植物细胞壁结构与果胶代谢调控机制研究进展
Research Progress on Plant Cell Wall Structure and Regulatory Mechanism of Pectin Metabolism
摘要: 植物细胞壁是由纤维素、半纤维素和果胶等组分构成的动态网络。其中,果胶作为细胞间层的关键成分,通过甲酯化修饰调控细胞壁的机械特性和生理功能。在这篇综述中,重点剖析了果胶代谢的调控网络,特别是果胶甲酯酶(pectin methylesterase, PME)的分子特性与生物学功能。PME通过三种不同的作用模式动态调节果胶的去甲酯化过程,进而影响钙桥形成和细胞壁刚性的改变。PME活性受到pH值、离子浓度以及果胶甲酯酶抑制因子(pectin methylesterase inhibitor, PMEI)的精细调控,其功能具有组织特异性,在重金属螯合和病原防御等胁迫响应中也发挥重要作用。PMEI与PME通过1:1的特异性结合实现对酶活性的调控,其表达受激素信号和转录因子调控,是植物抗病中的关键一环。
Abstract: The plant cell wall constitutes a dynamic and complex network comprising cellulose, hemicellulose, pectin, and other components. Among these, pectin serves as a critical component of the intercellular layer, modulating the mechanical properties and physiological functions of the cell wall via methylation modification. This review provides an in-depth analysis of the regulatory network underlying pectin metabolism, with particular emphasis on the molecular characteristics and biological functions of pectin methylesterase (PME). PME dynamically regulates the demethylation of pectin through three distinct modes of action, thereby influencing calcium bridge formation and alterations in cell wall rigidity. The activity of PME is finely controlled by factors such as pH levels, ion concentrations, and pectin methylesterase inhibitor (PMEI). Its function exhibits tissue-specificity and plays a pivotal role in stress responses, including heavy metal chelation and pathogen defense mechanisms. PMEI and PME regulate enzyme activity through specific 1:1 binding interactions. Their expression is governed by hormonal signals and transcription factors, representing a key regulatory link in plant disease resistance.
文章引用:陈宇轩. 植物细胞壁结构与果胶代谢调控机制研究进展[J]. 世界生态学, 2025, 14(3): 285-297. https://doi.org/10.12677/ije.2025.143034

1. 细胞壁的结构与组成特征

1.1. 细胞壁层次结构

植物细胞壁并不是一成不变的静态结构,而是由纤维素微纤丝交织而成的动态网络。该结构由外到内可分为三个主要区域,最外侧的胞间层像“分子胶水”一样将相邻细胞粘合在一起,这里充斥着粘稠的果胶类物质;向内部延伸的是初生壁——这个在细胞发育早期形成的可塑性区域,其独特之处在于直链纤维素与支链杂多糖形成了“钢筋–混凝土”般的复合架构[1];伴随细胞成熟,最内层的次生壁开始不断加厚,最终形成坚硬的“铠甲”[2]

1.2. 细胞壁化学组成

在成分层面,细胞壁主要由纤维素、半纤维素和果胶等组成[3]。纤维素由线性β-1,4-连接的葡萄糖分子聚合而成,这些长链通过氢键高度有序地结合,聚集成束状微纤维,赋予细胞壁刚性支撑[4]。半纤维素是一类分支化的杂多糖,常见的有木葡聚糖、甘露葡聚糖以及含鼠李糖的半乳糖醛酸聚糖等,它们交织在纤维素骨架之间,进一步增强细胞壁的稳定性[5]。半纤维素是一种具有异质性的多糖类物质,在常温条件下可通过碱溶液进行提取。果胶属于高度分支的酸性杂多糖,以半乳糖醛酸(galacturonic acid, GalA)为主要成分,是细胞壁基质中最具有结构多样性的组分,尤其富集于胞间层。尽管其溶解特性与半纤维素类似,但果胶还具有独特的提取方式—既可通过螯合剂解离金属离子交联,也能经热水处理部分降解,因而成为细胞壁中溶解性最突出的高分子物质。果胶的分子结构特征表现为含有GalA、鼠李糖(rhamnose, Rha)、半乳糖(galactose, Gal)及阿拉伯糖(arabinose, Ara)等标志性糖单元,其中GalA约占果胶总量的70%。根据果胶的组成和结构特点,可分为三类结构域(见图1)。

(1) 同型半乳糖醛酸聚糖(homogalacturonan, HG),果胶的核心组分,以α-1,4-糖苷键连接的GalA为骨架,无分支,并常通过甲酯化和乙酰化修饰增加多样化。HG在高尔基体内形成时通常带有密集的甲基修饰,但当转运到细胞壁后,果胶甲酯酶(pectin methylesterase, PME)会催化部分去酯化反应,使其甲基化水平下降,这个过程暴露出游离的羧基,使其能够与钙离子(Ca2+)结合,形成“蛋盒”(egg box)结构的钙桥,从而增强了细胞壁网络的交联程度,细胞壁的结构稳定性和机械强度得以提高。

(2) 鼠李糖半乳糖醛酸聚糖 Ⅰ (rhamnogalacturonan I, RGI),一类具有复杂支链结构的特征性果胶多糖。主链由Rha和GalA交替构成,并常带有Ara、Gal等侧链。

(3) 鼠李糖半乳糖醛酸聚糖Ⅱ (rhamnogalacturonan II, RGII),一种高度分支的复杂多糖,主链结构与HG相似,由α-1,4-GalA线性聚合而成。但具有4类复杂的侧链,由12种单糖通过20余种糖苷键组合而成[6]

Figure 1. Schematic diagram of pectin structure [7]

1. 果胶结构示意图[7]

2. 果胶代谢调控网络

2.1. 生物合成途径

果胶的生物合成是一个高度复杂的多种酶协同的过程,依赖多种前体物质和大量特异性转移酶,包括甲基转移酶和乙酰转移酶等,这些酶或独立或合作,调控果胶的起始、延伸和分支。此过程需要核苷酸糖提供糖基,腺苷蛋氨酸提供甲基,乙酰辅酶A提供乙酰基[8]

研究表明,不同类型的果胶骨架构建实际上是由特定的糖基转移酶及其复合体精确催化的。半乳糖醛酸转移酶(galacturonosyltransferase 1, GAUT1)与GAUT7形成功能性复合体,其中GAUT7将整个复合体固定在高尔基体膜上,GAUT1则负责将UDP-GalA上的GalA单元转移到寡聚GalA受体上,实现HG主链的延伸[9];RGI主链的组装由鼠李糖基转移酶调控,催化形成GalA-Rha交替聚合的结构,同时半乳糖基转移酶负责在Gal侧链上一个接一个地添加Gal单元;RGII的生物修饰过程需要木糖基转移酶在特定位置接上关键的末端木糖残基[10]

