[1]
|
Stratilová, B., Kozmon, S., Stratilová, E. and Hrmova, M. (2020) Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules, 25, Article No. 5619. https://doi.org/10.3390/molecules25235619
|
[2]
|
Boerjan, W., Ralph, J. and Baucher, M. (2003) Lignin Biosynthesis. Annual Review of Plant Biology, 54, 519-546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
|
[3]
|
Cosgrove, D.J. (2005) Growth of the Plant Cell Wall. Nature Reviews Molecular Cell Biology, 6, 850-861. https://doi.org/10.1038/nrm1746
|
[4]
|
Somerville, C. (2006) Cellulose Synthesis in Higher Plants. Annual Review of Cell and Developmental Biology, 22, 53-78. https://doi.org/10.1146/annurev.cellbio.22.022206.160206
|
[5]
|
Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61, 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
|
[6]
|
Perez, S. (2003) A Complex Plant Cell Wall Polysaccharide: Rhamnogalacturonan II. A Structure in Quest of a Function. Biochimie, 85, 109-121. https://doi.org/10.1016/s0300-9084(03)00053-1
|
[7]
|
Harholt, J., Suttangkakul, A. and Vibe Scheller, H. (2010) Biosynthesis of Pectin. Plant Physiology, 153, 384-395. https://doi.org/10.1104/pp.110.156588
|
[8]
|
Atmodjo, M.A., Hao, Z. and Mohnen, D. (2013) Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64, 747-779. https://doi.org/10.1146/annurev-arplant-042811-105534
|
[9]
|
Amos, R.A., Pattathil, S., Yang, J., Atmodjo, M.A., Urbanowicz, B.R., Moremen, K.W., et al. (2018) A Two-Phase Model for the Non-Processive Biosynthesis of Homogalacturonan Polysaccharides by the GAUT1:GAUT7 Complex. Journal of Biological Chemistry, 293, 19047-19063. https://doi.org/10.1074/jbc.ra118.004463
|
[10]
|
张保才, 周奕华. 植物细胞壁形成机制的新进展[J]. 中国科学: 生命科学, 2015, 45(6): 544-556.
|
[11]
|
Mouille, G., Ralet, M., Cavelier, C., Eland, C., Effroy, D., Hématy, K., et al. (2007) Homogalacturonan Synthesis in Arabidopsis thaliana Requires a Golgi‐Localized Protein with a Putative Methyltransferase Domain. The Plant Journal, 50, 605-614. https://doi.org/10.1111/j.1365-313x.2007.03086.x
|
[12]
|
Kim, S., Held, M.A., Zemelis, S., Wilkerson, C. and Brandizzi, F. (2015) cgr2 and cgr3 Have Critical Overlapping Roles in Pectin Methylesterification and Plant Growth in Arabidopsis thaliana. The Plant Journal, 82, 208-220. https://doi.org/10.1111/tpj.12802
|
[13]
|
Yapo, B.M., Lerouge, P., Thibault, J. and Ralet, M. (2007) Pectins from Citrus Peel Cell Walls Contain Homogalacturonans Homogenous with Respect to Molar Mass, Rhamnogalacturonan I and Rhamnogalacturonan II. Carbohydrate Polymers, 69, 426-435. https://doi.org/10.1016/j.carbpol.2006.12.024
|
[14]
|
Sénéchal, F., Wattier, C., Rustérucci, C. and Pelloux, J. (2014) Homogalacturonan-Modifying Enzymes: Structure, Expression, and Roles in Plants. Journal of Experimental Botany, 65, 5125-5160. https://doi.org/10.1093/jxb/eru272
|
[15]
|
Wan, J., Zhang, X., Neece, D., Ramonell, K.M., Clough, S., Kim, S., et al. (2008) A Lysm Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis. The Plant Cell, 20, 471-481. https://doi.org/10.1105/tpc.107.056754
|
[16]
|
Otto, V.I., Damoc, E., Cueni, L.N., Schürpf, T., Frei, R., Ali, S., et al. (2006) N-Glycan Structures and N-Glycosylation Sites of Mouse Soluble Intercellular Adhesion Molecule-1 Revealed by MALDI-TOF and FTICR Mass Spectrometry. Glycobiology, 16, 1033-1044. https://doi.org/10.1093/glycob/cwl032
|
[17]
|
Vanzin, G.F., Madson, M., Carpita, N.C., et al. (2002) The mur2 Mutant of Arabidopsis thaliana Lacks Fucosylated Xyloglucan Because of a Lesion in Fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America, 99, 3340-3345.
