[1]
|
Yang, B. and Xiang, Z. (2024) Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly. ACS Nano, 18, 11598-11630. https://doi.org/10.1021/acsnano.4c01113
|
[2]
|
Li, J., Jing, Z., Bai, H., Chen, Z., Osman, A.I., Farghali, M., et al. (2023) Optimizing Hydrogen Production by Alkaline Water Decomposition with Transition Metal-Based Electrocatalysts. Environmental Chemistry Letters, 21, 2583-2617. https://doi.org/10.1007/s10311-023-01616-z
|
[3]
|
Gao, Y., Liu, L., Jiang, Y., Yu, D., Zheng, X., Wang, J., et al. (2024) Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. Nano-Micro Letters, 16, Article No. 162. https://doi.org/10.1007/s40820-024-01366-9
|
[4]
|
Nazir, G., Rehman, A., Lee, J., Kim, C., Gautam, J., Heo, K., et al. (2024) A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. Nano-Micro Letters, 16, Article No. 138. https://doi.org/10.1007/s40820-024-01328-1
|
[5]
|
Xu, H., Zhu, H., Huang, C., Zhang, Z., Shuai, T., Zhan, Q., et al. (2023) Recent Advances in Fe-N-C-and Co-N-C-Based Materials as Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution. Science China Chemistry, 67, 1137-1160. https://doi.org/10.1007/s11426-023-1863-8
|
[6]
|
Wu, X., Wang, R., Ma, F., Liu, X., Jia, D., Yang, H., et al. (2023) FeCo-N Encapsuled in Nitrogen-Doped Carbon Nanotubes as Bifunctional Electrocatalysts with a High Stability for Zinc Air Batteries. Rare Metals, 42, 1526-1534. https://doi.org/10.1007/s12598-022-02173-0
|
[7]
|
Yang, H., Zhang, T., Chi, X., Yu, X., Chen, J., Chen, J., et al. (2022) Promoting Oxygen Reduction via Coordination Environment Modulation through Secondary Metal-Atom Incorporation. Journal of Materials Chemistry A, 10, 19626-19634. https://doi.org/10.1039/d2ta01962k
|
[8]
|
Huang, H., Zhao, Y., Bai, Y., Li, F., Zhang, Y. and Chen, Y. (2020) Conductive Metal-Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Science, 7, Article 2000012. https://doi.org/10.1002/advs.202000012
|
[9]
|
Gao, S., Zhang, Y., Li, H., He, J., Xu, H. and Wu, C. (2021) The Microwave Absorption Properties of Residual Carbon from Coal Gasification Fine Slag. Fuel, 290, Article 120050. https://doi.org/10.1016/j.fuel.2020.120050
|
[10]
|
Zhang, H., Cheng, W., Luan, D. and Lou, X.W. (2021) Atomically Dispersed Reactive Centers for Electrocatalytic Co2 Reduction and Water Splitting. Angewandte Chemie International Edition, 60, 13177-13196. https://doi.org/10.1002/anie.202014112
|
[11]
|
Xiao, X., Zhang, H., Xiong, Y., Liang, F. and Yang, Y. (2021) Iridium-Doped N-Rich Mesoporous Carbon Electrocatalyst with Synthetic Macrocycles as Carbon Source for Hydrogen Evolution Reaction. Advanced Functional Materials, 31, Article 2105562. https://doi.org/10.1002/adfm.202105562
|
[12]
|
Li, L., Li, N., Xia, J., Zhou, S., Qian, X., Yin, F., et al. (2023) Metal-Organic Framework-Derived Co Single Atoms Anchored on N-Doped Hierarchically Porous Carbon as a Ph-Universal ORR Electrocatalyst for Zn-Air Batteries. Journal of Materials Chemistry A, 11, 2291-2301. https://doi.org/10.1039/d2ta08808h
|
[13]
|
Tsutsumi, M., Islam, M.S., Karim, M.R., Rabin, N.N., Ohtani, R., Nakamura, M., et al. (2017) Tri-Functional OER, HER and ORR Electrocatalyst Electrodes from in Situ Metal-Nitrogen Co-Doped Oxidized Graphite Rods. Bulletin of the Chemical Society of Japan, 90, 950-954. https://doi.org/10.1246/bcsj.20170102
|
[14]
|