果胶的生物合成始于高尔基体,接着在高尔基体或分泌囊泡中经历甲基化和乙酰化修饰,果胶甲基转移酶和乙酰基转移酶在此过程中发挥重要作用。在翻译后修饰阶段,QUA2/TSD2和CGR2/3被鉴定为HG甲酯化的核心酶,当拟南芥中的qua2基因发生突变时,植株不仅HG含量骤减,甲酯化程度(degree of methylation, DM)也明显降低,证实其在维持果胶甲酯化中的重要作用[11]cgr2 cgr3双突变体则显示微粒体中甲基转移酶活性下降,导致植株矮化[12]。这些修饰酶与合成酶的协作,共同决定了果胶分子的最终形态和功能。

2.2. 结构修饰特征

果胶常被甲酯、醚类和乙酰酯等非糖基团修饰,这些修饰发生在GalA单元的羧基上,使得细胞壁的疏水性增强,改变了果胶自身的电荷特性和酶解敏感性,DM和乙酰化度(degree of acetylation, DA)是描述这些基团修饰程度的重要参数。果胶聚合度(degree of polymerization, DP)表示果胶多糖链中包含多少个单糖单元,但由于从细胞壁中提取的果胶通常表现出同质性,其确切的DP长度目前仍难以精确测量[13]。研究表明,果胶的化学结构特性,如DM、DA和DP,决定了其降解产生的寡聚糖(oligosaccharides,OGAs)能否作为植物免疫响应的信号分子[14]。例如,几丁质作为一种典型的病原体相关分子模式(pathogen-associated molecular patterns, PAMP),可被植物细胞膜上的受体识别,诱导产生脱乙酰化的几丁质寡糖(COs, DP 4-8),从而激活植物的免疫反应[15]。研究表明,拟南芥(Arabidopsis thaliana)对部分乙酰化的COs响应剧烈,而对完全乙酰化的几丁质几乎没有反应[16]。果胶的多糖链上可以连接多种侧链,例如拟南芥中木葡聚糖侧链的岩藻糖基化可促进其与纤维素微纤丝的特异性结合,缺失岩藻糖侧链的突变体表现出细胞壁力学强度下降,最终导致植株矮化[17]

2.3. 降解调控机制

果胶的修饰与降解在维持植物细胞壁动态平衡和响应逆境胁迫中扮演重要角色[18]。作为果胶的主要成分,HG在不同生理条件下通过多种酶的协调作用实现精细调控[14]。其中,PME通过去除HG链上的甲基基团,产生带负电荷的羧基,这些羧基能与Ca2+形成分子桥,增强细胞壁的机械性能。果胶甲酯酶抑制因子(pectin methylesterase inhibitor, PMEI)精确调控PME的活性,使其维持适当的甲酯化水平。HG链一旦去甲酯化就会进一步被多聚半乳糖醛酸酶(polygalacturonase, PG)或果胶裂解酶(pectate lyase, PL)降解,PG通过水解糖苷键,PL通过β-消除反应切断多糖链,最终导致细胞壁松弛。这种由PME启动的级联反应,通过调整HG的酯化状态和链长,灵活控制着细胞壁的理化特性[19]

果胶的修饰过程是由一套复杂的抑制蛋白系统来调控的,除PMEI外还有多聚半乳糖醛酸酶抑制蛋白(polygalacturonase inhibiting protein, PGIP)、果胶裂解酶抑制蛋白(pectin lyase inhibitor protein, PNLIP)等外源酶抑制剂。PGIP的分子结构中包含多个保守的亮氨酸重复单元,可通过空间位阻效应特异性抑制外源PG活性,有效阻止其对HG的降解,从而增强植物对病原菌的抵抗能力[14]。相比之下,目前对PNLIP的三维结构特征及其在植物抗病反应中的分子调控机制仍缺少深入的研究。虽然这些蛋白能显著降低PME、PG和PL等果胶修饰酶的活性,但其抑制作用可被枯草杆菌蛋白酶特异性解除[14] [20]

3. 果胶甲酯酶的分子特性

3.1. 基因家族特征

PME在植物中通常以多基因家族的形式存在,其成员数量在不同物种间差异显著,这可能与各物种细胞壁中HG的含量及结构需求有关。通过整合代表性物种的基因组数据发现(见表1),双子叶植物的PME/PMEI基因数量普遍多于单子叶植物,其中番茄(Solanum lycopersicum)基因组中鉴定出80个PME,而水稻(Oryza sativa)的PME家族成员则精简许多,仅有41个,这种差异反映了单子叶植物细胞壁中HG含量较低的特性,导致对PME基因的需求相应减少[8] [14] [21] [22]

这些PME基因的表达谱在不同组织、发育时期和环境条件下呈现出独特的时空特征[23]。拟南芥的AtPME3在根尖和花粉中高表达,而AtPME41主要在叶片中发挥作用[24]。除此以外,PME基因的表达受到生长素、油菜素内酯等多种激素的调节,并能灵敏地响应病原侵袭和盐胁迫等环境压力[25] [26]

由于PME基因家族成员间存在功能重叠,单个基因的敲除通常不会引起显著的表型变化。单独敲除拟南芥AtPME3AtPME17基因时,植株几乎看不出什么异常,但当两者同时缺失时,花粉管的生长就会明显受阻[27]。同样只有当番茄中的SlPME1SlPME3共沉默时,果实硬度才会显著下降,证实其在果胶修饰中的协同效应[28]

Table 1. Summary of PME/PMEI gene family characteristics in different species

1. 不同物种PME/PMEI基因家族特征汇总

物种

科属

PME 基因数量

PMEI 基因数量

典型PME等 电点(pI)

主要底物偏好

数据来源

Arabidopsis thaliana

十字花科

66

69

8.2~9.5 (Type I)

高DM-HG

[14] [21]

Oryza sativa

禾本科

41

35

7.5~8.8 (Type II)

中DM-HG

[8] [21]

Solanum lycopersicum

茄科

80

52

8.5 (SlPME1)

高DM-HG

[22]

Brassica napus

十字花科

72

100

8.0~9.2

高DM-HG

[66]

Vitis vinifera

葡萄科

53

47

7.8~8.6

中高DM-HG

[65]

3.2. 蛋白结构特征

尽管不同来源的PME存在差异,但它们都保留着一组高度保守的关键残基,包括Asp157、Arg325、Gly44/Gly154/Gly161和Trp227等[29]。这些残基共同参与催化反应:Asp157作为质子受体,Arg325负责稳定反应过渡态,Gly残基维持结构的柔性,而Trp227则专门负责与底物结合[30]

X射线晶体衍射研究揭示了PME独特的空间构象,与典型的α/β折叠水解酶不同,PME的核心结构是由三个平行β折叠卷曲形成的右手β螺旋[31]。PME的催化机制不依赖于传统的Ser-His-Asp三联体,而是采用独特的酸碱催化方式,其中Asp157和Arg325发挥关键作用[32]

