急性胰腺炎相关AKI的早期预测标记物研究进展
Research Progress on Early Predictive Markers for Acute Pancreatitis-Related Acute Kidney Injury
DOI: 10.12677/acm.2025.1592473, PDF, HTML, XML,   
作者: 叶卓杰, 刘天成, 郭 力, 朱炜华:昆明医科大学第二附属医院重症医学科,云南 昆明;周海涛:昌宁县人民医院重症医学科,云南 保山
关键词: 急性胰腺炎AKI预测标记物Acute Pancreatitis Acute Kidney Injury (AKI) Predictive Biomarker
摘要: 急性肾损伤(Acute kidney injury, AKI)作为急性胰腺炎(Acute pancreatitis, AP)的严重并发症之一,其发生极大地增加了ICU中患者的死亡风险。为改善患者的预后情况,尽早的诊断是关键,所以需要更早、更准确的生物标志物来辅助明确AP相关的AKI。本文综述了当前关于AP发生AKI早期预测指标的研究进展,对比分析了常用指标的价值,包括胱抑素C (Cystatin C, Cys-C)、肾血管阻力指数(Renal Resisstance Index, RRI)、中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL)以及其他炎症指标等,考虑鉴于单一标志物在敏感度与特异度上的局限,依据各自特点进行多标志物联合检测,对于早期诊断AP相关AKI具有广阔的应用前景。
Abstract: Acute kidney injury (AKI) is a serious complication of acute pancreatitis (AP), and its occurrence significantly increases the risk of death in patients. To improve the prognosis of patients, early diagnosis is the key, so earlier and more accurate biomarkers are needed to assist in identifying AKI complicated by AP. This article reviews the current research progress on early predictive indicators of AKI in AP, and compares and analyzes the value of commonly used indicators, including cystatin C, renal vascular resistance index (RRI), neutrophil gelatinase-associated lipocalin (NGAL) and other inflammatory indicators. Considering the limitations of single markers in sensitivity and specificity, multi-marker combined detection based on their respective characteristics has broad application prospects for early diagnosis of AP-related AKI.
文章引用:叶卓杰, 刘天成, 郭力, 周海涛, 朱炜华. 急性胰腺炎相关AKI的早期预测标记物研究进展[J]. 临床医学进展, 2025, 15(9): 185-193. https://doi.org/10.12677/acm.2025.1592473

1. 引言

急性胰腺炎是因各种因素致胰腺泡细胞受损后胰蛋白酶原异常激活转化为胰蛋白酶,然后引起其他消化酶、激肽和补体系统级联反应的激活,继而导致胰腺组织发生自体消化性损伤,病情表现轻重不一的一种疾病。在AP患者中80%~85%的病例表现为单纯或轻度急性胰腺炎(Mild acute pancreatitis, MAP),病程多呈自限性,但也有大概20%的患者会发展为中度或重症胰腺炎(Severe acute pancreatitis, SAP),因为其他器官严重受损可诱发全身炎症反应综合征(Systemic Inflammatory Response Syndrome, SIRS)、多器官功能障碍综合征(Multiple Organs Dysfunction Syndrome, MODS) [1],其临床病死率为13%~35%。

临床过程中,SAP常与胰腺远端脏器功能障碍有关,肾脏作为其常见受累的靶器官,其损伤的发生率仅次于肺脏,长期以来,AKI被认为是SAP的并发症之一,在重症监护室中的发生率可至14%~16% [2],尽管在不同的研究中其患病率不同,但周娇娇等人进行的一项多中心研究表明,AKI可发生在ICU收治近70%的急性胰腺炎病例中[3]。在我国台湾一项大样本回顾性分析中,Lin等人观察到AP患者的急性肾损伤比其他诊断的患者更常见(优势比为4.862) [4],且ICU里AP患者的AKI患病率(15.05%)甚至超过脓毒症患者的AKI患病率(13.2%)。此外有研究表明,针对重症胰腺炎住院患者,AKI的发生可提高其死亡率3倍[5],并且对于接受了连续肾脏替代治疗(continuous renal replacement therapy, CRRT)的病例预后一般不佳,其死亡率高达74.7%~81% [6]