|
[18]
|
侯娇, 严丹丹, 黄美珠, 等. 果胶甲酯化修饰与果实质地变化研究进展[J]. 中国食品学报, 2022, 22(4): 441-449.
|
[19]
|
Lionetti, V., Cervone, F. and Bellincampi, D. (2012) Methyl Esterification of Pectin Plays a Role during Plant-Pathogen Interactions and Affects Plant Resistance to Diseases. Journal of Plant Physiology, 169, 1623-1630. https://doi.org/10.1016/j.jplph.2012.05.006
|
[20]
|
Ebert, B., Rautengarten, C., Guo, X., Xiong, G., Stonebloom, S., Smith-Moritz, A.M., et al. (2015) Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. The Plant Cell, 27, 1218-1227. https://doi.org/10.1105/tpc.114.133827
|
[21]
|
Wang, S., Meng, K., Luo, H., et al. (2020) Research Progress in Structure and Function of Pectin Methylesterase. Chinese Journal of Biotechnology, 36,1021-1030.
|
[22]
|
Wen, B., Zhang, F., Wu, X. and Li, H. (2020) Characterization of the Tomato (Solanum lycopersicum) Pectin Methylesterases: Evolution, Activity of Isoforms and Expression during Fruit Ripening. Frontiers in Plant Science, 11, Article No. 238. https://doi.org/10.3389/fpls.2020.00238
|
[23]
|
Ciardiello, M.A., D’Avino, R., Amoresano, A., Tuppo, L., Carpentieri, A., Carratore, V., et al. (2007) The Peculiar Structural Features of Kiwi Fruit Pectin Methylesterase: Amino Acid Sequence, Oligosaccharides Structure, and Modeling of the Interaction with Its Natural Proteinaceous Inhibitor. Proteins: Structure, Function, and Bioinformatics, 71, 195-206. https://doi.org/10.1002/prot.21681
|
[24]
|
Louvet, R., Cavel, E., Gutierrez, L., Guénin, S., Roger, D., Gillet, F., et al. (2006) Comprehensive Expression Profiling of the Pectin Methylesterase Gene Family during Silique Development in Arabidopsis thaliana. Planta, 224, 782-791. https://doi.org/10.1007/s00425-006-0261-9
|
[25]
|
Braybrook, S.A. and Peaucelle, A. (2013) Mechano-Chemical Aspects of Organ Formation in Arabidopsis thaliana: The Relationship between Auxin and Pectin. PLOS ONE, 8, e57813. https://doi.org/10.1371/journal.pone.0057813
|
[26]
|
Zhou, B., Mural, R.V., Chen, X., Oates, M.E., Connor, R.A., Martin, G.B., et al. (2016) A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. Plant Physiology, 173, 1371-1390. https://doi.org/10.1104/pp.16.01190
|
[27]
|
Jiang, L., Yang, S., Xie, L., Puah, C.S., Zhang, X., Yang, W., et al. (2005) vanguard1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. The Plant Cell, 17, 584-596. https://doi.org/10.1105/tpc.104.027631
|
[28]
|
Kurotani, K., Huang, C., Okayasu, K., Suzuki, T., Ichihashi, Y., Shirasu, K., et al. (2022) Discovery of the Interfamily Grafting Capacity of Petunia, a Floricultural Species. Horticulture Research, 9, uhab056. https://doi.org/10.1093/hr/uhab056
|
[29]
|
D’Avino, R., Camardella, L., Christensen, T.M.I.E., Giovane, A. and Servillo, L. (2003) Tomato Pectin Methylesterase: Modeling, Fluorescence, and Inhibitor Interaction Studies—Comparison with the Bacterial (Erwinia chrysanthemi) Enzyme. Proteins: Structure, Function, and Bioinformatics, 53, 830-839. https://doi.org/10.1002/prot.10487
|
[30]
|
Johansson, K., El-Ahmad, M., Friemann, R., Jörnvall, H., Markovič, O. and Eklund, H. (2002) Crystal Structure of Plant Pectin Methylesterase. FEBS Letters, 514, 243-249. https://doi.org/10.1016/s0014-5793(02)02372-4
|
