顶端包裹及表面负载Co的N掺杂碳纳米管的制备及其电催化性能研究
Preparation of Tip-Wrapped and Surface-Loaded Co-Doped N-Doped Carbon Nanotubes and Their Electrocatalytic Properties
摘要: 在非贵金属催化剂中,原子分散在氮共掺杂多孔碳上的3d过渡金属(如Fe、Co、Ni等)催化剂(M-N-C)显示出巨大潜力,其中Co-N-C催化剂因其较低的芬顿反应活性和更高的热力学稳定性,成为研究热点。本研究以N掺杂的氧化石墨烯为基底,通过硼氢化钠还原及管式炉退火煅烧等多个步骤,成功制备出顶端包裹及表面负载Co颗粒的氮掺杂碳纳米管(Co/Co@o-NCNT)双功能电催化剂,具有较高的比表面积。Co/Co@o-NCNT在0.1 M KOH中催化剂Co/Co@o-NCNT-900的半波电位E1/2 = 0.86 V,优于Pt/C (E1/2 = 0.85 V)。在1 M KOH中,该催化剂在10 mA/cm2的电流密度时,OER过电位为317 mV,说明其具有优异的ORR活性和OER活性。
Abstract: Among the non-precious metal catalysts, 3d transition metal (e.g., Fe, Co, Ni, etc.) catalysts (M-N-C) with atoms dispersed on nitrogen co-doped porous carbon show great potential, among which Co-N-C catalysts have become a research hotspot due to their lower Fenton reaction activity and higher thermodynamic stability. In this study, nitrogen-doped carbon nanotubes (Co/Co@o-NCNT) bifunctional electrocatalysts with tip-wrapped and surface-loaded Co particles were successfully prepared from N-doped graphene oxide by reduction with sodium borohydride and annealing and calcination in a tube furnace in several steps. And it has a high specific surface area. The half-wave potential E1/2 of Co/Co@o-NCNT-900 catalyst in 0.1 M KOH is 0.86 V, which is better than that of Pt/C (E1/2 = 0.85 V). In 1 M KOH solution, the catalyst has an OER overpotential of 317 mV at a current density of 10 mA/cm2. It shows that it has excellent ORR activity and OER activity.
文章引用:王湛威, 刘梦冉, 张健, 杜梦琦, 冯家迅, 李波, 孙旭镯. 顶端包裹及表面负载Co的N掺杂碳纳米管的制备及其电催化性能研究[J]. 物理化学进展, 2025, 14(3): 572-582. https://doi.org/10.12677/japc.2025.143054

1. 引言

近年来,能源危机和环境污染推动了可再生能源储能技术的研究和发展,包括燃料电池[1] [2]、水电解[3]-[5]和锌空气电池(ZABs) [6] [7]。这些能源设备的整体性能严重依赖于以下两种主要的电化学氧化还原反应:氧还原反应(ORR)、析氧反应(OER) [8]-[10]。因此,合理设计高效的双功能电催化剂对于水分解和可充电锌空气电池(ZABs)至关重要。

过渡金属氮掺杂碳材料(M-N-Cs)被认为是非贵金属催化剂中理想的电催化剂,氮掺杂可以与金属物种反应形成M-N-C活性位点,并通过增强金属物种与载体之间的协同效应来改善反应动力学[11] [12],从而有效地增加催化活性[13]。在碳材料中掺入孤对电子N表现出明显的ORR和OER活性[14]。氮掺杂碳包覆金属纳米颗粒的碳层可以改变局部电子环境,保护嵌入的金属颗粒在电催化过程中不被腐蚀和团聚,这可以具有更高的催化能力和稳定性[15]。因此,M-N-C材料具有实现高催化活性ORR和OER的双功能的广阔前景。

