[1]
|
(2022) Federal Funding Promotes Carbon Storage by Buildings. https://www.asce.org/publications-and-news/civil-engineering-source/civil-engineering-magazine/article/2022/08/federal-funding-promotes-carbon-storage-by-buildings
|
[2]
|
(2022) ASTM International Receives Award to Develop Construction Sector Technology Roadmap. https://newsroom.astm.org/newsroom-articles/astm-international-receives-award-develop-construction-sector-technology-roadmap
|
[3]
|
Gorsse, S., Hutchinson, C., Gouné, M. and Banerjee, R. (2017) Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys. Science and Technology of Advanced Materials, 18, 584-610. https://doi.org/10.1080/14686996.2017.1361305
|
[4]
|
Milewski, J.O. (2017) Additive Manufacturing of Metals. Springer.
|
[5]
|
Megahed, M., Mindt, H., N’Dri, N., Duan, H. and Desmaison, O. (2016) Metal Additive-Manufacturing Process and Residual Stress Modeling. Integrating Materials and Manufacturing Innovation, 5, 61-93. https://doi.org/10.1186/s40192-016-0047-2
|
[6]
|
欧洲多国探索3D打印建筑[EB/OL]. http://world.people.com.cn/n1/2022/0415/c1002-32399565.html, 2022-04-15.
|
[7]
|
李东方, 陈继民, 袁艳萍, 等. 光固化快速成型技术的进展及应用[J]. 北京工业大学学报, 2015, 41(12): 1769-1774.
|
[8]
|
余东满, 李晓静, 王笛. 熔融沉积快速成型工艺过程分析及应用[J]. 机械设计与制造, 2011(8): 65-67.
|
[9]
|
冯淑莹, 张慧梅. 选择性激光烧结的研究进展[J]. 江西化工, 2020(4): 56-57.
|
[10]
|
Park, J., Tari, M.J. and Hahn, H.T. (2000) Characterization of the Laminated Object Manufacturing (LOM) Process. Rapid Prototyping Journal, 6, 36-50. https://doi.org/10.1108/13552540010309868
|
[11]
|
Pegna, J. (1997) Exploratory Investigation of Solid Freeform Construction. Automation in Construction, 5, 427-437. https://doi.org/10.1016/s0926-5805(96)00166-5
|
[12]
|
Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G.F. and Thorpe, T. (2012) Mix Design and Fresh Properties for High-Performance Printing Concrete. Materials and Structures, 45, 1221-1232. https://doi.org/10.1617/s11527-012-9828-z
|
[13]
|
Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G.F. and Thorpe, T. (2012) Developments in Construction-Scale Additive Manufacturing Processes. Automation in Construction, 21, 262-268. https://doi.org/10.1016/j.autcon.2011.06.010
|
[14]
|
Ma, G., Wang, L. and Ju, Y. (2017) State-Of-The-Art of 3D Printing Technology of Cementitious Material—An Emerging Technique for Construction. Science China Technological Sciences, 61, 475-495. https://doi.org/10.1007/s11431-016-9077-7
|
[15]
|
Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S., Gibb, A., et al. (2011) Development of a Viable Concrete Printing Process. Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC), Seoul, 29 June-2 July 2011, 665-670. https://doi.org/10.22260/isarc2011/0124
|
[16]
|
Panda, B., Paul, S.C., Mohamed, N.A.N., Tay, Y.W.D. and Tan, M.J. (2018) Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar. Measurement, 113, 108-116. https://doi.org/10.1016/j.measurement.2017.08.051
|
[17]
|
Paul, S.C., Tay, Y.W.D., Panda, B. and Tan, M.J. (2018) Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction. Archives of Civil and Mechanical Engineering, 18, 311-319. https://doi.org/10.1016/j.acme.2017.02.008
|
[18]
|
(2014) Chinese Company 3D Prints 10 Buildings in a Day Using Construction Waste. https://www.dezeen.com/2014/04/24/chinese-company-3d-prints-buildings-construction-waste/
|
[19]
|
全球首发3D打印中式古典庭院[EB/OL]. http://winsun3d.com/News/news_inner/id/464, 2023-01-19.
|
[20]
|
蔺喜强, 霍亮, 苏铠, 等. 混凝土3D打印两层办公室的施工关键技术[J]. 混凝土, 2022(6): 161-170, 174.
|
[21]
|
张超, 邓智聪, 马蕾, 等. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795.