高等植物中的PME根据结构差异可分为两个主要亚类。Type I PME是高等植物特有的形式,具有信号肽、跨膜域和加工模块,分子量较大,N端含有前导区(PRO region) 。PRO区是Type I PME的标志性结构,具有多重功能:(1) 其酸性/中性的等电点与催化域的碱性等电点形成互补,可能在分泌过程中抑制酶活性,防止胞内果胶的过早去甲酯化[34];(2) 与PMEI结构相似,提示其可能通过类似机制调控PME活性[14];(3) 参与蛋白的正确折叠和靶向运输[33]。Type II PME代表更原始的形式,具有多样化的靶向信号,分子量较小,缺乏PRO区。根据靶向信号的不同,Type II PME又可细分为:经典分泌型(含信号肽)、跨膜锚定型(含跨膜域)和非经典分泌型(缺乏明显靶向信号) [35]

3.3. 酶学特性

PME通过特异性识别高甲酯化HG链上的羧基甲酯,催化甲氧基生成游离羧基和甲醇[36]。这一过程使得新暴露的羧基与Ca2+等二价阳离子形成Egg-box结构,促进果胶凝胶化,从而增强细胞间粘附力和细胞壁机械强度[37]。通过X射线晶体衍射和定点突变研究,已明确PME的催化中心由高度保守的氨基酸残基构成,包括2个天冬氨酸(D157和D136)、2个谷氨酰胺(Q113和Q135)、1个精氨酸(R225)以及若干芳香族氨基酸(如F138和Y160)。其中,D157在R225的氢键帮助下对HG的甲氧基羰基发起攻击,形成带负电的过渡态,Q113、Q135和D136则通过侧链相互作用维持过渡态稳定,最终由D136完成质子转移,释放出甲醇[38]

根据酶与底物相互作用的特征,PME可分为三种典型催化模式(见表2)。连续催化模式通常产生低甲酯化区块,促进Ca2+介导的凝胶化;而随机模式则形成甲酯化梯度,为PG等提供作用位点[14] [33]。这种差异直接影响细胞壁性质,如番茄过表达连续型PME导致果实硬度增加40%,而随机型PME过表达则加速软化[34]

Table 2. Three typical catalytic modes of PME

2. PME三种典型催化模式

催化模式

作用特征

生物学效应

主要来源

单链连续模式

在单条HG链上连续催化 ≥ 6次去甲酯化

形成Ca2+交联的稳定凝胶结构

植物和细菌的碱性PME

多向连续模式

在多条HG链间跳跃但仍保持连续模式

构建三维凝胶网络

碱性PME

多链随机模式

随机催化1~3次去甲酯化后解离

激活果胶降解酶引发壁松弛

某些植物和真菌的酸性PME

PME同工酶在理化性质上表现出显著的多样性,直接影响其催化活性和生物学功能[23]。从等电点分布来看,植物来源的PME多为碱性(pI 7.0~9.5),如番茄SlPME1 (pI 8.2);而真菌PME多呈酸性(pI 3.5~5.0),如黑曲霉AnPME (pI 4.3) [39]。这种等电点差异与其最适pH范围密切相关,碱性PME通常在pH 7.0~8.5时表现出最高活性,而酸性PME的最适pH偏向酸性环境(4.5~6.0) 。离子环境对PME活性的调控机制更复杂,研究表明100mM Na⁺能让柑橘PME活力翻倍,但10 mM Ca2⁺却会因竞争性结合导致活性下降30% [40];Al3⁺能够通过置换被抑制的PME-HG复合物中的Ca2⁺,从而恢复酶活性[41]。除此之外,不同PME同工酶对底物初始DM的亲和力存在显著差异,豌豆PME1对中等甲酯化的HG表现出最高亲和力,而PME2则更倾向于催化高甲酯化的底物[14]

PME活性还受到PMEI的特异性调控。番茄PMEI具有极强的酸性特征,分子量约为15.8 kDa,其结构稳定性依赖于4个保守半胱氨酸残基形成的两对分子内二硫键(Cys31~Cys85和Cys53~Cys140),这对维持其以α螺旋为主的稳定三维结构至关重要[42]。PMEI在植物中也呈现多基因家族分布,如拟南芥有69个PMEI同源基因[14],而在水稻中仅发现35个[8]。研究表明,PMEI与PME以1:1化学计量比严格配对,用α2、α3和α4螺旋结构域覆盖PME的活性位点,形成空间位阻,完全阻断底物结合通道,从而抑制果胶水解,这种结合会随pH升高而变弱[39]。PMEI的抑制谱广泛,能抑制多种植物PME(如拟南芥PMEI可阻断番茄PME与底物结合[43]),但对真菌和细菌PME无效,这可能与细菌PME催化结合区位置较深,以及植物PME关键氨基酸位点保守性较高有关[14]。近年来,PMEI已被用作分子探针[23],通过与特定抗体联用,研究人员能实时观察果胶在细胞壁中的动态变化过程[44]

3.4. 果胶甲酯酶的生物学功能

PME是一种胞外酶,其合成始于内质网,随后在高尔基体内经历糖基化加工,最终通过胞吐作用被释放至细胞壁[45]。在该过程中,PME通过动态调节果胶的DM,不仅能直接改变细胞壁的机械性能,更能重新定义细胞壁多聚物的排列组合方式,影响沉积模式[46]

3.4.1. 细胞壁构建调控

体外研究表明,PME介导的果胶DM决定了其与纤维素微纤丝的结合强度,当DM降低时,果胶与微纤丝的结合更紧密,而高DM果胶的结合能力较弱[47]。过去我们认为纤维素微纤丝的排列主要由皮层微管引导,但Hirakawa等人使用Endosidin-7 (ES7)处理拟南芥时发现,虽然微纤丝的规则排列被破坏,微管却没受到影响,暗示存在独立于微管的微纤丝调控途径[48]。深入研究表明,在经ES7处理的植物中,过表达PME或PG能恢复微纤丝的规则排列。免疫金标记技术检测发现,ES7虽不直接结合HG,却能让果胶平均DM从55%升到72%,大幅减少钙桥的形成,从而削弱果胶网络与微纤丝的结合强度[49]。而在PME35PGX2过表达株系中,低DM果胶的比例增加至野生型的2.3倍,通过增强氢键网络,使微纤丝重新沿微管方向有序沉积[50]。这一发现直接证实了PME通过动态调节果胶DM来维持微纤丝的空间秩序。除此之外,HG的积累会触发细胞壁的力学补偿机制,当用纤维素合成抑制剂2,6-二氯苯甲腈处理烟草BY-2细胞时,HG合成关键基因GAUT12的表达量上调4.8倍,酸性PME (如AtPME41)的表达增加3.2倍,导致HG含量提升约35% [51]

