[1]
|
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4
|
[2]
|
Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J. and Chen, L. (2024) Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduction and Targeted Therapy, 9, 211-235. https://doi.org/10.1038/s41392-024-01911-3
|
[3]
|
Fiala, M. (2010) Re-Balancing of Inflammation and Aβ Immunity as a Therapeutic for Alzheimer’s Disease-View from the Bedside. CNS & Neurological Disorders—Drug Targets, 9, 192-196. https://doi.org/10.2174/187152710791012044
|
[4]
|
Reddy, P.H., Manczak, M., Yin, X., Grady, M.C., Mitchell, A., Tonk, S., et al. (2018) Protective Effects of Indian Spice Curcumin against Amyloid-β in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 61, 843-866. https://doi.org/10.3233/jad-170512
|
[5]
|
黄汉昌, 姜瑞瑞, 林婧, 等. 阿尔茨海默病发生机制及其治疗药物研究进展[J]. 中国老年学杂志, 2011, 31(15): 2993-2997.
|
[6]
|
陈榕, 颜烨, 何梓炫, 等. 提升姜黄素疗效的策略及技术研究进展[J]. 中草药, 2024, 55(15): 5315-5330.
|
[7]
|
陈乔, 陈光辉, 陈强. 姜黄素对阿尔茨海默病及帕金森病的相同作用机制研究进展[J]. 亚太传统医药, 2023, 19(5): 234-239.
|
[8]
|
李雪, 周妍妍, 王琪, 等. 中药调控组蛋白乙酰化防治阿尔茨海默病的研究进展[J]. 中国实验方剂学杂志, 2024, 30(13): 271-278.
|
[9]
|
Alzheimer’s Association (2016) 2016 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 12, 459-509. https://doi.org/10.1016/j.jalz.2016.03.001
|
[10]
|
邹文奇, 任晶, 刘静颐, 等. 基于阿尔茨海默病β-淀粉样蛋白发病机制探讨典型中药防治概况[J]. 医药导报, 2024, 43(2): 234-239.
|
[11]
|
孙宁宁, 张松江, 武鑫, 等. 中医药治疗阿尔茨海默病APP/PS1双转基因小鼠的研究进展[J]. 中国中医药现代远程教育, 2019, 17(8): 110-112.
|
[12]
|
Priyadarsini, K. (2014) The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 19, 20091-20112. https://doi.org/10.3390/molecules191220091
|
[13]
|
王扬晗, 朱鲁杰, 王飞, 等. 姜黄素衍生物及其生物学功能研究进展[J]. 聊城大学学报(自然科学版), 2025, 38(1): 103-110.
|
[14]
|
Goozee, K.G., Shah, T.M., Sohrabi, H.R., Rainey-Smith, S.R., Brown, B., Verdile, G., et al. (2015) Examining the Potential Clinical Value of Curcumin in the Prevention and Diagnosis of Alzheimer’s Disease. British Journal of Nutrition, 115, 449-465. https://doi.org/10.1017/s0007114515004687
|
[15]
|
闫克毓, 张红霞, 裴文迪, 等. 脂质体在阿尔茨海默病治疗中的应用[J]. 化学通报(中英文), 2025, 88(2): 174-182.
|
[16]
|
杜仕静, 王蕾, 苏萍, 等. 中药成分影响阿尔茨海默病β-淀粉样蛋白靶点的研究进展[J]. 中草药, 2015, 46(13): 1989-1995.
|
[17]
|
张姗, 曾常茜. 姜黄提取物与阿尔茨海默病研究进展[J]. 中国合理用药探索, 2017, 14(5): 61-63.
|
[18]
|
叶茂盛, 潘锋, 周勇, 等. 姜黄素对阿尔茨海默病模型大鼠海马CA1区细胞凋亡干预的研究[J]. 医学研究杂志, 2018, 47(2): 92-95.
|
[19]
|
陈鑫. 姜黄素对阿尔茨海默病小鼠学习记忆能力及海马细胞的影响[J]. 中国老年学杂志, 2016, 36(24): 6056-6058.
|
[20]
|
邓楚珺, 陈慧泽, 孟胜喜. 中药有效组分(成分)防治阿尔茨海默病的研究进展[J]. 中西医结合心脑血管病杂志, 2022, 20(20): 3733-3737.
|
[21]
|
杨融辉, 张宁. 姜黄素对阿尔茨海默病作用机制的研究进展[J]. 东南大学学报(医学版), 2015, 34(1): 152-155.