|
[22]
|
Boissonneault, T. (2018) COBOD to Develop Next-Gen Construction 3D Printer for N3XTCON Project. https://www.3dprintingmedia.network/cobod-construction-3d-printer-n3xtcon/
|
[23]
|
Yasemin, E. (2022) Single Family, 3D Printed House by Mense Korte Architekten & PERI 3D Construction. https://parametric-architecture.com/single-family-3d-printed-house-by-mense-korte-architekten-peri-3d-construction/
|
[24]
|
(2022) IGBChats#13: 3D Construction Printing Increasing Affordability and Reducing Carbon Embodiment in the Construction Industry. https://www.igbc.ie/3d-construction-printing/
|
[25]
|
Williams, A. (2019) World’s Largest 3D-Printed Building Completed in Dubai. https://newatlas.com/architecture/apis-cor-3d-printed-building-dubai/
|
[26]
|
(2021) Printing Our Way Out of The housing Crisis: ‘It Is Desperately Needed’. https://www.tue.nl/en/news-and-events/news-overview/30-04-2021-printing-our-way-out-of-the-housing-crisis-it-is-desperately-needed/
|
[27]
|
Shakeri, S. (2022) Towards a 3D-Printed Architecture. https://parametric-architecture.com/towards-a-3d-printed-architecture/
|
[28]
|
Dreith, B. (2022) ICON and Lake Flato Build 3D-Printed House Zero in Austin. https://www.dezeen.com/2022/03/04/icon-lake-flato-3d-printed-house-zero-austin/
|
[29]
|
(2022) Serendix Sphere. https://cloudsao.com/SERENDIX-SPHERE
|
[30]
|
Salet, T.A.M., Ahmed, Z.Y., Bos, F.P. and Laagland, H.L.M. (2018) Design of a 3D Printed Concrete Bridge by Testing. Virtual and Physical Prototyping, 13, 222-236. https://doi.org/10.1080/17452759.2018.1476064
|
[31]
|
清华徐卫国教授团队建成目前世界最大混凝土3D打印步行桥[EB/OL]. https://www.tsinghua.edu.cn/info/1173/17683.htm, 2019-01-14.
|
[32]
|
Madeleine, P. (2021) Striatus, The First 3D Printed Bridge Made From Unreinforced Concrete. https://www.3dnatives.com/en/striatus-3d-printed-bridge-unreinforced-concrete-020820214/
|
[33]
|
Khalil, N., Aouad, G., El Cheikh, K. and Rémond, S. (2017) Use of Calcium Sulfoaluminate Cements for Setting Control of 3D-Printing Mortars. Construction and Building Materials, 157, 382-391. https://doi.org/10.1016/j.conbuildmat.2017.09.109
|
[34]
|
Perrot, A., Rangeard, D. and Pierre, A. (2015) Structural Built-Up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques. Materials and Structures, 49, 1213-1220. https://doi.org/10.1617/s11527-015-0571-0
|
[35]
|
Sanchez, F. and Sobolev, K. (2010) Nanotechnology in Concrete—A Review. Construction and Building Materials, 24, 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
|
[36]
|
Güneyisi, E., Gesoğlu, M., Algın, Z. and Mermerdaş, K. (2014) Optimization of Concrete Mixture with Hybrid Blends of Metakaolin and Fly Ash Using Response Surface Method. Composites Part B: Engineering, 60, 707-715. https://doi.org/10.1016/j.compositesb.2014.01.017
|
[37]
|
Yang, Y., Yang, E. and Li, V.C. (2011) Autogenous Healing of Engineered Cementitious Composites at Early Age. Cement and Concrete Research, 41, 176-183. https://doi.org/10.1016/j.cemconres.2010.11.002
|
[38]
|
Qiu, J., Tan, H.S. and Yang, E. (2016) Coupled Effects of Crack Width, Slag Content, and Conditioning Alkalinity on Autogenous Healing of Engineered Cementitious Composites. Cement and Concrete Composites, 73, 203-212. https://doi.org/10.1016/j.cemconcomp.2016.07.013
|
[39]
|
Kim, J., Kim, J., Ha, G.J. and Kim, Y.Y. (2007) Tensile and Fiber Dispersion Performance of ECC (Engineered Cementitious Composites) Produced with Ground Granulated Blast Furnace Slag. Cement and Concrete Research, 37, 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006