本研究通过多尺度结构工程策略,设计并制备了Co/Co@o-NCNT-900催化剂,系统融合了原子、分子及微观结构的协同优势。双氰胺二次煅烧诱导形成Co-N-C活性位点,其中钴原子与碳骨架中的吡啶氮/石墨氮配位,通过优化*OOH中间体的吸附能垒,显著加速O-O键解离。分子层面上,H2O2氧化处理引入的羟基与环氧基团(o-NCNT)增强了碳载体的亲水性,促进反应物向活性位点的扩散。石墨碳包覆的钴纳米颗粒(Co@C)有效抑制金属核心的氧化与团聚,而交联的氮掺杂碳纳米管网络则构建了高效电子传导路径[16]。这种“Co-N位点–氧功能化表面–核壳结构”的多级协同设计,不仅平衡了催化活性与稳定性,还为高性能双功能催化剂的设计提供了新范式,有望推动锌空气电池等能源器件的实际应用。

2. 实验部分

2.1. 试剂和仪器

本研究所用试剂包括硝酸钴(Co(NO3)2∙6H2O)、二氰二胺(C2H4N4)、氢氧化钾(KOH)、无水乙醇(C2H6O)、异丙醇(C3H8O)、浓硫酸(H2SO4)、浓磷酸(H3PO4)、高锰酸钾(K2MnO4)、过氧化氢(H2O2)、丙酮(C3H6O)。以上试剂均为分析纯,实验过程中均直接使用,无需纯化。

本研究所使用的仪器为Bruker公司D8 Advance X射线粉末衍射仪、美国FEI公司Tecnai G2 F20透射电子显微镜、美国Thermo Scientific公司Thermo Scientific K-Alpha X射线光电子能谱、上海辰华仪器有限公司CHI660E电化学工作站。

2.2. 催化剂的合成及电催化性能测试

Figure 1. Synthesis process of Co/Co@o-NCNT

1. Co/Co@o-NCNT的制备流程图

(1) NGO的制备

石墨烯(GO)与三聚氰胺(质量比1:3)溶于蒸馏水中,超声30 min,离心去除多余的水,烘干,在惰性气氛下以5℃/min升温至800℃,保温180 min,自然降温,通过热解实现氮原子掺杂。

(2) Co@-NCNT的制备

取20 mg NGO,29.1 mg六水硝酸钴,混合加入10 mL蒸馏水,缓慢滴加10 mL 1w%NaBH4,在冰水浴中搅拌2 h,再对溶液进行离心,直至上清液透明,去除上清液,将固体物质真空干燥。称取25 mg样品于一瓷舟中,放在管式炉中部,称取2 g二氰二胺于一大瓷舟中,放置在样品的前端1 cm左右。管式炉设置升温速率为5℃/min,在750℃保温2 h得到氮化的样品,命名为Co@NCNT-750。

(3) Co@o-NCNT-750的制备

将Co@NCNT-750缓慢加入到15 mL 30% H2O2中,在冰水浴中滴加,搅拌24小时,引入羟基/环氧基团,随后离心,直至上清液透明,去除上清液,离心洗涤后的样品在60℃下真空干燥12 h得到氧功能化产物Co@o-NCNT-750。

(4) Co/Co@o-NCNT的制备

图1所示,取20 mg上述流程制备的Co/Co@o-NCNT-750,接着混合29.1 mg六水硝酸钴于烧杯中,加入10 mL蒸馏水,缓慢滴加10 mL 1w% NaBH4,放出大量气泡,在冰水浴中搅拌2 h,再对溶液进行离心,直至上清液透明,去除上清液,离心洗涤后的样品在60℃下真空干燥12 h。称取25 mg干燥后的样品于一瓷舟放在管式炉中,称取2 g二氰二胺于一小瓷舟中,放置在样品的前端1 cm左右。管式炉设置升温速率为5℃/min,在900℃保温2 h最终形成Co/Co@o-NCNT-900。

(5) 催化剂ink的配制

将称取3 mg催化剂于样品管中,向其加入180 μL乙醇、420 μL蒸馏水,40 μL 5 wt% Nafion溶液,超声使其混合均匀。将27 μL催化剂墨水均匀滴涂于旋转圆盘电极(RDE)或旋转环盘电极(RRDE上,负载量为0.5 mg/cm2