|
[22]
|
王从纲. 金属离子和抑制剂对淀粉样β肽聚集及其细胞毒性的影响研究[D]: [博士学位论文]. 大连: 大连理工大学, 2017.
|
[23]
|
Li, L., Wang, F., Jia, X., Yao, L. and Liu, Y. (2024) Research Mechanism and Progress of the Natural Compound Curcumin in Treating Alzheimer’s Disease. Mini-Reviews in Medicinal Chemistry, 24, 1590-1601. https://doi.org/10.2174/0113895575263783231009051957
|
[24]
|
刘世贤, 毛林飞, 于凡, 等. 阿尔茨海默病的发病机制及天然多酚类化合物的治疗机制研究进展[J]. 中国新药杂志, 2017, 26(23): 2799-2804.
|
[25]
|
Gupta, S.C., Prasad, S., Kim, J.H., Patchva, S., Webb, L.J., Priyadarsini, I.K., et al. (2011) Multitargeting by Curcumin as Revealed by Molecular Interaction Studies. Natural Product Reports, 28, Article No. 1937. https://doi.org/10.1039/c1np00051a
|
[26]
|
Li, Y., Zhang, J., Wan, J., Liu, A. and Sun, J. (2020) Melatonin Regulates Aβ Production/Clearance Balance and Aβ Neurotoxicity: A Potential Therapeutic Molecule for Alzheimer’s Disease. Biomedicine & Pharmacotherapy, 132, Article ID: 110887. https://doi.org/10.1016/j.biopha.2020.110887
|
[27]
|
Gonçalves, P.B., Sodero, A.C.R. and Cordeiro, Y. (2024) Natural Products Targeting Amyloid-β Oligomer Neurotoxicity in Alzheimer’s Disease. European Journal of Medicinal Chemistry, 276, Article ID: 116684. https://doi.org/10.1016/j.ejmech.2024.116684
|
[28]
|
屈艳秦, 陈金鑫, 董秤均, 等. 基于β淀粉样蛋白探讨中医药治疗阿尔茨海默病的研究进展[J]. 中国实验方剂学杂志, 2022, 28(22): 231-238.
|
[29]
|
Rekha, A., Afzal, M., Babu, M.A., Menon, S.V., Nathiya, D., Supriya, S., et al. (2025) GSK-3β Dysregulation in Aging: Implications for Tau Pathology and Alzheimer’s Disease Progression. Molecular and Cellular Neuroscience, 133, Article ID: 104005. https://doi.org/10.1016/j.mcn.2025.104005
|
[30]
|
Song, J., Malampati, S., Zeng, Y., Durairajan, S.S.K., Yang, C., Tong, B.C., et al. (2019) A Small Molecule Transcription Factor EB Activator Ameliorates Beta‐Amyloid Precursor Protein and Tau Pathology in Alzheimer’s Disease Models. Aging Cell, 19, e13069. https://doi.org/10.1111/acel.13069
|
[31]
|
王琢, 张雷雷, 宋高伟, 等. 多酚类化合物调节沉默信息调节因子1改善阿尔茨海默病的研究进展[J]. 现代药物与临床, 2025, 40(7): 1825-1834.
|
[32]
|
张雄, 李昱. 姜黄素通过抑制GSK-3β的活性防治AD的体外研究[J]. 中国药理学通报, 2009, 25(11): 1507-1512.