|
[40]
|
Wongkornchaowalit, N. and Lertchirakarn, V. (2011) Setting Time and Flowability of Accelerated Portland Cement Mixed with Polycarboxylate Superplasticizer. Journal of Endodontics, 37, 387-389. https://doi.org/10.1016/j.joen.2010.11.039
|
[41]
|
He, Y., Zhang, X. and Hooton, R.D. (2017) Effects of Organosilane-Modified Polycarboxylate Superplasticizer on the Fluidity and Hydration Properties of Cement Paste. Construction and Building Materials, 132, 112-123. https://doi.org/10.1016/j.conbuildmat.2016.11.122
|
[42]
|
Singh, M. and Siddique, R. (2015) Properties of Concrete Containing High Volumes of Coal Bottom Ash as Fine Aggregate. Journal of Cleaner Production, 91, 269-278. https://doi.org/10.1016/j.jclepro.2014.12.026
|
[43]
|
Singh, M. and Siddique, R. (2014) Strength Properties and Micro-Structural Properties of Concrete Containing Coal Bottom Ash as Partial Replacement of Fine Aggregate. Construction and Building Materials, 50, 246-256. https://doi.org/10.1016/j.conbuildmat.2013.09.026
|
[44]
|
Şahmaran, M. and Li, V.C. (2009) Durability Properties of Micro-Cracked ECC Containing High Volumes Fly Ash. Cement and Concrete Research, 39, 1033-1043. https://doi.org/10.1016/j.cemconres.2009.07.009
|
[45]
|
Yu, J., Lu, C., Leung, C.K.Y. and Li, G. (2017) Mechanical Properties of Green Structural Concrete with Ultrahigh-Volume Fly Ash. Construction and Building Materials, 147, 510-518. https://doi.org/10.1016/j.conbuildmat.2017.04.188
|
[46]
|
Kazemian, A., Yuan, X., Cochran, E. and Khoshnevis, B. (2017) Cementitious Materials for Construction-Scale 3D Printing: Laboratory Testing of Fresh Printing Mixture. Construction and Building Materials, 145, 639-647. https://doi.org/10.1016/j.conbuildmat.2017.04.015
|
[47]
|
Ma, G., Li, Z. and Wang, L. (2018) Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing. Construction and Building Materials, 162, 613-627. https://doi.org/10.1016/j.conbuildmat.2017.12.051
|
[48]
|
Li, V.C. (2019) Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure. Springer.
|
[49]
|
Li, V.C. and Wu, H. (1992) Conditions for Pseudo Strain-Hardening in Fiber Reinforced Brittle Matrix Composites. Applied Mechanics Reviews, 45, 390-398. https://doi.org/10.1115/1.3119767
|
[50]
|
Li, V.C. (2003) On Engineered Cementitious Composites (ECC): A Review of the Material and Its Applications. Journal of Advanced Concrete Technology, 1, 215-230. https://doi.org/10.3151/jact.1.215
|
[51]
|
Fischer, G. and Li, V.C. (2022) Influence of Matrix Ductility on Tension-Stiffening Behavior of Steel Reinforced Engineering Cementitious Composites (ECC). ACI Structural Journal, 99, 104-114.
|
[52]
|
Wu, H. and Li, V.C. (1995) Stochastic Process of Multiple Cracking in Discontinuous Random Fiber Reinforced Brittle Matrix Composites. International Journal of Damage Mechanics, 4, 83-102. https://doi.org/10.1177/105678959500400105
|
[53]
|
Lee, B.Y., Kim, J. and Kim, Y.Y. (2010) Prediction of ECC Tensile Stress-Strain Curves Based on Modified Fiber Bridging Relations Considering Fiber Distribution Characteristics. Computers & concrete, 7, 455-468. https://doi.org/10.12989/cac.2010.7.5.455
|
[54]
|
张丽辉, 郭丽萍, 孙伟, 等. 高延性水泥基复合材料的流变特性和纤维分散性[J]. 东南大学学报(自然科学版), 2014, 44(5): 1037-1040.
|
[55]
|
郭丽萍, 陈波, 孙伟, 等. 骨料类型及纤维对高延性水泥基复合材料性能的影响[J]. 东南大学学报(自然科学版), 2017, 47(6): 1221-1226.
|
[56]
|
郭丽萍, 陈波, 孙伟, 等. 膨胀剂对高延性水泥基复合材料力学及变形性能的影响[J]. 硅酸盐学报, 2016, 44(11): 1609-1613.
|
[57]
|
柴丽娟, 郭丽萍, 陈波, 等. 冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能[J]. 东南大学学报(自然科学版), 2019, 49(1): 76-81.