果胶DM是调控植物细胞壁机械特性的重要分子特征之一。PME通过动态调控果胶DM,精确控制细胞壁硬度变化。新分泌的高DM果胶具有优异的可塑性,而PME介导的去甲酯化过程可触发两种截然不同的理化转变:(1) 低DM果胶被PG降解为可溶性GalA片段,导致细胞壁软化;(2) 低DM果胶通过Ca2⁺交联形成刚性凝胶网络,增强细胞壁硬度[52]。番茄果实成熟时,PME通过重构果胶结构动态调节甲醇和乙醇的生成,这一模式在不同植物中普遍存在[33]。香蕉PME通过将不溶性果胶转化为可溶性形式,协同其他细胞壁水解酶降低细胞壁多糖DP,最终促进果肉分离和果皮软化[53]。PME对细胞壁强度的调控具有显著的组织特异性,拟南芥Atpme35突变体因茎秆无力而匍匐[54];而在茎端分生组织,生长素诱导的局部去甲酯化反而创造柔性微区促进器官发生[55]。过去认为果胶去甲酯化会通过形成钙桥来增加细胞壁硬度的观点与最新研究发现存在矛盾,在pin1突变体研究中,生长素介导的顶端发育反而依赖于去甲酯化诱导的细胞壁软化,这种表型分歧可能反映组织特异性调控机制——茎秆基部通过去甲酯化逐步硬化,而分生组织区则利用相同生化过程实现局部软化[56]。目前关于PME调控细胞壁力学特性的方向性(硬化或软化)仍存在争议,需结合时空特异性分析进一步阐明。

大量研究表明,果胶DM的动态变化是调控细胞壁弹性的关键因素,直接影响细胞伸长。最新研究突破了传统认知,发现果胶去甲酯化主导细胞不对称生长,拟南芥根表皮在激素处理下,细胞壁膨胀与果胶去甲酯化密切相关。除此之外,果胶与纤维素的相互作用也会影响细胞壁的各向异性,果胶的定向排列和纤维素微纤丝的取向共同决定了细胞壁的机械性质。单细胞藻类中,果胶在细胞生长过程中呈现动态分布特征,从初生壁向胞间层迁移,这种重排过程对维持细胞壁稳定性至关重要,当细胞壁合成终止而生长持续时,纤维素的重排会取代果胶成为调控下胚轴伸长的决定性因素[58] [59]。基因功能研究进一步揭示了PME的特异功能:(1) 拟南芥AtPPME1基因敲除导致花粉管尖端果胶甲酯化异常,显著抑制花粉管穿入花柱的能力;(2) AtPMEI5超表达株系表现出种子萌发加速,证实PME通过调节细胞壁伸展特性促进胚根生长[60]。这些发现共同构建了果胶甲酯化调控细胞壁弹性的分子框架,PME介导的果胶去甲酯化既能诱导细胞壁松弛促进伸长,又能通过时空特异性表达精确调控不同组织的生长发育进程。

3.4.2. 胁迫响应机制

PME在应对环境胁迫时主要通过两种方式发挥作用,第一种是直接与胁迫因子互作,第二种是通过催化底物反应产生间接效应[33]。研究表明,烟草花叶病毒(TMV)的运动蛋白能够与宿主PME结合,通过改变PME的定位或活性来调整细胞壁的通透性,为病毒扩散铺路。当PME的C端结合区域被删除时,TMV的传播会受到显著抑制[61]。植物寄生线虫在侵染过程中会分泌一种含有纤维素结合结构域但不具备催化活性的纤维素结合蛋白,该蛋白能够与AtPME3等果胶降解酶相互作用,增强PME3的活性,降低细胞壁果胶DM水平,为线虫寄生创造有利条件[62]。近期研究还揭示了PME在调控Ca2+分布中的作用,这会影响番茄脐腐病的发生发展,具体表现为细胞壁钙离子浓度升高时胞质钙离子反而减少,这种失衡使番茄容易患病[63]。面对重金属胁迫,PME通过调节果胶中羧基含量来发挥重要作用。这些带负电荷的羧基能够与铝、镉等重金属离子高效结合,铝离子与钙离子具有相似的激活效应,能够增强PME活性,促使更多羧基产生,从而将重金属离子固定在细胞壁中,减少其向细胞内的渗透[64]

4. 果胶甲酯酶抑制因子研究

4.1. 基因家族特征

PMEI基因家族是一类重要的多基因家族,其成员数量在多数植物中与PME基因相当[65]。植物PMEI基因家族在不同物种中表现出显著的规模差异,这种差异与植物的进化地位和细胞壁调控需求密切相关。双子叶植物中,拟南芥拥有71个PMEI基因(不包括含PMEI结构域的pro PME基因),而多倍体作物甘蓝型油菜(Brassica napus)的PMEI基因数量则更为庞大,最新基因组分析鉴定出约100个编码序列[66]。相比之下,单子叶植物的PMEI家族就显得精简许多,例如水稻只有49个PMEI相关开放阅读框[67],而高粱(Sorghum bicolor)更是仅有37个成员[65]。这种差异或许反映了单子叶植物细胞壁中果胶含量较低的特性,或者暗示它们对甲酯化调控的需求有所不同。进化分析表明,被子植物中PMEI家族的扩张主要通过全基因组复制(如芸薹属植物的多轮倍增)和串联重复(如拟南芥第5号染色体上的PMEI基因簇)[68]。表达谱分析(包括微阵列、RNAseq和RT-qPCR等技术)揭示了PMEI基因家族成员在不同植物中表现出明显的时空表达特异性[69]-[71]。比如拟南芥的AtPMEI6AtPMEI14在种皮表皮细胞中特异性表达,其表达受到GLABRA2和粘液修饰因子1 (MUM1)等转录调控因子调控[71]R2R3-MYB转录因子MYB52通过抑制AtPMEI6AtPMEI14的表达,被证实是种皮粘液果胶去甲基化的抑制因子[72]。多项研究还表明,植物激素参与了调控多个物种(如香蕉和小麦)中PMEI家族基因的表达[73] [74]