[31]
|
Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., De Lorenzo, G., et al. (2005) Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein. The Plant Cell, 17, 849-858. https://doi.org/10.1105/tpc.104.028886
|
[32]
|
Jolie, R.P., Duvetter, T., Van Loey, A.M. and Hendrickx, M.E. (2010) Pectin Methylesterase and Its Proteinaceous Inhibitor: A Review. Carbohydrate Research, 345, 2583-2595. https://doi.org/10.1016/j.carres.2010.10.002
|
[33]
|
Pelloux, J., Rusterucci, C. and Mellerowicz, E. (2007) New Insights into Pectin Methylesterase Structure and Function. Trends in Plant Science, 12, 267-277. https://doi.org/10.1016/j.tplants.2007.04.001
|
[34]
|
Bosch, M., Cheung, A.Y. and Hepler, P.K. (2005) Pectin Methylesterase, a Regulator of Pollen Tube Growth. Plant Physiology, 138, 1334-1346. https://doi.org/10.1104/pp.105.059865
|
[35]
|
Lionetti, V., Fabri, E., De Caroli, M., Hansen, A.R., Willats, W.G.T., Piro, G., et al. (2017) Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to Botrytis. Plant Physiology, 173, 1844-1863. https://doi.org/10.1104/pp.16.01185
|
[36]
|
Wormit, A. and Usadel, B. (2018) The Multifaceted Role of Pectin Methylesterase Inhibitors (Pmeis). International Journal of Molecular Sciences, 19, Article No. 2878. https://doi.org/10.3390/ijms19102878
|
[37]
|
Willats, W.G.T., Orfila, C., Limberg, G., Buchholt, H.C., van Alebeek, G.W.M., Voragen, A.G., et al. (2001) Modulation of the Degree and Pattern of Methyl-Esterification of Pectic Homogalacturonan in Plant Cell Walls. Implications for Pectin Methyl Esterase Action, Matrix Properties, and Cell Adhesion. Journal of Biological Chemistry, 276, 19404-19413. https://doi.org/10.1074/jbc.m011242200
|
[38]
|
Fries, M., Ihrig, J., Brocklehurst, K., Shevchik, V.E. and Pickersgill, R.W. (2007) Molecular Basis of the Activity of the Phytopathogen Pectin Methylesterase. The EMBO Journal, 26, 3879-3887. https://doi.org/10.1038/sj.emboj.7601816
|
[39]
|
Pinzón-Latorre, D. and Deyholos, M.K. (2013) Characterization and Transcript Profiling of the Pectin Methylesterase (PME) and Pectin Methylesterase Inhibitor (PMEI) Gene Families in Flax (linum Usitatissimum). BMC Genomics, 14, 742. https://doi.org/10.1186/1471-2164-14-742
|
[40]
|
Catoire, L., Pierron, M., Morvan, C., du Penhoat, C.H. and Goldberg, R. (1998) Investigation of the Action Patterns of Pectinmethylesterase Isoforms through Kinetic Analyses and NMR Spectroscopy. Implications in Cell Wall Expansion. Journal of Biological Chemistry, 273, 33150-33156. https://doi.org/10.1074/jbc.273.50.33150
|
[41]
|
Liners, F., Thibault, J. and Van Cutsem, P. (1992) Influence of the Degree of Polymerization of Oligogalacturonates and of Esterification Pattern of Pectin on Their Recognition by Monoclonal Antibodies. Plant Physiology, 99, 1099-1104. https://doi.org/10.1104/pp.99.3.1099
|
[42]
|
Reca, I.B., Lionetti, V., Camardella, L., D’Avino, R., Giardina, T., Cervone, F., et al. (2012) A Functional Pectin Methylesterase Inhibitor Protein (SolyPMEI) Is Expressed during Tomato Fruit Ripening and Interacts with PME-1. Plant Molecular Biology, 79, 429-442. https://doi.org/10.1007/s11103-012-9921-2
|
[43]
|
