Monitoring Meat Freshness. Advanced Materials, 37, Article 2503246.
https://doi.org/10.1002/adma.202503246
[6] Zhou, Z., Li, C., He, J. and Hou, X. (2024) A Dual-Color Ratiometric Fluorescence Sensor of Biogenic Amines with Dye Encapsulated Covalent Organic Framework for Meat Freshness. LWT, 209, Article 116788.
https://doi.org/10.1016/j.lwt.2024.116788
[7] Zhao, J., Ni, Y., Tan, L., Zhang, W., Zhou, H. and Xu, B. (2023) Recent Advances in Meat Freshness “Magnifier”: Fluorescence Sensing. Critical Reviews in Food Science and Nutrition, 64, 11626-11642.
https://doi.org/10.1080/10408398.2023.2241553
[8] Zhang, J., Yang, Y., Zeng, L. and Wang, J. (2024) A Ratiometric Fluorescence Platform for On-Site Screening Meat Freshness. Food Chemistry, 436, Article 137769.
https://doi.org/10.1016/j.foodchem.2023.137769
[9] Yun, X., Yuan, S., Shi, S., Wang, Y., Liu, L., Song, L., et al. (2024) Amine-Responsive PVA-Based Fluorescent Indicator Films Incorporating β-Glucan/FITC for Visual Detection of Chilled Meat Freshness. Food Bioscience, 62, Article 105584.
https://doi.org/10.1016/j.fbio.2024.105584
[10] Xiong, G., Zhou, X., Zhang, C. and Xu, X. (2024) A Comprehensive Review of Intelligent Packaging Materials Based on Biopolymers: Role of Anthocyanins, Type and Properties of Materials, and Their Application in Monitoring Meat Freshness. International Journal of Biological Macromolecules, 282, Article 137462.
https://doi.org/10.1016/j.ijbiomac.2024.137462
[11] Wang, J., Xia, L., Liu, H., Zhao, C., Ming, S. and Wu, J. (2024) Colorimetric Microneedle Sensor Using Deep Learning Algorithm for Meat Freshness Monitoring. Chemical Engineering Journal, 481, Article 148474.
https://doi.org/10.1016/j.cej.2023.148474
[12] Song, G., Li, C., Fauconnier, M., Zhang, D., Gu, M., Chen, L., et al. (2024) Research Progress of Chilled Meat Freshness Detection Based on Nanozyme Sensing Systems. Food Chemistry: X, 22, Article 101364.
https://doi.org/10.1016/j.fochx.2024.101364
[13] Lin, Y., Ma, J., Sun, D., Cheng, J. and Zhou, C. (2024) Fast Real-Time Monitoring of Meat Freshness Based on Fluorescent Sensing Array and Deep Learning: From Development to Deployment. Food Chemistry, 448, Article 139078.
https://doi.org/10.1016/j.foodchem.2024.139078
[14] Li, M., Xu, J., Peng, C. and Wang, Z. (2024) Deep Learning-Assisted Flavonoid-Based Fluorescent Sensor Array for the Nondestructive Detection of Meat Freshness. Food Chemistry, 447, Article 138931.
https://doi.org/10.1016/j.foodchem.2024.138931
[15] Huang, K., Wang, L., Deng, Y., Zheng, H., Wu, S., Li, Z., et al. (2024) Development of Amine-Sensitive Intelligent Film with Mil-100(Fe) as Function Filler Based on Anthocyanins/Pectin for Monitoring Chilled Meat Freshness. International Journal of Biological Macromolecules, 270, Article 132463.
https://doi.org/10.1016/j.ijbiomac.2024.132463
[16] Fan, L., Chen, Y., Zeng, Y., Yu, Z., Dong, Y., Li, D., et al. (2024) Application of Visual Intelligent Labels in the Assessment of Meat Freshness. Food Chemistry, 460, Article 140562.