|
[58]
|
郭丽萍, 徐燕慧, 陈波, 等. 氯盐溶液干湿循环条件下高延性水泥基复合材料微裂缝的自愈合特性与微观机理[J]. 硅酸盐学报, 2019, 47(7): 874-883.
|
[59]
|
张丽辉, 郭丽萍, 孙伟, 等. 生态型高延性水泥基复合材料的高温损伤[J]. 硅酸盐学报, 2014, 42(8): 1018-1024.
|
[60]
|
Ding, Y., Yu, J., Yu, K. and Xu, S. (2018) Basic Mechanical Properties of Ultra-High Ductility Cementitious Composites: From 40 MPa to 120 MPa. Composite Structures, 185, 634-645. https://doi.org/10.1016/j.compstruct.2017.11.034
|
[61]
|
Yu, K., Wang, Y., Yu, J. and Xu, S. (2017) A Strain-Hardening Cementitious Composites with the Tensile Capacity up to 8%. Construction and Building Materials, 137, 410-419. https://doi.org/10.1016/j.conbuildmat.2017.01.060
|
[62]
|
蔺喜强,张涛,霍亮, 等. 水泥基建筑3D打印材料的制备及应用研究[J]. 混凝土, 2016(6): 141-144.
|
[63]
|
雷斌, 马勇, 熊悦辰, 等. 3D打印混凝土可塑造性能的评价方法研究[J]. 硅酸盐通报, 2017, 36(10): 3278-3284.
|
[64]
|
张大旺,王栋民. 3D打印地质聚合物材料的早期工作性研究[J]. 混凝土世界, 2018(9): 64-68.
|
[65]
|
Yu, J. and Leung, C.K.Y. (2018) Impact of 3D Printing Direction on Mechanical Performance of Strain-Hardening Cementitious Composite (SHCC). In: Wangler, T. and Flatt, R., Eds., First RILEM International Conference on Concrete and Digital Fabrication—Digital Concrete 2018, Springer, 255-265. https://doi.org/10.1007/978-3-319-99519-9_24
|
[66]
|
Bao, Y., Xu, M., Soltan, D., Xia, T., Shih, A., Clack, H.L., et al. (2018) Three-Dimensional Printing Multifunctional Engineered Cementitious Composites (ECC) for Structural Elements. In: Wangler, T. and Flatt, R., Eds., First RILEM International Conference on Concrete and Digital Fabrication—Digital Concrete 2018, Springer, 115-128. https://doi.org/10.1007/978-3-319-99519-9_11
|
[67]
|
Zhang, Y. and Aslani, F. (2021) Development of Fibre Reinforced Engineered Cementitious Composite Using Polyvinyl Alcohol Fibre and Activated Carbon Powder for 3D Concrete Printing. Construction and Building Materials, 303, Article ID: 124453. https://doi.org/10.1016/j.conbuildmat.2021.124453
|
[68]
|
Sun, J., Aslani, F., Lu, J., Wang, L., Huang, Y. and Ma, G. (2021) Fibre-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing. Ceramics International, 47, 27107-27121. https://doi.org/10.1016/j.ceramint.2021.06.124
|
[69]
|
Aslani, F., Dale, R., Hamidi, F. and Valizadeh, A. (2022) Mechanical and Shrinkage Performance of 3D-Printed Rubberised Engineered Cementitious Composites. Construction and Building Materials, 339, Article ID: 127665. https://doi.org/10.1016/j.conbuildmat.2022.127665
|
[70]
|
Li, V.C., Wu, C., Wang, S., et al. (2002) Interface Tailoring for Strain-Hardening Polyvinyl Alcohol-Engineered Cementitious Composite (PVA-ECC). Materials Journal, 99, 463-472.
|
[71]
|
Dai, J., Huang, B. and Shah, S.P. (2021) Recent Advances in Strain-Hardening UHPC with Synthetic Fibers. Journal of Composites Science, 5, Article 283. https://doi.org/10.3390/jcs5100283
|
[72]
|
Yu, K., Li, L., Yu, J., Wang, Y., Ye, J. and Xu, Q. (2018) Direct Tensile Properties of Engineered Cementitious Composites: A Review. Construction and Building Materials, 165, 346-362. https://doi.org/10.1016/j.conbuildmat.2017.12.124
|
[73]
|
Wolfs, R.J.M., Bos, F.P. and Salet, T.A.M. (2019) Hardened Properties of 3D Printed Concrete: The Influence of Process Parameters on Interlayer Adhesion. Cement and Concrete Research, 119, 132-140. https://doi.org/10.1016/j.cemconres.2019.02.017
|