3. 结果与讨论

3.1. 催化剂表征

采用粉末X射线衍射(XRD)分析确定样品的结构特征。如图2所示,样品在44.20˚、51.51˚和75.83˚处有明显的衍射峰,分别与Co的(111)、(200)和(220)立方面对齐。证明了热解后Co是以Co纳米颗粒的形态存在的[17]。这可能是因为在热解过程中,二氰二胺分解为还原性气体,将Co2+还原为Co纳米颗粒。此外,26.51˚的峰对应于石墨碳的(002)晶面,表明在高温热解下形成了石墨碳。XRD分析表明,通过调控热解温度与还原性气体环境,成功实现了钴纳米颗粒的原位生长及其与石墨化碳基体的复合。

Figure 2. (a) XRD patterns of Co@o-NCNT-750, Co@o-NCNT-750, Co/Co@o-NCNT

2. (a) Co@o-NCNT-750,Co@o-NCNT-750,Co/Co@o-NCNT的XRD谱图

图3(a)~(c)所示,所制备的Co/Co@o-NCNT展现出管径分布均匀的密集碳纳米管结构。在低倍数下的SEM图像显示所形成的纳米管密集的弯曲缠绕在一起,基本看不到原有的NGO结构。在高倍数的SEM图像中,可以看到所形成的碳纳米管管径均匀,呈螺旋状,这种螺旋状的结构与纳米管的生长机制有关[18]图3(d)~(f)所示透射电子显微镜TEM图像,显示了大量弯曲的、管径较均匀的多壁纳米管结构。碳纳米管呈竹节状形态,这是氮掺杂碳纳米管的典型形态特征[19]。可以看到丰富的金属Co纳米颗粒均匀地嵌埋在碳纳米管和碳纳米管的尖端,并且可以清晰地观察到核壳结构。值得注意的是,从图中可以明显看出所制备的o-NCNT的直径与Co纳米颗粒的直径非常匹配(图3(d)),碳纳米管的包覆有效地抑制了Co纳米颗粒(10~20 nm)的脱落和团聚,提高了催化剂在ORR过程中的稳定性,这证实了所形成的纳米管是以钴纳米颗粒为中心形成的。推测其生长过程是:二氰二胺前驱体在高温下受热分解产生的含氮和含碳气体首先在钴纳米颗粒表面形成碳壳,并进一步在碳壳的基础上推动钴纳米颗粒运动,在此过程中纳米管不断延长,最终形成弯曲的纳米管结构。对生长的氮掺杂碳纳米管的管径进行了统计,生长的纳米管平均管径约为32.5 nm,略厚于Co纳米颗粒的尺寸。在图3(g)的高分辨透射电子显微镜(HRTEM)图像中,被碳包裹的晶格条纹间距为0.205 nm,与Co的(111)晶面相对应,证实了Co纳米颗粒的形成。高角环形暗场扫描透射电子显微镜(HAADF-TEM)图像进一步展示了Co金属的分布情况,可以看到大量白色亮点遍布整个碳纳米管中(图3(h))。这些亮点属于钴纳米颗粒[20],可以看出钴除了分布在碳纳米管的顶端,在整个催化剂材料中都有分布,证明成功合成了顶端包裹及表面负载Co颗粒的碳纳米管。此外,能量色散X射线光谱(EDXS)图像也进一步证实了N均匀分布在生长的碳纳米管表面,进一步说明形成了N掺杂碳纳米管。

Figure 3. SEM images of (a)~(c) Co/Co@o-NCNT, TEM images of (d) Co@ NCNT-750, (e-f) Co/Co@o-NCNT, (g) HRTEM images ofCo/Co@o-NCNT. (h) Element (Co, C and N) mapping images of Co/Co@o-NCNT

3. (a)~(c) Co/Co@o-NCNT的SEM图,(d) Co@ NCNT-750的TEM图,(e)~(f) Co/Co@o-NCNT的TEM图,(g) Co/Co@o-NCNT的HRTEM图,(h) Co/Co@o-NCNT的HRTEM图及Co、N和C元素的EDS mapping图

此外,催化剂的形貌受煅烧温度的影响,随着煅烧温度的升高,Co纳米颗粒的尺寸增大,在反应温度达到一定程度后,前驱体热解形成的气体不断地接触在钴纳米颗粒上,通过钴纳米颗粒的催化使纳米管不断生长,逐渐成型。如图4(a)~(c)所示,温度过低Co@NCNT-600无法实现碳纳米管的生产。温度过高,Co@NCNT-900催化剂中Co纳米颗粒呈团块状,结块的Co纳米颗粒阻塞了部分活性位点,阻碍了催化剂的ORR性能。