https://doi.org/10.1016/j.foodchem.2024.140562
[17] Zhang, D., Zhu, L., Jiang, Q., Ge, X., Fang, Y., Peng, J., et al. (2023) Real-Time and Rapid Prediction of TVB-N of Livestock and Poultry Meat at Three Depths for Freshness Evaluation Using a Portable Fluorescent Film Sensor. Food Chemistry, 400, Article 134041.
https://doi.org/10.1016/j.foodchem.2022.134041
[18] Ye, H., Ke, Y., Li, W., Zhu, B., Jiang, L., Hu, X., et al. (2023) Molecular Engineering of Fluorescence Probe for Real-Time Non-Destructive Visual Screening of Meat Freshness. Analytica Chimica Acta, 1254, Article 341125.
https://doi.org/10.1016/j.aca.2023.341125
[19] Xiao, X., Shen, Y., Cao, J. and Sun, B. (2023) Engineering a “Dual-Key-and-Lock” Ratiometric Fluorescent Nanoprobe for Real-Time Reporting the Freshness and Quality of Meat. Food Chemistry, 398, Article 133879.
https://doi.org/10.1016/j.foodchem.2022.133879
[20] Wu, G., Dilinaer, A., Nie, P., Liu, X., Zheng, Z., Luo, P., et al. (2023) Dual-Modal Bimetallic Nanozyme-Based Sensing Platform Combining Colorimetric and Photothermal Signal Cascade Catalytic Enhancement for Detection of Hypoxanthine to Judge Meat Freshness. Journal of Agricultural and Food Chemistry, 71, 16381-16390.
https://doi.org/10.1021/acs.jafc.3c05899
[21] Li, L., Li, C., Zhang, D., Chen, L., Li, S., Wang, W., et al. (2023) A Multiple Parameters Fusion Model Based on Hydrogen Sulfide for Accurately Evaluating the Freshness of Lamb Meat. International Journal of Food Science & Technology, 58, 2921-2933.
https://doi.org/10.1111/ijfs.16399
[22] Jiang, L., Zhu, B., Shao, Y., Ye, H., Hu, X. and Min, D. (2023) High-Performance Fluorescence Platform for Real-Time Non-Destructive and Visual Screening of Meat Freshness. Dyes and Pigments, 220, Article 111771.
https://doi.org/10.1016/j.dyepig.2023.111771
[23] Duan, X., Li, Z., Wang, L., Lin, H. and Wang, K. (2023) Engineered Nanomaterials-Based Sensing Systems for Assessing the Freshness of Meat and Aquatic Products: A State-of-the-Art Review. Comprehensive Reviews in Food Science and Food Safety, 22, 430-450.
https://doi.org/10.1111/1541-4337.13074
[24] Ye, P., Li, X., Xie, Y. and Wu, P. (2022) Facile Monitoring of Meat Freshness with a Self-Constructed Photosensitization Colorimetric Instrument. Food Chemistry, 385, Article 132676.
https://doi.org/10.1016/j.foodchem.2022.132676
[25] Wei, Z., Dai, C., Bassey, A.P., Tang, C., Han, Y., Wang, C., et al. (2022) Identification of Potential Peptide Marker(s) for Evaluating Pork Meat Freshness via Mass Spectrometry-Based Peptidomics during Storage under Different Temperatures. Foods, 11, Article 1144.
https://doi.org/10.3390/foods11081144
[26] Laun, J. and Bredow, T. (2022) BSSE-Corrected Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality of the Fifth Period for Solid-State Calculations. Journal of Computational Chemistry, 43, 839-846.
https://doi.org/10.1002/jcc.26839
[27] https://www.gaussian.com/
[28] Lu, T. (2024) A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. The Journal of Chemical Physics, 161, Article 082503.
https://doi.org/10.1063/5.0216272
[29] Lu, T. and Chen, F.W. (2012) Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry, 33, 580-592.
https://doi.org/10.1002/jcc.22885
[30] Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38.
https://doi.org/10.1016/0263-7855(96)00018-5