4.2. 抗病机制

植物细胞壁是抵御病原体入侵的第一道屏障,其结构稳定性直接关系到植物的抗病能力。许多病原细菌和真菌通过分泌果胶水解酶降解细胞壁以达到成功侵染的目的[75]。当这些病原菌的果胶降解酶活性受到抑制时,其致病力会显著降低[76]。病原菌入侵时,植物体内的PME活性往往异常活跃,伴随着果胶含量的急剧下降。在植物与病原菌互作过程中,病原菌分泌的酶类会降解HG,产生去酯化果胶片段或低聚半乳糖醛酸(oligogalacturonides, OGs),这些降解产物作为重要的损伤相关分子模式(damage-associated molecular patterns, DAMPs),能够被植物免疫系统特异性识别。最新研究表明,植物通过细胞壁相关激酶(wall-associated kinases, WAKs)家族蛋白(如WAK1和WAK2)识别特定聚合度的OGs,这种识别会引发一系列防御反应,包括Ca2+内流、活性氧(ROS)爆发和防御基因激活等,最终建立起系统性的抗病防线。拟南芥中,组成型表达AtPMEI-1AtPMEI-2会降低PME活性,提高HG的DM [79]。其转基因植株对灰霉病(Botrytis cinerea)的抗性增强,但这种抗性并非直接抑制真菌PME,而是高DM的果胶营造了不利于真菌生长的微环境。灰霉菌入侵时,AtPMEI10AtPMEI11AtPMEI12表达上调。遗传分析表明,这些基因的表达受到茉莉酸(JA)和乙烯(ET)信号通路的调控,但只有AtPMEI11能被OGs诱导。当这三个基因发生突变时,植株感染灰霉菌后会出现PME活性增强、果胶降解加剧以及病斑扩大的症状。这些结果说明,植物通过调控PMEI基因的表达来调节PME活性,从而增强对病原菌的抗性。

5. 总结与展望

本文系统阐述了植物细胞壁中果胶的结构特征及其代谢调控网络,特别聚焦于PME及PMEI的分子特性与生物学功能。研究发现,果胶作为细胞壁的关键组分,其甲酯化状态通过PME介导的动态修饰,精确调控细胞壁的力学特性和生理功能。PME通过单链连续、多向连续和多链随机三种催化模式调控果胶的去甲酯化过程,进而影响到钙桥的形成和细胞壁硬度的变化。PMEI通过1:1结合PME来抑制其活性,形成复杂的反馈调控网络。这些过程在植物生长发育和胁迫响应中发挥关键作用。

尽管我们对果胶代谢调控机制的研究已取得重要进展,但仍存在许多亟待解决的问题:(1) PME调控细胞壁力学特性的分子机制尚不完全清楚,特别是其在促进硬化或软化过程中的“双向调控”机制;(2) 果胶修饰酶与纤维素、半纤维素等细胞壁组分的协同作用机制仍需深入解析;(3) PME和PMEI互作的结构基础及它们的时空特异性调控网络有待阐明;(4) 果胶代谢在不同植物物种中的保守性与特异性需要系统比较。

未来在以下几个研究方向值得重点关注:(1) 发展能够实时观测果胶原位修饰的新技术,揭示其动态修饰过程;(2) 结合基因编辑和单细胞技术,解析PME/PMEI的功能特异性;(3) 探索果胶代谢网络与植物激素信号的交叉调控机制;(4) 将这些基础发现转化为实际应用,开发基于果胶调控的作物抗逆和品质改良新策略。这些研究不仅将深化我们对植物细胞壁构建原理的认识,也为农业生产提供新的理论支撑和技术途径。