Figure 4. (a)~(c) TEM of precursor Co@NCNT prepared at different temperatures (600˚C; 750˚C; 900˚C)

4. (a)~(c)在不同温度(600℃;750℃;900℃)制备的前驱体Co@NCNT的TEM

X射线光电子能谱(XPS)可用于揭示催化剂表面的元素组成、原子价态和电子结构。如图5(a)所示,XPS的全谱表明Co/Co@o-NCNT-900中存在C、N、O和Co元素。图5(b)中Co/Co@o-NCNT-900的C 1 s精细谱可以分峰拟合的四个峰,分别对应于C-C、C-N、C-O、C=O。C 1 s中C-N峰(285.9 eV)的存在,证明N原子掺杂到碳基质中,碳包覆层(Co@C)与氮掺杂碳基体的协同作用有效抑制钴纳米颗粒的氧化与团聚,提升催化循环稳定性。对N 1 s精细谱进行分峰拟合,显示出对应于吡啶氮(398.8 eV)、Co-N (399.7 eV)、吡咯氮(401 eV)、石墨氮(402.2 eV)和氧化氮(404.7 eV)的五个峰(图5(c)),其中,吡啶氮(占比最高)与M-N的协同作用被广泛认为是氧还原反应(ORR)和析氧反应(OER)的关键活性位点[21],能够优化含氧中间体的吸附/解吸能垒,促进电子转移过程,从而提升ORR的催化活性,双氰二胺高温热解不仅作为氮源提升整体N含量,同时通过气相沉积在钴颗粒表面形成Co-N配位结构[22] [23]。在Co 2p高分辨谱中(图5(d)),Co 2p3/2与Co 2p1/2主峰分别位于779.0 eV和794.8 eV,结合其卫星峰(787.3 eV、803.8 eV),证实金属钴(Co⁰)为主要存在形式[24]。此外,780.6 eV处出现的弱峰可归属为Co-N配位结构,表明钴纳米颗粒与氮掺杂碳基体间存在强电子相互作用[17] [25]

Figure 5. (a) High-resolution XPS survey spectra of Co/Co@o-NCNT-900, High-resolution XPS spectra of Co/Co@o-NCNT-900 (b) C 1 s; (c) N 1 s; (d) Co 2p

5. (a) Co/Co@o-NCNT-900的高分辨XPS总谱,Co/Co@o-NCNT-900的高分辨XPS能谱(b) C 1 s;(c) N 1 s;(d) Co 2p

3.2. 电化学性能测试

(1) 碱性条件下的ORR性能测试

首先探究了不同温度(700℃、800℃、900℃)对其催化性能的影响。如图6所示,Co/Co@o-NCNT-900展现出明显优于Co/Co@o-NCNT-800 (0.85 V)和Co/Co@o-NCNT-700 (0.84 V)的ORR性能,证实900℃制备的样品具有最佳的ORR催化性能。

Figure 6. ORR polarization curve with a sweep rate of 5 mV∙s1 at different temperatures

6. 在不同温度下扫率为5 mV∙s1的ORR极化曲线

在N2和O2饱和的0.1 M KOH中通过在旋转圆盘电极(RDE)上研究所制备的催化剂的ORR催化性能。通过对比N2和O2饱和电解液中Co/Co@o-NCNT-900CV图(图7(a)),发现Co/Co@o-NCNT-900在O2饱和溶液中表现出一个明显的阴极还原峰,为0.78 V,接近文献中Pt/C的0.81 V。通过线性扫描伏安法(LSV)对这些制备的材料进行进一步的研究(图7(b)),Co/Co@o-NCNT-900的ORR半波电位(E1/2 = 0.860 V)和起始电位(E0 = 1.11 V)都高于Co@o-NCNT-750 (0.77 V, 0.86 V)和Co@NCNT-750 (0.76 V, 0.85 V),甚至优于20 wt%的Pt/C (0.85 V, 0.99 V),说明利用二氰二胺进行二次煅烧,提高Co-N的含量,有助于提升ORR性能。值得注意的是,Co/Co@o-NCNT-900表现出的ORR Tafel斜率为90.0 mV∙dec1 (图7(c))。这个值低于Pt/C (118.1 mV∙dec1),表明Co/Co@o-NCNT的ORR具有更快的反应动力学。这归因于掺杂碳纳米管结构中的氮原子会和Co纳米颗粒形成丰富的Co-N-C催化活性位点,有助于提高催化剂ORR性能。