目前有关于AP合并发生AKI的病理生理机制尚未完全揭示,但随着近年来分子生物学、代谢组学及影像学技术的进步,前沿研究者逐步揭示了其核心机制,主要包括全身炎症反应失控、氧化应激损伤、微循环障碍、细胞凋亡信号激活以及代谢紊乱介导的肾毒性等,其他因素可能包括高脂血症、血栓性微血管病变、药物不良反应。有国内学者总结在SAP的进展过程中,包括以下几个方面潜在的多种影响因素可通过“网络调节”模式诱导其AKI的发生:1、肠屏障功能障碍;2、腹部隔室综合征(Abdominal compartment syndrome, ACS);3、血管内皮功能障碍和凝血途径的激活;4、损伤相关分子模式(Damage associated molecular patterns, DAMPs)的升高释放;5、细胞因子释放和炎症介质水平的升高;6、降钙素原(Procalcitonin, PCT)的过表达;7、慢性代谢性疾病的刺激[7] [8]。此外有研究提出胰腺炎合并的腹内高压(intraperitoneal hypertension,IAH)不仅可直接造成肾脏静脉血液回流受阻,而且还能间接通过影响肾素的活性和醛固酮水平并增加肾血管抵抗[9]

当前国际认可度最高的KDIGO (Kidney Disease: Improving Global Outcomes)指南对于AKI的诊断标准[10]主要是基于血清肌酐的动态升高和尿量的减少,然而对于其他重症患者继发急性肾损伤,我们希望有更早、更准确的生物标志物来满足其临床诊断需要,尽早诊断推动从“被动治疗”向“主动预防”的范式转变是改善其预后、降低病死率的关键。目前针对急性胰腺炎伴发肾衰竭的研究还不够充分,但已有许多研究围绕着相关临床参数以及其他数据,将其单独或联合统计分析来早期预测SAP相关AKI的发生,此外还有研究人员进一步利用机器学习的方法结合相关药物的使用情况和多模态数据(如影像学、组学技术)构建预测模型来进一步提高其预测诊断的效能。本文简要总结了一些国内外针对脓毒症和ICU患者的相关研究内容,回顾常见的肾功能标记物、炎症介质水平及相关器官监测参数等作为AP相关AKI的预测价值,为临床早期识别高危患者和优化干预策略提供循证依据。

2. 肾小球滤过标记物

2.1. 血清肌酐

肌酐作为临床应用极为广泛的参数,虽具备重要的参考价值,却也存在一些局限性。从代谢过程来看,肌酐主要于肾小球处进行过滤,同时也在肾小管参与分泌,这一复杂过程极易受到非肾性因素干扰,其中药物(如西咪替丁和甲氧苄啶)是常见影响因素之一[11]。此外,血清肌酐浓度水平还与年龄、性别、肌肉量、水合状态和外源性肌酐摄入量等密切相关。而且由于肌酐半衰期相对较长,肾小球滤过的突然改变往往不能及时单独在肌酐水平上得到体现。临床上如果要基于血清肌酐来准确估计肾小球滤过率,需建立在肌酐生成与排泄达到稳定状态的基础之上,而SAP合并AKI的患者一般难以满足这一条件。有研究表明,当肾小球滤过率下降幅度达到50%之后,血清肌酐才会显著上升,所以在重症患者合并有肾损伤的早期阶段,血清肌酐浓度难以精准反映疾病严重程度,对其解读稍有不慎便可能产生误导[12] [13]

2.2. 血清胱抑素C

血清胱抑素C是一种被肾小球自由过滤的半胱氨酸蛋白酶抑制剂,分子量低且不与蛋白质结合[14],在近端小管几乎被完全重吸收,其浓度水平与年龄、性别等非肾脏因素无关,但可能受内分泌代谢和药物影响[13]。在轻度肾损伤时,血清胱抑素C会在血清肌酐升高之前的24至48小时开始升高,并且随着病情的发展,血清胱抑素C会逐渐升高[15]。在一项纳入190例AP患者(非AKI组152例,AKI组38例)的回顾性研究中[16],统计两组受试者的Cys-C水平并联合其他指标进行分析,结果确认尿白蛋白和Cys-C为AKI的独立预测因子,AKI组的基础Cys-C水平显著高于非AKI,当以32.32 ng/mL为截断值时,其预测的敏感性和特异性分别为92.06%和96%。另一项相关性分析也表明,高Cys-C组患者较正常Cys-C水平的患者,SAP的发生率更高并且器官衰竭发生概率提高3倍,其ROC曲线分析发现血清胱抑素C对持续性AKI的预测能力超过血清肌酐[17]

2.3. 尿β2-微球蛋白(β2-microglobulin, β2-MG)

