| [1] | Gunnarsson, L., Tokics, L., Gustavsson, H. and Hedenstierna, G. (1991) Influence of Age on Atelectasis Formation and Gas Exchange Impairment during General Anaesthesia. British Journal of Anaesthesia, 66, 423-432. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Duggan, M., Kavanagh, B.P. and Warltier, D.C. (2005) Pulmonary Atelectasis: A Pathogenic Perioperative Entity. Anesthesiology, 102, 838-854. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | van Kaam, A.H., Lachmann, R.A., Herting, E., De Jaegere, A., van Iwaarden, F., Noorduyn, L.A., et al. (2004) Reducing Atelectasis Attenuates Bacterial Growth and Translocation in Experimental Pneumonia. American Journal of Respiratory and Critical Care Medicine, 169, 1046-1053. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | van Belle, A.F., Wesseling, G.J., Penn, O.C.K.M. and Wouters, E.F.M. (1992) Postoperative Pulmonary Function Abnormalities after Coronary Artery Bypass Surgery. Respiratory Medicine, 86, 195-199. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Strang, C.M., Freden, F., Maripuu, E., Ebmeyer, U., Hachenberg, T. and Hedenstierna, G. (2011) Improved Ventilation-Perfusion Matching with Increasing Abdominal Pressure during CO2-Pneumoperitoneum in Pigs. Acta Anaesthesiologica Scandinavica, 55, 887-896. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Andersson, L.E., Bååth, M., Thörne, A., Aspelin, P. and Odeberg-Wernerman, S. (2005) Effect of Carbon Dioxide Pneumoperitoneum on Development of Atelectasis during Anesthesia, Examined by Spiral Computed Tomography. Anesthesiology, 102, 293-299. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Canet, J., Gallart, L., Gomar, C., Paluzie, G., Vallès, J., Castillo, J., et al. (2010) Prediction of Postoperative Pulmonary Complications in a Population-Based Surgical Cohort. Anesthesiology, 113, 1338-1350. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Brooks-Brunn, J.A. (1997) Predictors of Postoperative Pulmonary Complications Following Abdominal Surgery. Chest, 111, 564-571. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Edmark, L., Kostova-Aherdan, K., Enlund, M. and Hedenstierna, G. (2003) Optimal Oxygen Concentration during Induction of General Anesthesia. Anesthesiology, 98, 28-33. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Futier, E., Constantin, J., Pelosi, P., Chanques, G., Kwiatkoskwi, F., Jaber, S., et al. (2010) Intraoperative Recruitment Maneuver Reverses Detrimental Pneumoperitoneum-Induced Respiratory Effects in Healthy Weight and Obese Patients Undergoing Laparoscopy. Anesthesiology, 113, 1310-1319. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Park, H.P., Hwang, J.W., Kim, Y.B., et al. (2009) Effect of Pre-Emptive Alveolar Recruitment Strategy before Pneumoperitoneum on Arterial Oxygenation during Laparoscopic Hysterectomy. Anaesthesia and Intensive Care, 37, 593-597. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Park, S., Jeon, Y., Hwang, J., Do, S., Kim, J. and Park, H. (2011) A Preemptive Alveolar Recruitment Strategy before One-Lung Ventilation Improves Arterial Oxygenation in Patients Undergoing Thoracic Surgery: A Prospective Randomised Study. European Journal of Anaesthesiology, 28, 298-302. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Song, I., Jang, Y., Lee, J., Kim, E., Yoo, S., Kim, H., et al. (2019) Effect of Different Fraction of Inspired Oxygen on Development of Atelectasis in Mechanically Ventilated Children: A Randomized Controlled Trial. Pediatric Anesthesia, 29, 1033-1039. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Hedenstierna, G. (2012) Oxygen and Anesthesia: What Lung Do We Deliver to the Post‐Operative Ward? Acta Anaesthesiologica Scandinavica, 56, 675-685. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Li, X., Jiang, D., Jiang, Y., Yu, H., Zhang, M., Jiang, J., et al. (2020) Comparison of Low and High Inspiratory Oxygen Fraction Added to Lung-Protective Ventilation on Postoperative Pulmonary Complications after Abdominal Surgery: A Randomized Controlled Trial. Journal of Clinical Anesthesia, 67, Article ID: 110009. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Park, M., Jung, K., Sim, W.S., Kim, D.K., Chung, I.S., Choi, J.W., et al. (2021) Perioperative High Inspired Oxygen Fraction Induces Atelectasis in Patients Undergoing Abdominal Surgery: A Randomized Controlled Trial. Journal of Clinical Anesthesia, 72, Article ID: 110285. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Hovaguimian, F., Lysakowski, C., Elia, N. and Tramèr, M.R. (2013) Effect of Intraoperative High Inspired Oxygen Fraction on Surgical Site Infection, Postoperative Nausea and Vomiting, and Pulmonary Function: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Anesthesiology, 119, 303-316. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Mattishent, K., Thavarajah, M., Sinha, A., Peel, A., Egger, M., Solomkin, J., et al. (2019) Safety of 80% vs 30-35% Fraction of Inspired Oxygen in Patients Undergoing Surgery: A Systematic Review and Meta-Analysis. British Journal of Anaesthesia, 122, 311-324. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Young, C.C., Harris, E.M., Vacchiano, C., Bodnar, S., Bukowy, B., Elliott, R.R.D., et al. (2019) Lung-Protective Ventilation for the Surgical Patient: International Expert Panel-Based Consensus Recommendations. British Journal of Anaesthesia, 123, 898-913. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Rusca, M., Proietti, S., Schnyder, P., Frascarolo, P., Hedenstierna, G., Spahn, D.R., et al. (2003) Prevention of Atelectasis Formation during Induction of General Anesthesia. Anesthesia & Analgesia, 97, 1835-1839. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Moher, D., Liberati, A., Tetzlaff, J. and Altman, D.G. (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ, 339, b2535. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Higgins, J.P.T. and Green, S. (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. http://handbook.cochrane.org
 | 
                     
                                
                                    
                                        | [23] | Wan, X., Wang, W., Liu, J. and Tong, T. (2014) Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range And/or Interquartile Range. BMC Medical Research Methodology, 14, Article No. 135. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Joyce, C.J. and Baker, A.B. (1995) What Is the Role of Absorption Atelectasis in the Genesis of Perioperative Pulmonary Collapse? Anaesthesia and Intensive Care, 23, 691-696. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Monastesse, A., Girard, F., Massicotte, N., Chartrand-Lefebvre, C. and Girard, M. (2017) Lung Ultrasonography for the Assessment of Perioperative Atelectasis: A Pilot Feasibility Study. Anesthesia & Analgesia, 124, 494-504. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Meyhoff, C.S., Wetterslev, J., Jorgensen, L.N., et al. (2009) Effect of High Perioperative Oxygen Fraction on Surgical Site Infection and Pulmonary Complications after Abdominal Surgery: The PROXI Randomized Clinical Trial. JAMA, 302, 1543-1550. | 
                     
                                
                                    
                                        | [27] | Akça, O., Podolsky, A., Eisenhuber, E., Panzer, O., Hetz, H., Lampl, K., et al. (1999) Comparable Postoperative Pulmonary Atelectasis in Patients Given 30% or 80% Oxygen during and 2 Hours after Colon Resection. Anesthesiology, 91, 991-998. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Lin, X., Wang, P., Liu, D., Guo, Y., Xie, C., Wang, B., et al. (2021) Intraoperative Oxygen Concentration and Postoperative Delirium after Laparoscopic Gastric and Colorectal Malignancies Surgery: A Randomized, Double-Blind, Controlled Trial. Clinical Interventions in Aging, 16, 1085-1093. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Kim, B.R., Lee, S., Bae, H., Lee, M., Bahk, J. and Yoon, S. (2020) Lung Ultrasound Score to Determine the Effect of Fraction Inspired Oxygen during Alveolar Recruitment on Absorption Atelectasis in Laparoscopic Surgery: A Randomized Controlled Trial. BMC Anesthesiology, 20, Article No. 173. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Ferrando, C., Aldecoa, C., Unzueta, C., Belda, F.J., Librero, J., Tusman, G., et al. (2020) Effects of Oxygen on Post-Surgical Infections during an Individualised Perioperative Open-Lung Ventilatory Strategy: A Randomised Controlled Trial. British Journal of Anaesthesia, 124, 110-120. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Alvandipour, M., Mokhtari-Esbuie, F., Baradari, A.G., Firouzian, A. and Rezaie, M. (2019) Effect of Hyperoxygenation during Surgery on Surgical Site Infection in Colorectal Surgery. Annals of Coloproctology, 35, 9-14. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Staehr, A.K., Meyhoff, C.S., Henneberg, S.W., Christensen, P.L. and Rasmussen, L.S. (2012) Influence of Perioperative Oxygen Fraction on Pulmonary Function after Abdominal Surgery: A Randomized Controlled Trial. BMC Research Notes, 5, Article No. 383. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Brueckmann, B., Villa-Uribe, J.L., Bateman, B.T., Grosse-Sundrup, M., Hess, D.R., Schlett, C.L., et al. (2013) Development and Validation of a Score for Prediction of Postoperative Respiratory Complications. Anesthesiology, 118, 1276-1285. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Li, C., Yang, W., Zhou, J., Wu, Y., Li, Y., Wen, S., et al. (2013) Risk Factors for Predicting Postoperative Complications after Open Infrarenal Abdominal Aortic Aneurysm Repair: Results from a Single Vascular Center in China. Journal of Clinical Anesthesia, 25, 371-378. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Koo, C., Park, E.Y., Lee, S.Y. and Ryu, J. (2019) The Effects of Intraoperative Inspired Oxygen Fraction on Postoperative Pulmonary Parameters in Patients with General Anesthesia: A Systemic Review and Meta-Analysis. Journal of Clinical Medicine, 8, 583-594. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Allegranzi, B., Zayed, B., Bischoff, P., Kubilay, N.Z., de Jonge, S., de Vries, F., et al. (2016) New WHO Recommendations on Intraoperative and Postoperative Measures for Surgical Site Infection Prevention: An Evidence-Based Global Perspective. The Lancet Infectious Diseases, 16, e288-e303. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Neto, A.S., da Costa, L.G.V., Hemmes, S.N.T., Canet, J., Hedenstierna, G., Jaber, S., et al. (2018) The LAS VEGAS Risk Score for Prediction of Postoperative Pulmonary Complications: An Observational Study. European Journal of Anaesthesiology, 35, 691-701. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Futier, E., Constantin, J., Paugam-Burtz, C., Pascal, J., Eurin, M., Neuschwander, A., et al. (2013) A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery. New England Journal of Medicine, 369, 428-437. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Hemmes, S.N.T., Neto, A.S. and Schultz, M.J. (2013) Intraoperative Ventilatory Strategies to Prevent Postoperative Pulmonary Complications: A Meta-Analysis. Current Opinion in Anaesthesiology, 26, 126-133. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Gu, W., Wang, F. and Liu, J. (2014) Effect of Lung-Protective Ventilation with Lower Tidal Volumes on Clinical Outcomes among Patients Undergoing Surgery: A Meta-Analysis of Randomized Controlled Trials. Canadian Medical Association Journal, 187, E101-E109. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Benoît, Z., Wicky, S., Fischer, J., Frascarolo, P., Chapuis, C., Spahn, D.R., et al. (2002) The Effect of Increased FIO2 before Tracheal Extubation on Postoperative Atelectasis. Anesthesia & Analgesia, 95, 1777-1781. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Lumb, A.B., Greenhill, S.J., Simpson, M.P. and Stewart, J. (2010) Lung Recruitment and Positive Airway Pressure before Extubation Does Not Improve Oxygenation in the Post-Anaesthesia Care Unit: A Randomized Clinical Trial. British Journal of Anaesthesia, 104, 643-647. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Futier, E., Paugam-Burtz, C., Godet, T., Khoy-Ear, L., Rozencwajg, S., Delay, J., et al. (2016) Effect of Early Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Hypoxaemia in Patients after Major Abdominal Surgery: A French Multicentre Randomised Controlled Trial (OPERA). Intensive Care Medicine, 42, 1888-1898. [Google Scholar] [CrossRef] [PubMed] |