为了确定Co/Co@o-NCNT-900催化剂的电子转移数,在不同转速下测试了LSV曲线(图7(d))。在400~2025 rpm转速区间内的LSV曲线显示,随着转速的增加,电流密度明显上升。这一趋势归因于高转速条件下电极表面扩散路径的减小和氧气流动的加快。图7(e)所示,在0.2至0.6 V的电位区间内,Co/Co@o-NCNT-900的K-L曲线呈现线性关系,表明其遵循一级反应动力学过程。通过Koutecky-Levich方程计算催化剂的电子转移数(n),Co/Co@o-NCNT-900的平均电子转移数为3.98,接近氧还原的理论电子转移数(n = 4),这表明催化剂在ORR反应中均是四电子的转移过程。此外,采用旋转环盘电极(RRDE)对Co/Co@o-NCNT-900在ORR催化过程中的过氧化氢(H2O2)产率和电子转移数(n)进行了测定(图7(f)),在0.2~0.7 V的电压范围内,Co/Co@o-NCNT-900的电子转移数接近于4,再次验证遵循四电子转移途径。此外,Co/Co@o-NCNT-900的H2O2产率在该电位区间内保持在7%以下,接近于Pt/C,表明Co/Co@o-NCNT-900具有更高的ORR催化选择性,能够有效抑制H2O2的生成。

甲醇耐受性实验如图7(g)所示,在电解液中加入甲醇后,Co/Co@o-NCNT-900的i-t曲线几乎没有变化,展示出具有优异的甲醇耐受性。相比之下,商业Pt/C的电流密度显著提升,表明其对甲醇渗透具有高敏感性。采用恒定电压测试评估了Co/Co@o-NCNT-900的稳定性。在连续电解8 h后,Co/Co@o-NCNT-900的电流密度仅降低了3.9%,而Pt/C的电流密度仅保持在初始值的83%,表明Co/Co@o-NCNT-900催化剂具有优异的稳定性(图7(h))。通过循环稳定性实验进一步验证Co/Co@o-NCNT-900的稳定性。如图7(i)所示,经过5000圈循环伏安(CV)测试后,Co/Co@o-NCNT-900的半波电位(E1/2)几乎没有变化(约为2 mV),说明Co/Co@o-NCNT-900具有更优异的耐久性。

Figure 7. (a) CV curves, (b) ORR polarization curves (5 mV∙s1), (c) Tafel slopes, (d) LSV curves at different speeds, (e) K-L diagrams, (f) peroxide yield (H2O2%) measured and Electron transfer number by RRDE, (g) Methanol toxicity experiment and (h) Chronoamperometric curves of Co/Co@o-NCNT-900 and Pt/C under 0.1 M KOH conditions, (i) The polarization curves before and after 5000 cycles of Co/Co@o-NCNT-900

7. (a) 在O2饱和的0.1 M KOH中的CV曲线,(b) 在扫率为5 mV∙s1的ORR极化曲线,(C) Tafel斜率,(d) 不同转速下的LSV曲线,(e) K-L图,(f) 用RRDE法测定过氧化物产率和电子转移数,(g) 甲醇的耐毒性测试,(h) Co/Co@o-NCNT和Pt/C催化剂的ORR稳定性测试,(i) 在0.1 M KOH中经5000圈CV循环稳定性测试前后LSV对比,Co/Co@o-NCNT-900和Pt/C在0.1 M KOH条件下(g) 甲醇毒化实验和(h) 计时电流曲线,(i) Co/Co@o-NCNT-900进行5000次循环前后的极化曲线