Hothorn, M., Van den Ende, W., Lammens, W., Rybin, V. and Scheffzek, K. (2010) Structural Insights into the Ph-Controlled Targeting of Plant Cell-Wall Invertase by a Specific Inhibitor Protein. Proceedings of the National Academy of Sciences, 107, 17427-17432. https://doi.org/10.1073/pnas.1004481107
|
[44]
|
Bonavita, A., Carratore, V., Ciardiello, M.A., Giovane, A., Servillo, L. and D’Avino, R. (2016) Influence of pH on the Structure and Function of Kiwi Pectin Methylesterase Inhibitor. Journal of Agricultural and Food Chemistry, 64, 5866-5876. https://doi.org/10.1021/acs.jafc.6b01718
|
[45]
|
Li, Z., Sela, A., Fridman, Y., Garstka, L., Höfte, H., Savaldi-Goldstein, S., et al. (2021) Optimal BR Signalling Is Required for Adequate Cell Wall Orientation in the Arabidopsis Root Meristem. Development, 148, dev199504. https://doi.org/10.1242/dev.199504
|
[46]
|
Wolf, S., Mouille, G. and Pelloux, J. (2009) Homogalacturonan Methyl-Esterification and Plant Development. Molecular Plant, 2, 851-860. https://doi.org/10.1093/mp/ssp066
|
[47]
|
Chanliaud, E., Burrows, K., Jeronimidis, G. and Gidley, M. (2002) Mechanical Properties of Primary Plant Cell Wall Analogues. Planta, 215, 989-996. https://doi.org/10.1007/s00425-002-0783-8
|
[48]
|
Park, E., Díaz-Moreno, S.M., Davis, D.J., Wilkop, T.E., Bulone, V. and Drakakaki, G. (2014) Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Plant Physiology, 165, 1019-1034. https://doi.org/10.1104/pp.114.241497
|
[49]
|
Turner, S. and Kumar, M. (2017) Cellulose Synthase Complex Organization and Cellulose Microfibril Structure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, Article ID: 20170048. https://doi.org/10.1098/rsta.2017.0048
|
[50]
|
Bidhendi, A.J., Altartouri, B., Gosselin, F.P. and Geitmann, A. (2019) Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. Cell Reports, 28, 1237-1250.e6. https://doi.org/10.1016/j.celrep.2019.07.006
|
[51]
|
Zhou, L., Wang, L., Chen, X., Ge, Z., Mergner, J., Li, X., et al. (2023) The RALF Signaling Pathway Regulates Cell Wall Integrity during Pollen Tube Growth in Maize. The Plant Cell, 36, 1673-1696. https://doi.org/10.1093/plcell/koad324
|
[52]
|
Paniagua, C., Posé, S., Morris, V.J., Kirby, A.R., Quesada, M.A. and Mercado, J.A. (2014) Fruit Softening and Pectin Disassembly: An Overview of Nanostructural Pectin Modifications Assessed by Atomic Force Microscopy. Annals of Botany, 114, 1375-1383. https://doi.org/10.1093/aob/mcu149
|
[53]
|
Shan, W., Guo, Y., Wei, W., Chen, J., Lu, W., Yuan, D., et al. (2019) Banana Mabzr1/2 Associate with Mampk14 to Modulate Cell Wall Modifying Genes during Fruit Ripening. Plant Cell Reports, 39, 35-46. https://doi.org/10.1007/s00299-019-02471-5
|
[54]
|
Hongo, S., Sato, K., Yokoyama, R. and Nishitani, K. (2012) Demethylesterification of the Primary Wall by PECTIN METHYLESTERASE35 Provides Mechanical Support to the Arabidopsis Stem. The Plant Cell, 24, 2624-2634. https://doi.org/10.1105/tpc.112.099325
|
[55]
|
Peaucelle, A., Louvet, R., Johansen, J.N., Salsac, F., Morin, H., Fournet, F., et al. (2011) The Transcription Factor BELLRINGER Modulates Phyllotaxis by Regulating the Expression of a Pectin Methylesterase in Arabidopsis. Development, 138, 4733-4741. https://doi.org/10.1242/dev.072496
|
[56]
|
