[1]
|
You, B., Li, L., Li, Z., Wang, W., Yang, Y., Cheng, W., et al. (2025) Imaging of Zinc Ions across Diverse Biological Samples with a Quinoline-Based Tris(2-Pyridylmethyl)Amine Fluorescent Probe. Talanta, 284, Article ID: 127267. https://doi.org/10.1016/j.talanta.2024.127267
|
[2]
|
Kim, H., Cho, E., Kwak, M., Lee, J., Lee, H., Hwang, C., et al. (2025) Porphyrinic N4 Channels of Zinc Ions for the Electrochemical Reversibility of Zinc Plating/stripping. Materials Horizons, 12, 1651-1662. https://doi.org/10.1039/d4mh01088d
|
[3]
|
Alam, M.Z., Ahmad, S., Alimuddin, and Khan, S.A. (2024) Synthesis of Fluorescent Pyrazoline Sensors as Versatile Tool for Zinc Ion Detection: A Mini-Review. Journal of Fluorescence, 35, 1241-1253. https://doi.org/10.1007/s10895-023-03571-y
|
[4]
|
Maret, W. (2024) Chemistry Meets Biology in the Coordination Dynamics of Metalloproteins. Journal of Inorganic Biochemistry, 251, Article ID: 112431. https://doi.org/10.1016/j.jinorgbio.2023.112431
|
[5]
|
Guo, Z., Liu, Z., Wang, P., Zhao, C., Lu, X., Zhang, Y., et al. (2024) Biomineralization Inspired the Construction of Dense Spherical Stacks for Dendrite-Free Zinc Anodes. Nano Letters, 24, 14656-14662. https://doi.org/10.1021/acs.nanolett.4c03749
|
[6]
|
Wang, Y., Huang, N. and Yang, Z. (2023) Revealing the Role of Zinc Ions in Atherosclerosis Therapy via an Engineered Three‐Dimensional Pathological Model. Advanced Science, 10, Article ID: 2300475. https://doi.org/10.1002/advs.202300475
|
[7]
|
Yoon, C. and Lee, S.J. (2021) Selective Coordination of Cobalt Ions by Zinc Fingers in Escherichia coli. Bulletin of the Korean Chemical Society, 42, 1650-1658. https://doi.org/10.1002/bkcs.12409
|
[8]
|
Xu, H., Luo, Y., Tu, X., Cui, W., Dou, Y. and Wang, Q. (2021) Effect of the Forth and Fifth Zinc Finger Deletions of MTF-1 on the Expression of Metal Ion Metabolism Related Gene. Doklady Biochemistry and Biophysics, 500, 385-392. https://doi.org/10.1134/s1607672921050082
|
[9]
|
Missirlis, F. (2021) Regulation and Biological Function of Metal Ions in Drosophila. Current Opinion in Insect Science, 47, 18-24. https://doi.org/10.1016/j.cois.2021.02.002
|
[10]
|
Nathani, S., Kumar, V., Dhaliwal, H.S., Sircar, D. and Roy, P. (2020) Biological Application of a Fluorescent Zinc Sensing Probe for the Analysis of Zinc Bioavailability Using Caco-2 Cells as an In-Vitro Cellular Model. Journal of Fluorescence, 30, 1553-1565. https://doi.org/10.1007/s10895-020-02608-w
|
[11]
|
Chen, S., Sun, T., Xie, Z., Dong, D. and Zhang, N. (2020) A Fluorescent Sensor for Intracellular Zn2+ Based on Cylindrical Molecular Brushes of Poly(2-Oxazoline) through Ion-Induced Emission. Polymer Chemistry, 11, 6650-6657. https://doi.org/10.1039/d0py01054e
|
[12]
|
Rogina, A., Loncarevic, A., Antunovic, M., Marijanovic, I., Ivankovic, M. and Ivankovic, H. (2019) Tuning Physicochemical and Biological Properties of Chitosan through Complexation with Transition Metal Ions. International Journal of Biological Macromolecules, 129, 645.