(2) 碱性条件下的OER性能测试

在N2饱和的1.0 M KOH中,以5 mV∙s1的扫描速率下评价了催化剂的OER活性。首先探究了不同温度对其催化性能的影响。如图8(a)所示,证实900℃制备的样品具有最佳的OER催化性能。如图8(b)所示,在10 mA∙cm2下,Co/Co@o-NCNT-900的过电位低至317 mV,优于Co@o-NCNT-750 (350 mV)和Co@NCNT-750 (352 mV),可能是d轨道优化了对含氧中间体的吸附/脱附强度,有效促进了OER反应。采用Tafel来评估速率决定步骤的催化动力学。Tafel斜率值在40~60 mV∙dec1范围内,通常表明催化剂具有较高的表面反应活性。图8(c)所示,Co/Co@o-NCNT-900的Tafel斜率为90.5 mV∙dec1,显著低于对比样,表明具有更小的电子传输和传质能垒,展现出更快的OER动力学。电化学阻抗谱(EIS)测试结果表明(图8(d)),Co/Co@o-NCNT-900的Nyquist图显示出一个更小的准半圆,证明Co/Co@o-NCNT-900催化剂在OER反应过程中电子转移电阻最小(Rct),具有更快的电荷转移速率。活性位点的性质和数量是电化学析氧反应的关键。因此,利用双电层电容(Cdl)测定电化学表面积(ECSA)。如图8(e)~(h)所示,根据Co/Co@o-NCNT-900的CV曲线计算出其Cdl值为59.3 mF∙cm2,高于Co@o-NCNT-750和Co@NCNT-750,说明Co/Co@o-NCNT-900具有最大的比表面积,能够暴露出更多的活性位点,有利于催化反应。

Figure 8. (a) OER polarization curves of Co/Co@o-NCNT at different temperatures with a sweep rate of 5 mV∙s1, (b) ORR polarization curves at scanning rate of 5 mV∙s1 for Co/Co@o-NCNT-900; Co@o-NCNT-750 and Co@NCNT-750, (c) Tafel slopes, (d) Nyquist plots. CV curves with different scan rates (10~50 mV∙s1) (e) Co/Co@o-NCNT-900, (f) Co@o-NCNT-750 and Co@NCNT-750, (h) Cdl obtained by cyclic voltammetry at different scan rates

8. (a) Co/Co@o-NCNT在扫率为5 mV∙s1不同温度的OER极化曲线,(b) Co/Co@o-NCNT-900、Co@o-NCNT-750和Co@NCNT-750在扫率为5 mV∙s1的OER极化曲线,(c) Tafel斜率,(d) 能奎斯特图。不同扫描速率下(10~50 mV∙s1) (e) Co/Co@o-NCNT-900,(f) Co@o-NCNT-750和(g) Co@NCNT-750的CV曲线,(h) 双电层电容Cdl

4. 结论

以NGO为基底材料,负载Co颗粒后以二氰二胺为氮源,经管式炉退火生长出包裹Co颗粒的N掺杂碳纳米管,之后利用H2O2增加碳纳米管表面的含氧官能团,再经硼氢化钠还原和二次煅烧,成功制备出顶端包裹及表面负载Co纳米颗粒的氮掺杂碳纳米管(Co/Co@o-NCNT)的三功能电催化剂。基于较高的比表面积以及高含量的N活性中心,900℃制备的Co/Co@o-NCNT-900具有最优异的ORR性能(E1/2 = 0.86 V),优于20 w% Pt/C (E1/2 = 0.85 V)。同时其在稳定性和抗甲醇毒性上表现出色。通过测量计算,该催化剂的电子转移数n ≈ 4,证明其在ORR催化过程是标准的4电子过程,并且H2O2产率仅为1.5%,进一步证实Co/Co@o-NCNT-900具备高效且稳定的ORR催化性能。Co/Co@o-NCNT-900在1.0 M KOH 溶液中,10 mA/cm2电流密度下的OER过电位为317 mV。以上工作充分证明Co/Co@o-NCNT是一种高效且稳定的ORR、OER双功能电催化剂,为设计研发双功能催化剂供了一种新策略,具有广阔的应用前景。