Phyo, P., Wang, T., Xiao, C., Anderson, C.T. and Hong, M. (2017) Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR. Biomacromolecules, 18, 2937-2950. https://doi.org/10.1021/acs.biomac.7b00888
|
[57]
|
Haas, K.T., Wightman, R., Meyerowitz, E.M. and Peaucelle, A. (2020) Pectin Homogalacturonan Nanofilament Expansion Drives Morphogenesis in Plant Epidermal Cells. Science, 367, 1003-1007. https://doi.org/10.1126/science.aaz5103
|
[58]
|
Palacio-Lopez, K., Sun, L., Reed, R., Kang, E., Sørensen, I., Rose, J.K.C., et al. (2020) Experimental Manipulation of Pectin Architecture in the Cell Wall of the Unicellular Charophyte, Penium margaritaceum. Frontiers in Plant Science, 11, Article No. 1032. https://doi.org/10.3389/fpls.2020.01032
|
[59]
|
Derbyshire, P., Findlay, K., McCann, M.C. and Roberts, K. (2007) Cell Elongation in Arabidopsis Hypocotyls Involves Dynamic Changes in Cell Wall Thickness. Journal of Experimental Botany, 58, 2079-2089. https://doi.org/10.1093/jxb/erm074
|
[60]
|
Müller, K., Levesque-Tremblay, G., Bartels, S., Weitbrecht, K., Wormit, A., Usadel, B., et al. (2012) Demethylesterification of Cell Wall Pectins in Arabidopsis Plays a Role in Seed Germination. Plant Physiology, 161, 305-316. https://doi.org/10.1104/pp.112.205724
|
[61]
|
Dorokhov, Y.L., Mäkinen, K., Frolova, O.Y., Merits, A., Saarinen, J., Kalkkinen, N., et al. (1999) A Novel Function for a Ubiquitous Plant Enzyme Pectin Methylesterase: The Host‐Cell Receptor for the Tobacco Mosaic Virus Movement Protein. FEBS Letters, 461, 223-228. https://doi.org/10.1016/s0014-5793(99)01447-7
|
[62]
|
Hewezi, T., Howe, P., Maier, T.R., Hussey, R.S., Mitchum, M.G., Davis, E.L., et al. (2008) Cellulose Binding Protein from the Parasitic Nematode Heterodera schachtii Interacts with Arabidopsis Pectin Methylesterase: Cooperative Cell Wall Modification during Parasitism. The Plant Cell, 20, 3080-3093. https://doi.org/10.1105/tpc.108.063065
|
[63]
|
de Freitas, S.T., Handa, A.K., Wu, Q., Park, S. and Mitcham, E.J. (2012) Role of Pectin Methylesterases in Cellular Calcium Distribution and Blossom‐End Rot Development in Tomato Fruit. The Plant Journal, 71, 824-835. https://doi.org/10.1111/j.1365-313x.2012.05034.x
|
[64]
|
Chang, Y., Yamamoto, Y. and Matsumoto, H. (1999) Accumulation of Aluminium in the Cell Wall Pectin in Cultured Tobacco (Nicotiana tabacum L.) Cells Treated with a Combination of Aluminium and Iron. Plant, Cell & Environment, 22, 1009-1017. https://doi.org/10.1046/j.1365-3040.1999.00467.x
|
[65]
|
Wang, M., Yuan, D., Gao, W., Li, Y., Tan, J. and Zhang, X. (2013) A Comparative Genome Analysis of PME and PMEI Families Reveals the Evolution of Pectin Metabolism in Plant Cell Walls. PLOS ONE, 8, e72082. https://doi.org/10.1371/journal.pone.0072082
|
[66]
|
Liu, T., Yu, H., Xiong, X., Yue, X., Yu, Y., Huang, L., et al. (2018) Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica Campestris Ssp. Chinensis. International Journal of Molecular Sciences, 19, Article No. 1338. https://doi.org/10.3390/ijms19051338
|
[67]
|
Jeong, H.Y., Nguyen, H.P. and Lee, C. (2015) Genome-Wide Identification and Expression Analysis of Rice Pectin Methylesterases: Implication of Functional Roles of Pectin Modification in Rice Physiology. Journal of Plant Physiology, 183, 23-29. https://doi.org/10.1016/j.jplph.2015.05.001