参考文献

[1] Stratilová, B., Kozmon, S., Stratilová, E. and Hrmova, M. (2020) Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant. Molecules, 25, Article No. 5619.
https://doi.org/10.3390/molecules25235619
[2] Boerjan, W., Ralph, J. and Baucher, M. (2003) Lignin Biosynthesis. Annual Review of Plant Biology, 54, 519-546.
https://doi.org/10.1146/annurev.arplant.54.031902.134938
[3] Cosgrove, D.J. (2005) Growth of the Plant Cell Wall. Nature Reviews Molecular Cell Biology, 6, 850-861.
https://doi.org/10.1038/nrm1746
[4] Somerville, C. (2006) Cellulose Synthesis in Higher Plants. Annual Review of Cell and Developmental Biology, 22, 53-78.
https://doi.org/10.1146/annurev.cellbio.22.022206.160206
[5] Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61, 263-289.
https://doi.org/10.1146/annurev-arplant-042809-112315
[6] Perez, S. (2003) A Complex Plant Cell Wall Polysaccharide: Rhamnogalacturonan II. A Structure in Quest of a Function. Biochimie, 85, 109-121.
https://doi.org/10.1016/s0300-9084(03)00053-1
[7] Harholt, J., Suttangkakul, A. and Vibe Scheller, H. (2010) Biosynthesis of Pectin. Plant Physiology, 153, 384-395.
https://doi.org/10.1104/pp.110.156588
[8] Atmodjo, M.A., Hao, Z. and Mohnen, D. (2013) Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64, 747-779.
https://doi.org/10.1146/annurev-arplant-042811-105534
[9] Amos, R.A., Pattathil, S., Yang, J., Atmodjo, M.A., Urbanowicz, B.R., Moremen, K.W., et al. (2018) A Two-Phase Model for the Non-Processive Biosynthesis of Homogalacturonan Polysaccharides by the GAUT1:GAUT7 Complex. Journal of Biological Chemistry, 293, 19047-19063.
https://doi.org/10.1074/jbc.ra118.004463
[10] 张保才, 周奕华. 植物细胞壁形成机制的新进展[J]. 中国科学: 生命科学, 2015, 45(6): 544-556.
[11] Mouille, G., Ralet, M., Cavelier, C., Eland, C., Effroy, D., Hématy, K., et al. (2007) Homogalacturonan Synthesis in Arabidopsis thaliana Requires a Golgi‐Localized Protein with a Putative Methyltransferase Domain. The Plant Journal, 50, 605-614.
https://doi.org/10.1111/j.1365-313x.2007.03086.x
[12] Kim, S., Held, M.A., Zemelis, S., Wilkerson, C. and Brandizzi, F. (2015) cgr2 and cgr3 Have Critical Overlapping Roles in Pectin Methylesterification and Plant Growth in Arabidopsis thaliana. The Plant Journal, 82, 208-220.
https://doi.org/10.1111/tpj.12802
[13] Yapo, B.M., Lerouge, P., Thibault, J. and Ralet, M. (2007) Pectins from Citrus Peel Cell Walls Contain Homogalacturonans Homogenous with Respect to Molar Mass, Rhamnogalacturonan I and Rhamnogalacturonan II. Carbohydrate Polymers, 69, 426-435.
https://doi.org/10.1016/j.carbpol.2006.12.024
[14] Sénéchal, F., Wattier, C., Rustérucci, C. and Pelloux, J. (2014) Homogalacturonan-Modifying Enzymes: Structure, Expression, and Roles in Plants. Journal of Experimental Botany, 65, 5125-5160.
https://doi.org/10.1093/jxb/eru272
[15] Wan, J., Zhang, X., Neece, D., Ramonell, K.M., Clough, S., Kim, S., et al. (2008) A Lysm Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis. The Plant Cell, 20, 471-481.
https://doi.org/10.1105/tpc.107.056754
[16] Otto, V.I., Damoc, E., Cueni, L.N., Schürpf, T., Frei, R., Ali, S., et al. (2006) N-Glycan Structures and N-Glycosylation Sites of Mouse Soluble Intercellular Adhesion Molecule-1 Revealed by MALDI-TOF and FTICR Mass Spectrometry. Glycobiology, 16, 1033-1044.
https://doi.org/10.1093/glycob/cwl032
[17] Vanzin, G.F., Madson, M., Carpita, N.C., et al. (2002) The mur2 Mutant of Arabidopsis thaliana Lacks Fucosylated Xyloglucan Because of a Lesion in Fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America, 99, 3340-3345.
[18] 侯娇, 严丹丹, 黄美珠, 等. 果胶甲酯化修饰与果实质地变化研究进展[J]. 中国食品学报, 2022, 22(4): 441-449.
[19] Lionetti, V., Cervone, F. and Bellincampi, D. (2012) Methyl Esterification of Pectin Plays a Role during Plant-Pathogen Interactions and Affects Plant Resistance to Diseases. Journal of Plant Physiology, 169, 1623-1630.
https://doi.org/10.1016/j.jplph.2012.05.006
[20] Ebert, B., Rautengarten, C., Guo, X., Xiong, G., Stonebloom, S., Smith-Moritz, A.M., et al. (2015) Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. The Plant Cell, 27, 1218-1227.
https://doi.org/10.1105/tpc.114.133827
[21] Wang, S., Meng, K., Luo, H., et al. (2020) Research Progress in Structure and Function of Pectin Methylesterase. Chinese Journal of Biotechnology, 36,1021-1030.
[22] Wen, B., Zhang, F., Wu, X. and Li, H. (2020) Characterization of the Tomato (Solanum lycopersicum) Pectin Methylesterases: Evolution, Activity of Isoforms and Expression during Fruit Ripening. Frontiers in Plant Science, 11, Article No. 238.
https://doi.org/10.3389/fpls.2020.00238
[23] Ciardiello, M.A., D’Avino, R., Amoresano, A., Tuppo, L., Carpentieri, A., Carratore, V., et al. (2007) The Peculiar Structural Features of Kiwi Fruit Pectin Methylesterase: Amino Acid Sequence, Oligosaccharides Structure, and Modeling of the Interaction with Its Natural Proteinaceous Inhibitor. Proteins: Structure, Function, and Bioinformatics, 71, 195-206.
https://doi.org/10.1002/prot.21681
[24] Louvet, R., Cavel, E., Gutierrez, L., Guénin, S., Roger, D., Gillet, F., et al. (2006) Comprehensive Expression Profiling of the Pectin Methylesterase Gene Family during Silique Development in Arabidopsis thaliana. Planta, 224, 782-791.
https://doi.org/10.1007/s00425-006-0261-9
[25] Braybrook, S.A. and Peaucelle, A. (2013) Mechano-Chemical Aspects of Organ Formation in Arabidopsis thaliana: The Relationship between Auxin and Pectin. PLOS ONE, 8, e57813.
https://doi.org/10.1371/journal.pone.0057813
[26] Zhou, B., Mural, R.V., Chen, X., Oates, M.E., Connor, R.A., Martin, G.B., et al. (2016) A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. Plant Physiology, 173, 1371-1390.
https://doi.org/10.1104/pp.16.01190
[27] Jiang, L., Yang, S., Xie, L., Puah, C.S., Zhang, X., Yang, W., et al. (2005) vanguard1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. The Plant Cell, 17, 584-596.
https://doi.org/10.1105/tpc.104.027631
[28] Kurotani, K., Huang, C., Okayasu, K., Suzuki, T., Ichihashi, Y., Shirasu, K., et al. (2022) Discovery of the Interfamily Grafting Capacity of Petunia, a Floricultural Species. Horticulture Research, 9, uhab056.
https://doi.org/10.1093/hr/uhab056
[29] D’Avino, R., Camardella, L., Christensen, T.M.I.E., Giovane, A. and Servillo, L. (2003) Tomato Pectin Methylesterase: Modeling, Fluorescence, and Inhibitor Interaction Studies—Comparison with the Bacterial (Erwinia chrysanthemi) Enzyme. Proteins: Structure, Function, and Bioinformatics, 53, 830-839.
https://doi.org/10.1002/prot.10487