NOTES

*通讯作者。

参考文献

[1] Yang, B. and Xiang, Z. (2024) Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS Nano, 18, 11598-11630.
https://doi.org/10.1021/acsnano.4c01113
[2] Li, J., Jing, Z., Bai, H., Chen, Z., Osman, A.I., Farghali, M., et al. (2023) Optimizing Hydrogen Production by Alkaline Water Decomposition with Transition Metal-Based Electrocatalysts. Environmental Chemistry Letters, 21, 2583-2617.
https://doi.org/10.1007/s10311-023-01616-z
[3] Gao, Y., Liu, L., Jiang, Y., Yu, D., Zheng, X., Wang, J., et al. (2024) Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. Nano-Micro Letters, 16, Article No. 162.
https://doi.org/10.1007/s40820-024-01366-9
[4] Nazir, G., Rehman, A., Lee, J., Kim, C., Gautam, J., Heo, K., et al. (2024) A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. Nano-Micro Letters, 16, Article No. 138.
https://doi.org/10.1007/s40820-024-01328-1
[5] Xu, H., Zhu, H., Huang, C., Zhang, Z., Shuai, T., Zhan, Q., et al. (2023) Recent Advances in Fe-N-C-and Co-N-C-Based Materials as Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution. Science China Chemistry, 67, 1137-1160.
https://doi.org/10.1007/s11426-023-1863-8
[6] Wu, X., Wang, R., Ma, F., Liu, X., Jia, D., Yang, H., et al. (2023) FeCo-N Encapsuled in Nitrogen-Doped Carbon Nanotubes as Bifunctional Electrocatalysts with a High Stability for Zinc Air Batteries. Rare Metals, 42, 1526-1534.
https://doi.org/10.1007/s12598-022-02173-0
[7] Yang, H., Zhang, T., Chi, X., Yu, X., Chen, J., Chen, J., et al. (2022) Promoting Oxygen Reduction via Coordination Environment Modulation through Secondary Metal-Atom Incorporation. Journal of Materials Chemistry A, 10, 19626-19634.
https://doi.org/10.1039/d2ta01962k
[8] Huang, H., Zhao, Y., Bai, Y., Li, F., Zhang, Y. and Chen, Y. (2020) Conductive Metal-Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Science, 7, Article 2000012.
https://doi.org/10.1002/advs.202000012
[9] Gao, S., Zhang, Y., Li, H., He, J., Xu, H. and Wu, C. (2021) The Microwave Absorption Properties of Residual Carbon from Coal Gasification Fine Slag. Fuel, 290, Article 120050.
https://doi.org/10.1016/j.fuel.2020.120050
[10] Zhang, H., Cheng, W., Luan, D. and Lou, X.W. (2021) Atomically Dispersed Reactive Centers for Electrocatalytic Co2 Reduction and Water Splitting. Angewandte Chemie International Edition, 60, 13177-13196.
https://doi.org/10.1002/anie.202014112
[11] Xiao, X., Zhang, H., Xiong, Y., Liang, F. and Yang, Y. (2021) Iridium-Doped N-Rich Mesoporous Carbon Electrocatalyst with Synthetic Macrocycles as Carbon Source for Hydrogen Evolution Reaction. Advanced Functional Materials, 31, Article 2105562.
https://doi.org/10.1002/adfm.202105562
[12] Li, L., Li, N., Xia, J., Zhou, S., Qian, X., Yin, F., et al. (2023) Metal-Organic Framework-Derived Co Single Atoms Anchored on N-Doped Hierarchically Porous Carbon as a Ph-Universal ORR Electrocatalyst for Zn-Air Batteries. Journal of Materials Chemistry A, 11, 2291-2301.
https://doi.org/10.1039/d2ta08808h
[13] Tsutsumi, M., Islam, M.S., Karim, M.R., Rabin, N.N., Ohtani, R., Nakamura, M., et al. (2017) Tri-Functional OER, HER and ORR Electrocatalyst Electrodes from in Situ Metal-Nitrogen Co-Doped Oxidized Graphite Rods. Bulletin of the Chemical Society of Japan, 90, 950-954.
https://doi.org/10.1246/bcsj.20170102