|
[68]
|
Ding, A., Tang, X., Yang, D., Wang, M., Ren, A., Xu, Z., et al. (2020) ERF4 and MYB52 Transcription Factors Play Antagonistic Roles in Regulating Homogalacturonan De-Methylesterification in Arabidopsis Seed Coat Mucilage. The Plant Cell, 33, 381-403. https://doi.org/10.1093/plcell/koaa031
|
[69]
|
Liu, N., Sun, Y., Pei, Y., Zhang, X., Wang, P., Li, X., et al. (2018) A Pectin Methylesterase Inhibitor Enhances Resistance to Verticillium Wilt. Plant Physiology, 176, 2202-2220. https://doi.org/10.1104/pp.17.01399
|
[70]
|
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. and Provart, N.J. (2007) An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLOS ONE, 2, e718. https://doi.org/10.1371/journal.pone.0000718
|
[71]
|
Saez-Aguayo, S., Ralet, M., Berger, A., Botran, L., Ropartz, D., Marion-Poll, A., et al. (2013) Pectin Methylesterase Inhibitor6 Promotes Arabidopsis Mucilage Release by Limiting Methylesterification of Homogalacturonan in Seed Coat Epidermal Cells. The Plant Cell, 25, 308-323. https://doi.org/10.1105/tpc.112.106575
|
[72]
|
Shi, D., Ren, A., Tang, X., Qi, G., Xu, Z., Chai, G., et al. (2018) myb52 Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage. Plant Physiology, 176, 2737-2749. https://doi.org/10.1104/pp.17.01771
|
[73]
|
Li, M., Xu, B., Liu, J., Yang, X., Zhang, J., Jia, C., et al. (2011) Identification and Expression Analysis of Four 14-3-3 Genes during Fruit Ripening in Banana (Musa acuminata L. AAA Group, Cv. Brazilian). Plant Cell Reports, 31, 369-378. https://doi.org/10.1007/s00299-011-1172-1
|
[74]
|
Hong, M.J., Kim, D.Y., Lee, T.G., et al. (2010) Functional Characterization of Pectin Methylesterase Inhibitor (PMEI) in Wheat. Genes & Genetic Systems, 85, 97-106.
|
[75]
|
Lionetti, V. (2015) PECTOPLATE: The Simultaneous Phenotyping of Pectin Methylesterases, Pectinases, and Oligogalacturonides in Plants during Biotic Stresses. Frontiers in Plant Science, 6, Article No. 331. https://doi.org/10.3389/fpls.2015.00331
|
[76]
|
Liu, N., Sun, Y., Wang, P., Duan, H., Ge, X., Li, X., et al. (2018) Mutation of Key Amino Acids in the Polygalacturonase‐inhibiting Proteins Ckpgip1 and Ghpgip1 Improves Resistance to Verticillium Wilt in Cotton. The Plant Journal, 96, 546-561. https://doi.org/10.1111/tpj.14048
|
[77]
|
Del Corpo, D., Fullone, M.R., Miele, R., Lafond, M., Pontiggia, D., Grisel, S., et al. (2020) Atpme17 Is a Functional Arabidopsis thaliana Pectin Methylesterase Regulated by Its PRO Region That Triggers PME Activity in the Resistance to botrytis Cinerea. Molecular Plant Pathology, 21, 1620-1633. https://doi.org/10.1111/mpp.13002
|
[78]
|
Herold, L., Ordon, J., Hua, C., Kohorn, B.D., Nürnberger, T., DeFalco, T.A., et al. (2024) Arabidopsis WALL-ASSOCIATED KINASES Are Not Required for Oligogalacturonide-Induced Signaling and Immunity. The Plant Cell, 37, koae317. https://doi.org/10.1093/plcell/koae317
|
[79]
|
Lionetti, V., Raiola, A., Camardella, L., Giovane, A., Obel, N., Pauly, M., et al. (2007) Overexpression of Pectin Methylesterase Inhibitors in Arabidopsis Restricts Fungal Infection by Botrytis cinerea. Plant Physiology, 143, 1871-1880. https://doi.org/10.1104/pp.106.090803
|