Tian, G., Zhao, M., Yu, D., Kong, X., Huang, J., Zhang, Q., et al. (2014) Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/reduction Reaction. Small, 10, 2251-2259. https://doi.org/10.1002/smll.201303715
|
[15]
|
Wang, Q., Ye, K., Xu, L., Hu, W., Lei, Y., Zhang, Y., et al. (2019) Carbon Nanotube-Encapsulated Cobalt for Oxygen Reduction: Integration of Space Confinement and N-Doping. Chemical Communications, 55, 14801-14804. https://doi.org/10.1039/c9cc08439h
|
[16]
|
Li, J., Hou, P., Zhao, S., Liu, C., Tang, D., Cheng, M., et al. (2016) A 3D Bi-Functional Porous N-Doped Carbon Microtube Sponge Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Energy & Environmental Science, 9, 3079-3084. https://doi.org/10.1039/c6ee02169g
|
[17]
|
Tian, W., Ren, J. and Yuan, Z. (2022) In-Situ Cobalt-Nickel Alloy Catalyzed Nitrogen-Doped Carbon Nanotube Arrays as Superior Freestanding Air Electrodes for Flexible Zinc-Air and Aluminum-Air Batteries. Applied Catalysis B: Environmental, 317, Article 121764. https://doi.org/10.1016/j.apcatb.2022.121764
|
[18]
|
Zhang, W., Guo, X., Li, C., Xue, J., Xu, W., Niu, Z., et al. (2023) Ultralong Nitrogen/Sulfur Co-Doped Carbon Nano‐hollow‐sphere Chains with Encapsulated Cobalt Nanoparticles for Highly Efficient Oxygen Electrocatalysis. Carbon Energy, 5, e317. https://doi.org/10.1002/cey2.317
|
[19]
|
Xia, S., Zhou, Q., Sun, R., Chen, L., Zhang, M., Pang, H., et al. (2023) In-Situ Immobilization of Coni Nanoparticles into N-Doped Carbon Nanotubes/Nanowire-Coupled Superstructures as an Efficient Mott-Schottky Electrocatalyst toward Electrocatalytic Oxygen Reduction. Chinese Journal of Catalysis, 54, 278-289. https://doi.org/10.1016/s1872-2067(23)64545-0
|
[20]
|
Li, G., Tang, Y., Fu, T., Xiang, Y., Xiong, Z., Si, Y., et al. (2022) S, N Co-Doped Carbon Nanotubes Coupled with CoFe Nanoparticles as an Efficient Bifunctional ORR/OER Electrocatalyst for Rechargeable Zn-Air Batteries. Chemical Engineering Journal, 429, Article 132174. https://doi.org/10.1016/j.cej.2021.132174
|
[21]
|
Zhang, C., Wang, X., Ma, Z., Yao, H., Liu, H., Li, C., et al. (2023) Spin State Modulation on Dual Fe Center by Adjacent Ni Sites Enabling the Boosted Activities and Ultra-Long Stability in Zn-Air Batteries. Science Bulletin, 68, 2042-2053. https://doi.org/10.1016/j.scib.2023.07.049
|
[22]
|
Bisen, O.Y., Nandan, R., Yadav, A.K., Pavithra, B. and Kar Nanda, K. (2021) In Situ Self-Organization of Uniformly Dispersed Co-N-C Centers at Moderate Temperature without a Sacrificial Subsidiary Metal. Green Chemistry, 23, 3115-3126. https://doi.org/10.1039/d0gc04050a
|
[23]
|
Wu, M., Zhang, G., Chen, N., Hu, Y., Regier, T., Rawach, D., et al. (2021) Self-Reconstruction of Co/co2p Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc-Air Flow Batteries. ACS Energy Letters, 6, 1153-1161. https://doi.org/10.1021/acsenergylett.1c00037
|
[24]
|
Guo, H., Feng, Q., Zhu, J., Xu, J., Li, Q., Liu, S., et al. (2019) Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon/Carbon Nanotube Frameworks Derived from a Metal-Organic Framework for Tri-Functional ORR, OER and HER Electrocatalysis. Journal of Materials Chemistry A, 7, 3664-3672. https://doi.org/10.1039/c8ta11400e
|
[25]
|
Zhu, A., Tan, P., Qiao, L., Liu, Y., Ma, Y., Xiong, X., et al. (2017) Multiple Active Components, Synergistically Driven Cobalt and Nitrogen Co-Doped Porous Carbon as High-Performance Oxygen Reduction Electrocatalyst. Inorganic Chemistry Frontiers, 4, 1748-1756. https://doi.org/10.1039/c7qi00427c
|