[14] Tian, G., Zhao, M., Yu, D., Kong, X., Huang, J., Zhang, Q., et al. (2014) Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/reduction Reaction. Small, 10, 2251-2259.
https://doi.org/10.1002/smll.201303715
[15] Wang, Q., Ye, K., Xu, L., Hu, W., Lei, Y., Zhang, Y., et al. (2019) Carbon Nanotube-Encapsulated Cobalt for Oxygen Reduction: Integration of Space Confinement and N-Doping. Chemical Communications, 55, 14801-14804.
https://doi.org/10.1039/c9cc08439h
[16] Li, J., Hou, P., Zhao, S., Liu, C., Tang, D., Cheng, M., et al. (2016) A 3D Bi-Functional Porous N-Doped Carbon Microtube Sponge Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Energy & Environmental Science, 9, 3079-3084.
https://doi.org/10.1039/c6ee02169g
[17] Tian, W., Ren, J. and Yuan, Z. (2022) In-Situ Cobalt-Nickel Alloy Catalyzed Nitrogen-Doped Carbon Nanotube Arrays as Superior Freestanding Air Electrodes for Flexible Zinc-Air and Aluminum-Air Batteries. Applied Catalysis B: Environmental, 317, Article 121764.
https://doi.org/10.1016/j.apcatb.2022.121764
[18] Zhang, W., Guo, X., Li, C., Xue, J., Xu, W., Niu, Z., et al. (2023) Ultralong Nitrogen/Sulfur Co-Doped Carbon Nano‐hollow‐sphere Chains with Encapsulated Cobalt Nanoparticles for Highly Efficient Oxygen Electrocatalysis. Carbon Energy, 5, e317.
https://doi.org/10.1002/cey2.317
[19] Xia, S., Zhou, Q., Sun, R., Chen, L., Zhang, M., Pang, H., et al. (2023) In-Situ Immobilization of Coni Nanoparticles into N-Doped Carbon Nanotubes/Nanowire-Coupled Superstructures as an Efficient Mott-Schottky Electrocatalyst toward Electrocatalytic Oxygen Reduction. Chinese Journal of Catalysis, 54, 278-289.
https://doi.org/10.1016/s1872-2067(23)64545-0
[20] Li, G., Tang, Y., Fu, T., Xiang, Y., Xiong, Z., Si, Y., et al. (2022) S, N Co-Doped Carbon Nanotubes Coupled with CoFe Nanoparticles as an Efficient Bifunctional ORR/OER Electrocatalyst for Rechargeable Zn-Air Batteries. Chemical Engineering Journal, 429, Article 132174.
https://doi.org/10.1016/j.cej.2021.132174
[21] Zhang, C., Wang, X., Ma, Z., Yao, H., Liu, H., Li, C., et al. (2023) Spin State Modulation on Dual Fe Center by Adjacent Ni Sites Enabling the Boosted Activities and Ultra-Long Stability in Zn-Air Batteries. Science Bulletin, 68, 2042-2053.
https://doi.org/10.1016/j.scib.2023.07.049
[22] Bisen, O.Y., Nandan, R., Yadav, A.K., Pavithra, B. and Kar Nanda, K. (2021) In Situ Self-Organization of Uniformly Dispersed Co-N-C Centers at Moderate Temperature without a Sacrificial Subsidiary Metal. Green Chemistry, 23, 3115-3126.
https://doi.org/10.1039/d0gc04050a
[23] Wu, M., Zhang, G., Chen, N., Hu, Y., Regier, T., Rawach, D., et al. (2021) Self-Reconstruction of Co/co2p Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc-Air Flow Batteries. ACS Energy Letters, 6, 1153-1161.
https://doi.org/10.1021/acsenergylett.1c00037
[24] Guo, H., Feng, Q., Zhu, J., Xu, J., Li, Q., Liu, S., et al. (2019) Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon/Carbon Nanotube Frameworks Derived from a Metal-Organic Framework for Tri-Functional ORR, OER and HER Electrocatalysis. Journal of Materials Chemistry A, 7, 3664-3672.
https://doi.org/10.1039/c8ta11400e
[25] Zhu, A., Tan, P., Qiao, L., Liu, Y., Ma, Y., Xiong, X., et al. (2017) Multiple Active Components, Synergistically Driven Cobalt and Nitrogen Co-Doped Porous Carbon as High-Performance Oxygen Reduction Electrocatalyst. Inorganic Chemistry Frontiers, 4, 1748-1756.
https://doi.org/10.1039/c7qi00427c