[30] Johansson, K., El-Ahmad, M., Friemann, R., Jörnvall, H., Markovič, O. and Eklund, H. (2002) Crystal Structure of Plant Pectin Methylesterase. FEBS Letters, 514, 243-249.
https://doi.org/10.1016/s0014-5793(02)02372-4
[31] Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., De Lorenzo, G., et al. (2005) Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein. The Plant Cell, 17, 849-858.
https://doi.org/10.1105/tpc.104.028886
[32] Jolie, R.P., Duvetter, T., Van Loey, A.M. and Hendrickx, M.E. (2010) Pectin Methylesterase and Its Proteinaceous Inhibitor: A Review. Carbohydrate Research, 345, 2583-2595.
https://doi.org/10.1016/j.carres.2010.10.002
[33] Pelloux, J., Rusterucci, C. and Mellerowicz, E. (2007) New Insights into Pectin Methylesterase Structure and Function. Trends in Plant Science, 12, 267-277.
https://doi.org/10.1016/j.tplants.2007.04.001
[34] Bosch, M., Cheung, A.Y. and Hepler, P.K. (2005) Pectin Methylesterase, a Regulator of Pollen Tube Growth. Plant Physiology, 138, 1334-1346.
https://doi.org/10.1104/pp.105.059865
[35] Lionetti, V., Fabri, E., De Caroli, M., Hansen, A.R., Willats, W.G.T., Piro, G., et al. (2017) Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to Botrytis. Plant Physiology, 173, 1844-1863.
https://doi.org/10.1104/pp.16.01185
[36] Wormit, A. and Usadel, B. (2018) The Multifaceted Role of Pectin Methylesterase Inhibitors (Pmeis). International Journal of Molecular Sciences, 19, Article No. 2878.
https://doi.org/10.3390/ijms19102878
[37] Willats, W.G.T., Orfila, C., Limberg, G., Buchholt, H.C., van Alebeek, G.W.M., Voragen, A.G., et al. (2001) Modulation of the Degree and Pattern of Methyl-Esterification of Pectic Homogalacturonan in Plant Cell Walls. Implications for Pectin Methyl Esterase Action, Matrix Properties, and Cell Adhesion. Journal of Biological Chemistry, 276, 19404-19413.
https://doi.org/10.1074/jbc.m011242200
[38] Fries, M., Ihrig, J., Brocklehurst, K., Shevchik, V.E. and Pickersgill, R.W. (2007) Molecular Basis of the Activity of the Phytopathogen Pectin Methylesterase. The EMBO Journal, 26, 3879-3887.
https://doi.org/10.1038/sj.emboj.7601816
[39] Pinzón-Latorre, D. and Deyholos, M.K. (2013) Characterization and Transcript Profiling of the Pectin Methylesterase (PME) and Pectin Methylesterase Inhibitor (PMEI) Gene Families in Flax (linum Usitatissimum). BMC Genomics, 14, 742.
https://doi.org/10.1186/1471-2164-14-742
[40] Catoire, L., Pierron, M., Morvan, C., du Penhoat, C.H. and Goldberg, R. (1998) Investigation of the Action Patterns of Pectinmethylesterase Isoforms through Kinetic Analyses and NMR Spectroscopy. Implications in Cell Wall Expansion. Journal of Biological Chemistry, 273, 33150-33156.
https://doi.org/10.1074/jbc.273.50.33150
[41] Liners, F., Thibault, J. and Van Cutsem, P. (1992) Influence of the Degree of Polymerization of Oligogalacturonates and of Esterification Pattern of Pectin on Their Recognition by Monoclonal Antibodies. Plant Physiology, 99, 1099-1104.
https://doi.org/10.1104/pp.99.3.1099
[42] Reca, I.B., Lionetti, V., Camardella, L., D’Avino, R., Giardina, T., Cervone, F., et al. (2012) A Functional Pectin Methylesterase Inhibitor Protein (SolyPMEI) Is Expressed during Tomato Fruit Ripening and Interacts with PME-1. Plant Molecular Biology, 79, 429-442.
https://doi.org/10.1007/s11103-012-9921-2
[43] Hothorn, M., Van den Ende, W., Lammens, W., Rybin, V. and Scheffzek, K. (2010) Structural Insights into the Ph-Controlled Targeting of Plant Cell-Wall Invertase by a Specific Inhibitor Protein. Proceedings of the National Academy of Sciences, 107, 17427-17432.
https://doi.org/10.1073/pnas.1004481107
[44] Bonavita, A., Carratore, V., Ciardiello, M.A., Giovane, A., Servillo, L. and D’Avino, R. (2016) Influence of pH on the Structure and Function of Kiwi Pectin Methylesterase Inhibitor. Journal of Agricultural and Food Chemistry, 64, 5866-5876.
https://doi.org/10.1021/acs.jafc.6b01718
[45] Li, Z., Sela, A., Fridman, Y., Garstka, L., Höfte, H., Savaldi-Goldstein, S., et al. (2021) Optimal BR Signalling Is Required for Adequate Cell Wall Orientation in the Arabidopsis Root Meristem. Development, 148, dev199504.
https://doi.org/10.1242/dev.199504
[46] Wolf, S., Mouille, G. and Pelloux, J. (2009) Homogalacturonan Methyl-Esterification and Plant Development. Molecular Plant, 2, 851-860.
https://doi.org/10.1093/mp/ssp066
[47] Chanliaud, E., Burrows, K., Jeronimidis, G. and Gidley, M. (2002) Mechanical Properties of Primary Plant Cell Wall Analogues. Planta, 215, 989-996.
https://doi.org/10.1007/s00425-002-0783-8
[48] Park, E., Díaz-Moreno, S.M., Davis, D.J., Wilkop, T.E., Bulone, V. and Drakakaki, G. (2014) Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Plant Physiology, 165, 1019-1034.
https://doi.org/10.1104/pp.114.241497
[49] Turner, S. and Kumar, M. (2017) Cellulose Synthase Complex Organization and Cellulose Microfibril Structure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, Article ID: 20170048.
https://doi.org/10.1098/rsta.2017.0048
[50] Bidhendi, A.J., Altartouri, B., Gosselin, F.P. and Geitmann, A. (2019) Mechanical Stress Initiates and Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. Cell Reports, 28, 1237-1250.e6.
https://doi.org/10.1016/j.celrep.2019.07.006
[51] Zhou, L., Wang, L., Chen, X., Ge, Z., Mergner, J., Li, X., et al. (2023) The RALF Signaling Pathway Regulates Cell Wall Integrity during Pollen Tube Growth in Maize. The Plant Cell, 36, 1673-1696.
https://doi.org/10.1093/plcell/koad324
[52] Paniagua, C., Posé, S., Morris, V.J., Kirby, A.R., Quesada, M.A. and Mercado, J.A. (2014) Fruit Softening and Pectin Disassembly: An Overview of Nanostructural Pectin Modifications Assessed by Atomic Force Microscopy. Annals of Botany, 114, 1375-1383.
https://doi.org/10.1093/aob/mcu149
[53] Shan, W., Guo, Y., Wei, W., Chen, J., Lu, W., Yuan, D., et al. (2019) Banana Mabzr1/2 Associate with Mampk14 to Modulate Cell Wall Modifying Genes during Fruit Ripening. Plant Cell Reports, 39, 35-46.
https://doi.org/10.1007/s00299-019-02471-5
[54] Hongo, S., Sato, K., Yokoyama, R. and Nishitani, K. (2012) Demethylesterification of the Primary Wall by PECTIN METHYLESTERASE35 Provides Mechanical Support to the Arabidopsis Stem. The Plant Cell, 24, 2624-2634.
https://doi.org/10.1105/tpc.112.099325
[55] Peaucelle, A., Louvet, R., Johansen, J.N., Salsac, F., Morin, H., Fournet, F., et al. (2011) The Transcription Factor BELLRINGER Modulates Phyllotaxis by Regulating the Expression of a Pectin Methylesterase in Arabidopsis. Development, 138, 4733-4741.
