[1]
|
Kang, L., Cao, G., Jing, W., Liu, J. and Liu, M. (2023) Global, Regional, and National Incidence and Mortality of Congenital Birth Defects from 1990 to 2019. European Journal of Pediatrics, 182, 1781-1792. https://doi.org/10.1007/s00431-023-04865-w
|
[2]
|
邹蕾, 张先锋. 人工智能及其发展应用[J]. 信息网络安全, 2012(2): 11-13.
|
[3]
|
Varghese, C., Harrison, E.M., O’Grady, G. and Topol, E.J. (2024) Artificial Intelligence in Surgery. Nature Medicine, 30, 1257-1268. https://doi.org/10.1038/s41591-024-02970-3
|
[4]
|
Stiller, B., Grundmann, S., Höhn, R., Kari, F.A., Berger, F. and Baumgartner, H. (2023) Adults with Congenital Heart Disease—A New, Expanding Group of Patients. Deutsches Ärzteblatt international, 120, 195-202. https://doi.org/10.3238/arztebl.m2023.0006
|
[5]
|
Xu, X., Jia, Q., Yuan, H., Qiu, H., Dong, Y., Xie, W., et al. (2023) A Clinically Applicable AI System for Diagnosis of Congenital Heart Diseases Based on Computed Tomography Images. Medical Image Analysis, 90, Article ID: 102953. https://doi.org/10.1016/j.media.2023.102953
|
[6]
|
Yang, H. (2023) Application of Artificial Intelligence-Based Auxiliary Diagnosis in Congenital Heart Disease Screening. The Anatolian Journal of Cardiology, 27, 205-216. https://doi.org/10.14744/anatoljcardiol.2022.1386
|
[7]
|
Nurmaini, S., Rachmatullah, M.N., Sapitri, A.I., Darmawahyuni, A., Tutuko, B., Firdaus, F., et al. (2021) Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection. Sensors, 21, Article 8007. https://doi.org/10.3390/s21238007
|
[8]
|
Tong, C., Du, X., Chen, Y., Zhang, K., Shan, M., Shen, Z., et al. (2024) Machine Learning Prediction Model of Major Adverse Outcomes after Pediatric Congenital Heart Surgery: A Retrospective Cohort Study. International Journal of Surgery, 110, 2207-2216. https://doi.org/10.1097/js9.0000000000001112
|
[9]
|
Erdman, L., Skreta, M., Rickard, M., McLean, C., Mezlini, A., Keefe, D.T., et al. (2020) Predicting Obstructive Hydronephrosis Based on Ultrasound Alone. In: Martel, A.L., et al., Eds., Medical Image Computing and Computer Assisted Intervention—MICCAI 2020, Springer, 493-503. https://doi.org/10.1007/978-3-030-59716-0_47
|
[10]
|
Giampietro, P.F., Raggio, C.L., Blank, R.D., McCarty, C., Broeckel, U. and Pickart, M.A. (2012) Clinical, Genetic and Environmental Factors Associated with Congenital Vertebral Malformations. Molecular Syndromology, 4, 94-105. https://doi.org/10.1159/000345329
|
[11]
|
Yang, J., Zhang, K., Fan, H., Huang, Z., Xiang, Y., Yang, J., et al. (2019) Development and Validation of Deep Learning Algorithms for Scoliosis Screening Using Back Images. Communications Biology, 2, Article No. 390. https://doi.org/10.1038/s42003-019-0635-8
|
[12]
|
Wu, C., Meng, G., Lian, J., Xu, J., Gao, M., Huang, C., et al. (2022) A Multi-Stage Ensemble Network System to Diagnose Adolescent Idiopathic Scoliosis. European Radiology, 32, 5880-5889. https://doi.org/10.1007/s00330-022-08692-9
|
[13]
|
Mohanty, S., Hassan, F.M., Lenke, L.G., Lewerenz, E., Passias, P.G., Klineberg, E.O., et al. (2024) Machine Learning Clustering of Adult Spinal Deformity Patients Identifies Four Prognostic Phenotypes: A Multicenter Prospective Cohort Analysis with Single Surgeon External Validation. The Spine Journal, 24, 1095-1108. https://doi.org/10.1016/j.spinee.2024.02.010
|
[14]
|
Pellisé, F., Vila-Casademunt, A., Núñez-Pereira, S., Haddad, S., Smith, J.S., Kelly, M.P., et al. (2022) Surgeons’ Risk Perception in ASD Surgery: The Value of Objective Risk Assessment on Decision Making and Patient Counselling. European Spine Journal, 31, 1174-1183. https://doi.org/10.1007/s00586-022-07166-2
|
[15]
|
Ueno, J., Torii, Y., Umehra, T., Iinuma, M., Yoshida, A., Tomochika, K., et al. (2022) Robotics Is Useful for Less-Experienced Surgeons in Spinal Deformity Surgery. European Journal of Orthopaedic Surgery & Traumatology, 33, 1805-1810. https://doi.org/10.1007/s00590-022-03362-4
|
[16]
|
Widmann, R.F., Wisch, J.L., Tracey, O.C., Zucker, C.P., Feddema, T., Miller, F., et al. (2024) Analysis of 5,070 Consecutive Pedicle Screws Placed Utilizing Robotically Assisted Surgical Navigation in 334 Patients by Experienced Pediatric Spine Deformity Surgeons: Surgical Safety and Early Perioperative Complications in Pediatric Posterior Spinal Fusion. Spine Deformity, 12, 961-970. https://doi.org/10.1007/s43390-024-00854-7
|
[17]
|
Noh, S.H., Lee, H.S., Park, G.E., Ha, Y., Park, J.Y., Kuh, S.U., et al. (2023) Predicting Mechanical Complications after Adult Spinal Deformity Operation Using a Machine Learning Based on Modified Global Alignment and Proportion Scoring with Body Mass Index and Bone Mineral Density. Neurospine, 20, 265-274. https://doi.org/10.14245/ns.2244854.427
|
[18]
|
Patel, A.V., White, C.A., Schwartz, J.T., Pitaro, N.L., Shah, K.C., Singh, S., et al. (2021) Emerging Technologies in the Treatment of Adult Spinal Deformity. Neurospine, 18, 417-427. https://doi.org/10.14245/ns.2142412.206
|
[19]
|
高平明, 高晓燕, 黄润忠. 先天性消化道畸形的影响因素分析[J]. 重庆医学, 2016, 45(36): 5142-5144.