|
[33]
|
Ege, D. (2021) Action Mechanisms of Curcumin in Alzheimer’s Disease and Its Brain Targeted Delivery. Materials, 14, Article 3332. https://doi.org/10.3390/ma14123332
|
[34]
|
Voronkov, M., Braithwaite, S.P. and Stock, J.B. (2011) Phosphoprotein Phosphatase 2A: A Novel Druggable Target for Alzheimer’s Disease. Future Medicinal Chemistry, 3, 821-833. https://doi.org/10.4155/fmc.11.47
|
[35]
|
Sontag, J. and Sontag, E. (2014) Protein Phosphatase 2A Dysfunction in Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 7, Article 16. https://doi.org/10.3389/fnmol.2014.00016
|
[36]
|
Wei, H., Zhang, H., Wang, X., Xie, J., An, D., Wan, L., et al. (2020) Direct Activation of Protein Phosphatase 2A (PP2A) by Tricyclic Sulfonamides Ameliorates Alzheimer’s Disease Pathogenesis in Cell and Animal Models. Neurotherapeutics, 17, 1087-1103. https://doi.org/10.1007/s13311-020-00841-6
|
[37]
|
Min, S., Cho, S., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W.W., et al. (2010) Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron, 67, 953-966. https://doi.org/10.1016/j.neuron.2010.08.044
|
[38]
|
Sun, J., Zhang, X., Wang, C., Teng, Z. and Li, Y. (2017) Curcumin Decreases Hyperphosphorylation of Tau by Down-Regulating Caveolin-1/GSK-3β in N2a/APP695swe Cells and APP/PS1 Double Transgenic Alzheimer’s Disease Mice. The American Journal of Chinese Medicine, 45, 1667-1682. https://doi.org/10.1142/s0192415x17500902
|
[39]
|
Maiti, P. and Dunbar, G. (2018) Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. International Journal of Molecular Sciences, 19, Article No. 1637. https://doi.org/10.3390/ijms19061637
|
[40]
|
Song, X., Zhang, M., Dai, E., et al. (2019) Molecular Targets of Curcumin in Breast Cancer (Review). Molecular Medicine Reports, 19, 23-29.
|
[41]
|
林文娟, 尹大川. 姜黄素抑制TAU蛋白聚集治疗阿尔茨海默症的研究进展[J]. 当代医学, 2021, 27(9): 190-194.
|
[42]
|
Tuorkey, M. (2014) Curcumin a Potent Cancer Preventive Agent: Mechanisms of Cancer Cell Killing. Interventional Medicine and Applied Science, 6, 139-146. https://doi.org/10.1556/imas.6.2014.4.1
|
[43]
|
严丹丹, 姚健灵, 刘烈刚, 等. 丙烯酰胺通过tau蛋白异常磷酸化介导大鼠认知功能障碍的机制及姜黄素的保护作用研究[C]//2017环境与公共健康学术会议暨中国环境科学学会环境医学与健康分会、中国毒理学会生化与分子毒理专业委员会2017年年会. 2017: 52-53.
|
[44]
|
张伟, 孙伟明, 徐家淳, 等. 中药调控小胶质细胞功能治疗阿尔茨海默病的机制研究进展[J]. 环球中医药, 2021, 14(11): 2091-2096.
|
[45]
|
Feng, Q., Zhang, X., Zhao, X., Liu, J., Wang, Q., Yao, Y., et al. (2024) Intranasal Delivery of Pure Nanodrug Loaded Liposomes for Alzheimer’s Disease Treatment by Efficiently Regulating Microglial Polarization. Small, 20, Article ID: 2405781. https://doi.org/10.1002/smll.202405781
|
[46]
|
Lu, Y., Liu, Q. and Yu, Q. (2018) Quercetin Enrich Diet during the Early-Middle Not Middle-Late Stage of Alzheimer’s Disease Ameliorates Cognitive Dysfunction. American Journal of Translational Research, 10, 1237-1246.
|
[47]
|
王琦, 刘瑜琦. 姜黄素对阿尔茨海默病发病机制作用的研究进展[J]. 中国老年学杂志, 2014, 34(10): 2911-2914.
|
[48]
|
Jiang, M., Zhao, D., Zhou, Y., Kong, W., Xie, Z., Xiong, Y., et al. (2024) Cathepsin B Modulates Microglial Migration and Phagocytosis of Amyloid β in Alzheimer’s Disease through PI3K-Akt Signaling. Neuropsychopharmacology, 50, 640-650. https://doi.org/10.1038/s41386-024-01994-0
|
[49]
|
Gao, Y., Zhuang, Z., Lu, Y., Tao, T., Zhou, Y., Liu, G., et al. (2019) Curcumin Mitigates Neuro-Inflammation by Modulating Microglia Polarization through Inhibiting TLR4 Axis Signaling Pathway Following Experimental Subarachnoid Hemorrhage. Frontiers in Neuroscience, 13, Article 1223. https://doi.org/10.3389/fnins.2019.01223
|
[50]
|
杨宇, 梁梅冰, 贾真, 等. 姜黄素在阿尔茨海默病中对炎症以及神经元的保护机制研究[J]. 武汉大学学报(医学版), 2015, 36(3): 332-336.