https://doi.org/10.1242/dev.072496
[56] Phyo, P., Wang, T., Xiao, C., Anderson, C.T. and Hong, M. (2017) Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR. Biomacromolecules, 18, 2937-2950.
https://doi.org/10.1021/acs.biomac.7b00888
[57] Haas, K.T., Wightman, R., Meyerowitz, E.M. and Peaucelle, A. (2020) Pectin Homogalacturonan Nanofilament Expansion Drives Morphogenesis in Plant Epidermal Cells. Science, 367, 1003-1007.
https://doi.org/10.1126/science.aaz5103
[58] Palacio-Lopez, K., Sun, L., Reed, R., Kang, E., Sørensen, I., Rose, J.K.C., et al. (2020) Experimental Manipulation of Pectin Architecture in the Cell Wall of the Unicellular Charophyte, Penium margaritaceum. Frontiers in Plant Science, 11, Article No. 1032.
https://doi.org/10.3389/fpls.2020.01032
[59] Derbyshire, P., Findlay, K., McCann, M.C. and Roberts, K. (2007) Cell Elongation in Arabidopsis Hypocotyls Involves Dynamic Changes in Cell Wall Thickness. Journal of Experimental Botany, 58, 2079-2089.
https://doi.org/10.1093/jxb/erm074
[60] Müller, K., Levesque-Tremblay, G., Bartels, S., Weitbrecht, K., Wormit, A., Usadel, B., et al. (2012) Demethylesterification of Cell Wall Pectins in Arabidopsis Plays a Role in Seed Germination. Plant Physiology, 161, 305-316.
https://doi.org/10.1104/pp.112.205724
[61] Dorokhov, Y.L., Mäkinen, K., Frolova, O.Y., Merits, A., Saarinen, J., Kalkkinen, N., et al. (1999) A Novel Function for a Ubiquitous Plant Enzyme Pectin Methylesterase: The Host‐Cell Receptor for the Tobacco Mosaic Virus Movement Protein. FEBS Letters, 461, 223-228.
https://doi.org/10.1016/s0014-5793(99)01447-7
[62] Hewezi, T., Howe, P., Maier, T.R., Hussey, R.S., Mitchum, M.G., Davis, E.L., et al. (2008) Cellulose Binding Protein from the Parasitic Nematode Heterodera schachtii Interacts with Arabidopsis Pectin Methylesterase: Cooperative Cell Wall Modification during Parasitism. The Plant Cell, 20, 3080-3093.
https://doi.org/10.1105/tpc.108.063065
[63] de Freitas, S.T., Handa, A.K., Wu, Q., Park, S. and Mitcham, E.J. (2012) Role of Pectin Methylesterases in Cellular Calcium Distribution and Blossom‐End Rot Development in Tomato Fruit. The Plant Journal, 71, 824-835.
https://doi.org/10.1111/j.1365-313x.2012.05034.x
[64] Chang, Y., Yamamoto, Y. and Matsumoto, H. (1999) Accumulation of Aluminium in the Cell Wall Pectin in Cultured Tobacco (Nicotiana tabacum L.) Cells Treated with a Combination of Aluminium and Iron. Plant, Cell & Environment, 22, 1009-1017.
https://doi.org/10.1046/j.1365-3040.1999.00467.x
[65] Wang, M., Yuan, D., Gao, W., Li, Y., Tan, J. and Zhang, X. (2013) A Comparative Genome Analysis of PME and PMEI Families Reveals the Evolution of Pectin Metabolism in Plant Cell Walls. PLOS ONE, 8, e72082.
https://doi.org/10.1371/journal.pone.0072082
[66] Liu, T., Yu, H., Xiong, X., Yue, X., Yu, Y., Huang, L., et al. (2018) Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica Campestris Ssp. Chinensis. International Journal of Molecular Sciences, 19, Article No. 1338.
https://doi.org/10.3390/ijms19051338
[67] Jeong, H.Y., Nguyen, H.P. and Lee, C. (2015) Genome-Wide Identification and Expression Analysis of Rice Pectin Methylesterases: Implication of Functional Roles of Pectin Modification in Rice Physiology. Journal of Plant Physiology, 183, 23-29.
https://doi.org/10.1016/j.jplph.2015.05.001
[68] Ding, A., Tang, X., Yang, D., Wang, M., Ren, A., Xu, Z., et al. (2020) ERF4 and MYB52 Transcription Factors Play Antagonistic Roles in Regulating Homogalacturonan De-Methylesterification in Arabidopsis Seed Coat Mucilage. The Plant Cell, 33, 381-403.
https://doi.org/10.1093/plcell/koaa031
[69] Liu, N., Sun, Y., Pei, Y., Zhang, X., Wang, P., Li, X., et al. (2018) A Pectin Methylesterase Inhibitor Enhances Resistance to Verticillium Wilt. Plant Physiology, 176, 2202-2220.
https://doi.org/10.1104/pp.17.01399
[70] Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. and Provart, N.J. (2007) An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLOS ONE, 2, e718.
https://doi.org/10.1371/journal.pone.0000718
[71] Saez-Aguayo, S., Ralet, M., Berger, A., Botran, L., Ropartz, D., Marion-Poll, A., et al. (2013) Pectin Methylesterase Inhibitor6 Promotes Arabidopsis Mucilage Release by Limiting Methylesterification of Homogalacturonan in Seed Coat Epidermal Cells. The Plant Cell, 25, 308-323.
https://doi.org/10.1105/tpc.112.106575
[72] Shi, D., Ren, A., Tang, X., Qi, G., Xu, Z., Chai, G., et al. (2018) myb52 Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage. Plant Physiology, 176, 2737-2749.
https://doi.org/10.1104/pp.17.01771
[73] Li, M., Xu, B., Liu, J., Yang, X., Zhang, J., Jia, C., et al. (2011) Identification and Expression Analysis of Four 14-3-3 Genes during Fruit Ripening in Banana (Musa acuminata L. AAA Group, Cv. Brazilian). Plant Cell Reports, 31, 369-378.
https://doi.org/10.1007/s00299-011-1172-1
[74] Hong, M.J., Kim, D.Y., Lee, T.G., et al. (2010) Functional Characterization of Pectin Methylesterase Inhibitor (PMEI) in Wheat. Genes & Genetic Systems, 85, 97-106.
[75] Lionetti, V. (2015) PECTOPLATE: The Simultaneous Phenotyping of Pectin Methylesterases, Pectinases, and Oligogalacturonides in Plants during Biotic Stresses. Frontiers in Plant Science, 6, Article No. 331.
https://doi.org/10.3389/fpls.2015.00331
[76] Liu, N., Sun, Y., Wang, P., Duan, H., Ge, X., Li, X., et al. (2018) Mutation of Key Amino Acids in the Polygalacturonase‐inhibiting Proteins Ckpgip1 and Ghpgip1 Improves Resistance to Verticillium Wilt in Cotton. The Plant Journal, 96, 546-561.
https://doi.org/10.1111/tpj.14048
[77] Del Corpo, D., Fullone, M.R., Miele, R., Lafond, M., Pontiggia, D., Grisel, S., et al. (2020) Atpme17 Is a Functional Arabidopsis thaliana Pectin Methylesterase Regulated by Its PRO Region That Triggers PME Activity in the Resistance to botrytis Cinerea. Molecular Plant Pathology, 21, 1620-1633.
https://doi.org/10.1111/mpp.13002
[78] Herold, L., Ordon, J., Hua, C., Kohorn, B.D., Nürnberger, T., DeFalco, T.A., et al. (2024) Arabidopsis WALL-ASSOCIATED KINASES Are Not Required for Oligogalacturonide-Induced Signaling and Immunity. The Plant Cell, 37, koae317.
https://doi.org/10.1093/plcell/koae317
[79] Lionetti, V., Raiola, A., Camardella, L., Giovane, A., Obel, N., Pauly, M., et al. (2007) Overexpression of Pectin Methylesterase Inhibitors in Arabidopsis Restricts Fungal Infection by Botrytis cinerea. Plant Physiology, 143, 1871-1880.
https://doi.org/10.1104/pp.106.090803