|
[20]
|
龚恩美, 张恒, 郑瑞, 等. 小儿先天性消化道畸形的临床特征及手术效果[J]. 中国妇幼健康研究, 2019, 30(12): 1587-1591.
|
[21]
|
汤绍涛, 张茜, 曹国庆, 等. 机器人辅助手术在儿童消化道畸形治疗中的应用现状[J]. 机器人外科学杂志(中英文), 2023, 4(2): 105-112.
|
[22]
|
Zhang, M., Zhang, X., Chi, S., Chang, X., Zeng, J., Bian, H., et al. (2023) Robotic-Assisted Proctosigmoidectomy versus Laparoscopic-Assisted Soave Pull-Through for Hirschsprung Disease: Medium-Term Outcomes from a Prospective Multicenter Study. Annals of Surgery, 281, 689-697. https://doi.org/10.1097/sla.0000000000006172
|
[23]
|
沈茜. 先天性肾脏和尿路畸形诊断治疗进展[J]. 中华实用儿科临床杂志, 2020, 35(5): 321-326.
|
[24]
|
Murugapoopathy, V. and Gupta, I.R. (2020) A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (Cakut). Clinical Journal of the American Society of Nephrology, 15, 723-731. https://doi.org/10.2215/cjn.12581019
|
[25]
|
Mahmoud, A.H., Talaat, I.M., Tlili, A. and Hamoudi, R. (2024) Congenital Anomalies of the Kidney and Urinary Tract. Frontiers in Medicine, 11, Article 1384676. https://doi.org/10.3389/fmed.2024.1384676
|
[26]
|
Rani, G., Thakkar, P., Verma, A., Mehta, V., Chavan, R., Dhaka, V.S., et al. (2022) KUB-UNet: Segmentation of Organs of Urinary System from a KUB X-Ray Image. Computer Methods and Programs in Biomedicine, 224, Article ID: 107031. https://doi.org/10.1016/j.cmpb.2022.107031
|
[27]
|
Jin, X., Zhong, H., Zhang, Y. and Pang, G.D. (2024) Deep-Learning-Based Method for the Segmentation of Ureter and Renal Pelvis on Non-Enhanced CT Scans. Scientific Reports, 14, Article No. 20227. https://doi.org/10.1038/s41598-024-71066-2
|
[28]
|
Fuller, T.W., Daily, A.M. and Buckley, J.C. (2022) Robotic Ureteral Reconstruction. Urologic Clinics of North America, 49, 495-505. https://doi.org/10.1016/j.ucl.2022.05.002
|
[29]
|
梅红, 李聃, 金环, 等. 机器人辅助腹腔镜手术在儿童上尿路修复重建中的应用[J]. 机器人外科学杂志(中英文), 2023, 4(2): 113-120.
|
[30]
|
Sullivan, B.A., Beam, K., Vesoulis, Z.A., Aziz, K.B., Husain, A.N., Knake, L.A., et al. (2023) Transforming Neonatal Care with Artificial Intelligence: Challenges, Ethical Consideration, and Opportunities. Journal of Perinatology, 44, 1-11. https://doi.org/10.1038/s41372-023-01848-5
|
[31]
|
Yilmaz, A.N., Altiparmak, S. and Sökmen, R. (2025) The Relationship between Anxiety and Readiness Levels Regarding Artificial Intelligence in Midwives: An Intergenerational Comparative Study. CIN: Computers, Informatics, Nursing, 43, e01269. https://doi.org/10.1097/cin.0000000000001269
|
[32]
|
Krishnan, R., Rajpurkar, P. and Topol, E.J. (2022) Self-Supervised Learning in Medicine and Healthcare. Nature Biomedical Engineering, 6, 1346-1352. https://doi.org/10.1038/s41551-022-00914-1
|