|
[13]
|
Jonaghani, M.Z., Zali-Boeini, H. and Moradi, H. (2019) A Coumarin Based Highly Sensitive Fluorescent Chemosensor for Selective Detection of Zinc Ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, 16-22. https://doi.org/10.1016/j.saa.2018.08.061
|
[14]
|
Zhao, D., Zhang, W., Zhang, S. and Shen, G. (2025) Recent Advances in Lithium Ion Sensing Using Fluorescent Probes with Different Structures. ChemistrySelect, 10, e01543. https://doi.org/10.1002/slct.202501543
|
[15]
|
Shen, J., Wang, X., Qin, L., Sun, L., Liang, Y., Li, R., et al. (2025) Ratiometric Fluorescent Probes Based on Fluorogenic Reactions of O-Phenylenediamine for Multiple Sensing Applications. Talanta, 295, Article ID: 128329. https://doi.org/10.1016/j.talanta.2025.128329
|
[16]
|
Jiang, X., Yang, R., Lei, X., Xue, S., Wang, Z., Zhang, J., et al. (2023) Design, Synthesis, Application and Research Progress of Fluorescent Probes. Journal of Fluorescence, 34, 965-975. https://doi.org/10.1007/s10895-023-03344-7
|
[17]
|
Huang, Y., Cao, X., Deng, Y., Ji, X., Sun, W., Xia, S., et al. (2024) An Overview on Recent Advances of Reversible Fluorescent Probes and Their Biological Applications. Talanta, 268, Article ID: 125275. https://doi.org/10.1016/j.talanta.2023.125275
|
[18]
|
Yang, J., Zhao, Z., Jiang, S., Zhang, L., Zhao, K., Li, Z., et al. (2023) Ph-sensing Supramolecular Fluorescent Probes Discovered by Library Screening. Talanta, 263, Article ID: 124716. https://doi.org/10.1016/j.talanta.2023.124716
|
[19]
|
Yan, L., Yang, H., Zhang, S., Zhou, C. and Lei, C. (2022) A Critical Review on Organic Small Fluorescent Probes for Monitoring Carbon Monoxide in Biology. Critical Reviews in Analytical Chemistry, 53, 1792-1806. https://doi.org/10.1080/10408347.2022.2042670
|
[20]
|
Xue, X., Wang, Y., Chen, S., Wang, K., Niu, S., Zong, Q., et al. (2023) Monitoring Intracellular pH Using a Hemicyanine-Based Ratiometric Fluorescent Probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 284, Article ID: 121778. https://doi.org/10.1016/j.saa.2022.121778
|
[21]
|
Lee, H., Lee, S. and Han, M.S. (2023) Turn-On Fluorescent pH Probes for Monitoring Alkaline pHs Using Bis[2-(2’-Hydroxyphenyl)Benzazole] Derivatives. Sensors, 23, Article 2044. https://doi.org/10.3390/s23042044
|
[22]
|
Fu, L., Huang, H., Zuo, Z. and Peng, Y. (2023) A Single Organic Fluorescent Probe for the Discrimination of Dual Spontaneous ROS in Living Organisms: Theoretical Approach. Molecules, 28, Article 6983. https://doi.org/10.3390/molecules28196983
|
[23]
|
Yan, A., Wang, C., Yan, J., Wang, Z., Zhang, E., Dong, Y., et al. (2023) Thin‐Film Transistors for Integrated Circuits: Fundamentals and Recent Progress. Advanced Functional Materials, 34, Article ID: 2304409. https://doi.org/10.1002/adfm.202304409
|
[24]
|
Nakata, E., Gerelbaatar, K., Komatsubara, F. and Morii, T. (2022) Stimuli-responsible SNARF Derivatives as a Latent Ratiometric Fluorescent Probe. Molecules, 27, Article 7181. https://doi.org/10.3390/molecules27217181
|
[25]
|
Du, K., Niu, S., Qiao, L., Dou, Y., Zhu, Q., Chen, X., et al. (2017) A Highly Selective Ratiometric Fluorescent Probe for the Cascade Detection of Zn2+ and H2po4− and Its Application in Living Cell Imaging. RSC Advances, 7, 40615-40620. https://doi.org/10.1039/c7ra08020d
|
[26]
|
Huang, H., Zou, Z. and Peng, Y. (2024) Theoretical Insights into a Turn-On Fluorescence Probe Based on Naphthalimide for Peroxynitrite Detection. Heliyon, 10, e37298. https://doi.org/10.1016/j.heliyon.2024.e37298
|
[27]
|
Deng, Y., Huang, H., Feng, J., Peng, Y. and Liu, Y. (2024) Theoretical Investigation of a Coumarin Fluorescent Probe for Distinguishing the Detection of Small-Molecule Biothiols. Molecules, 29, Article 554. https://doi.org/10.3390/molecules29030554
|
[28]
|
Peng, Y., Huang, H., Liu, Y. and Zhao, X. (2023) Theoretical Insights into a Near-Infrared Fluorescent Probe NI-VIS Based on the Organic Molecule for Monitoring Intracellular Viscosity. Molecules, 28, Article 6105. https://doi.org/10.3390/molecules28166105
|
[29]
|
Lu, T. (2024) A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. The Journal of Chemical Physics, 161, Article ID: 082503. https://doi.org/10.1063/5.0216272
|
[30]
|
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
|