|
[51]
|
Tegenge, M.A., Rajbhandari, L., Shrestha, S., Mithal, A., Hosmane, S. and Venkatesan, A. (2014) Curcumin Protects Axons from Degeneration in the Setting of Local Neuroinflammation. Experimental Neurology, 253, 102-110. https://doi.org/10.1016/j.expneurol.2013.12.016
|
[52]
|
李琳, 王晓良, 彭英. 抗阿尔茨海默病天然产物及其药理学研究进展[J]. 中国药理学通报, 2016, 32(2): 149-155.
|
[53]
|
陈娟丽, 魏传飞, 韩发彬. 姜黄素改善阿尔茨海默病认知和记忆功能的研究进展[J]. 中国老年学杂志, 2021, 41(4): 887-891.
|
[54]
|
Pluta, R., Furmaga-Jabłońska, W., Januszewski, S. and Czuczwar, S.J. (2022) Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy: Possible Therapeutic Role of Curcumin. Nutrients, 14, Article 248. https://doi.org/10.3390/nu14020248
|
[55]
|
Zia, A., Farkhondeh, T., Pourbagher-Shahri, A.M. and Samarghandian, S. (2021) The Role of Curcumin in Aging and Senescence: Molecular Mechanisms. Biomedicine & Pharmacotherapy, 134, Article ID: 111119. https://doi.org/10.1016/j.biopha.2020.111119
|
[56]
|
Deng, Y., Lu, X., Wang, L., Li, T., Ding, Y., Cao, H., et al. (2014) Curcumin Inhibits the AKT/NF-κB Signaling via CpG Demethylation of the Promoter and Restoration of NEP in the N2a Cell Line. The AAPS Journal, 16, 649-657. https://doi.org/10.1208/s12248-014-9605-8
|
[57]
|
张旭彤, 王孝庆, 王中苏, 等. 姜黄素抑制β淀粉样蛋白致小胶质瘤细胞神经炎症反应[J]. 温州医科大学学报, 2017, 47(2): 85-89.
|
[58]
|
Han, Y., Chen, R., Lin, Q., Liu, Y., Ge, W., Cao, H., et al. (2021) Curcumin Improves Memory Deficits by Inhibiting HMGB1-RAGE/TLR4-NF-κB Signalling Pathway in APPswe/PS1dE9 Transgenic Mice Hippocampus. Journal of Cellular and Molecular Medicine, 25, 8947-8956. https://doi.org/10.1111/jcmm.16855
|
[59]
|
Qi, Y., Shang, L., Liao, Z., Su, H., Jing, H., Wu, B., et al. (2018) Intracerebroventricular Injection of Resveratrol Ameliorated Aβ-Induced Learning and Cognitive Decline in Mice. Metabolic Brain Disease, 34, 257-266. https://doi.org/10.1007/s11011-018-0348-6
|
[60]
|
孙婷, 张丹参, 景永帅. 姜黄素对阿尔茨海默病治疗作用及其机制[J]. 中国药理学与毒理学杂志, 2021, 35(9): 641.
|
[61]
|
黄盼. 姜黄素抑制β-淀粉样蛋白生成作用的机制研究[D]: [博士学位论文]. 武汉: 武汉大学, 2019.
|
[62]
|
Chen, Z.Y., et al. (2024) Bioinformatic Analysis of Hippocampal Histopathology in Alzheimer’s Disease and the Therapeutic Effects of Active Components of Traditional Chinese Medicine. Frontiers in Pharmacology, 15, Article 1424803. https://doi.org/10.3389/fphar.2024.1424803
|
[63]
|
Potter, P. (2013) Curcumin: A Natural Substance with Potential Efficacy in Alzheimer’s Disease. Journal of Experimental Pharmacology, 5, 23-31. https://doi.org/10.2147/jep.s26803
|
[64]
|
Mathew, A., Fukuda, T., Nagaoka, Y., Hasumura, T., Morimoto, H., Yoshida, Y., et al. (2012) Curcumin Loaded-PLGA Nanoparticles Conjugated with Tet-1 Peptide for Potential Use in Alzheimer’s Disease. PLOS ONE, 7, e32616. https://doi.org/10.1371/journal.pone.0032616
|
[65]
|
Shahbaz, S.K., Koushki, K., Sathyapalan, T., Majeed, M. and Sahebkar, A. (2022) PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer’s Disease. Current Neuropharmacology, 20, 309-323. https://doi.org/10.2174/1570159x19666210823103020
|