β2微球蛋白是一种由100个氨基酸组成的蛋白质,分子量相对较小,参与抗原呈递、粘膜免疫、肿瘤监测、免疫球蛋白和白蛋白稳态以及铁代谢,在健康人的尿液中的浓度非常低[18]。尿液中β2-MG浓度的增加可能反映了近端小管的损伤,这与蛋白质重吸收的减少有关[19]。近年有国内研究者回顾性研究分析80例AP患者(AKI组25例,非AKI组55例),通过检测血清及尿液中NGAL和β2-MG水平,发现血液β2-MG预测AP患者发生AKI的AUC为0.86,而尿液β2-MG的AUC为0.71,表明了其对AP患者AKI发生起初具有良好的预测能力[20],该研究虽排除了药物、慢性肾脏病、严重感染、免疫缺陷和其他继发因素对AKI评估的影响,但仍需未来大样本量的多中心前瞻性研究进一步验证β2-MG的诊断价值。

3. 肾小管损伤标记物

3.1. 中性粒细胞明胶酶相关脂钙蛋白

中性粒细胞明胶酶相关脂质运载蛋白是一种由178个氨基酸残基组成的糖蛋白,分子量为25 kDa,在中性粒细胞表面表达[21],通过肾小球过滤并在近端小管中被重吸收[22]。Subhankar等人报道了包含44例患者血清样本中NGAL的定量测量在区分MAP患者和SAP患者方面具有高度敏感性和特异性(48小时内血清NGAL的AUC为1.00),同时还建立了SAP小鼠模型,结果提示其胰腺组织学显示的显著坏死和炎症浸润与NGAL水平升高一致,表明血清NGAL可反映胰腺损伤程度[23]

NGAL测量已被证明可以预测脓毒症相关AKI [24]。在急性肾衰的小鼠模型中,尿液NGAL的出现早于其他尿液标志物如N-乙酰-β-d-葡萄糖苷酶和β2-微球蛋白,与肾脏缺血的程度和持续时间有关[22]。一项整合了52项观察性研究(共13,040例患者)的Meta分析[25],把ICU中AKI诊断的证据定义进行标准化评估,将不同类型定义的AKI划分亚组进行分析后,结果显示尿液NGAL在预测严重AKI及需透析治疗的AKI的AUC曲线面积分别为0.75和0.80,血浆NGAL的AUC更高,分别为0.80和0.86,提示尿液和血浆NGAL对AKI的预测均具有中等至良好的区分能力,且随着AKI严重程度增加,NGAL的预测效能和临界值呈递增趋势,影响其效能的原因可能是由于NGAL反映肾小管结构性损伤,而Scr反映肾小球滤过功能,二者在不同原因导致的AKI (如“亚临床AKI”或“血流动力学AKI”)中变化不同步,导致NGAL预测Scr定义的AKI准确性受限。

对于NGAL能否预测AP是否合并AKI,目前研究尚存在争议。在印度的一项病例对照研究中,结果提示50名胰腺炎患者中11名发生AKI的患者入院时和随后两天的血/尿中测量的NGAL浓度明显高于未发生AKI的患者[26]。但有国内的研究在88例SAP患者中发现,虽然所有胰腺炎患者组的血/尿NGAL水平均显著高于健康对照组,且SAP组(AKI组和非AKI组)的NGAL水平明显高于MAP组,但AKI组与非AKI组之间的NGAL水平差异并无统计学意义(P > 0.05) [27],表明其可以反映胰腺炎的严重程度但无法作为SAP合并AKI的早期标志物。

3.2. 肾损伤分子1 (Kidney Injury Molecule 1, KIM-1)

KIM-1作为一种跨膜糖蛋白,其表达水平在健康肾脏中极低,但在缺血、毒性损伤或炎症刺激下,近端肾小管上皮细胞通过金属蛋白酶依赖途径快速释放可溶性KIM-1至尿液,并参与凋亡细胞清除和组织修复。与无AKI的慢性肾病患者相比,AKI患者的KIM-1尿浓度在肾损伤进展过程中逐渐升高,因此并被认为可预测AKI后的肾脏预后[28]。有研究发现,尿KIM-1在肾损伤发生后24小时内即显著升高,其敏感性和特异性优于血清肌酐,尤其在脓毒症相关AKI中可预测不良预后[29]。汇集了11项临床研究的荟萃分析显示,尿KIM-1对诊断AKI的估算灵敏度为74.0%,特异度为 86.0% [30]。在一项针对59名AP患者的研究中[31],结果尿液KIM-1含量与血液中性粒细胞计数、C反应蛋白、尿激酶型纤溶酶原激活物受体、D-二聚体和降钙素原存在显著关联,尽管未确切证实KIM-1对AKI的早期诊断价值,但其与炎症的关联提示其在AP病理生理中的作用。

3.3. 血清尿调节蛋白(Uromodulin, UMOD)

尿调素(或称Tamm-Horsfall蛋白)是一种糖蛋白,仅由肾小管髓袢升支粗段和远端肾小管的开口部分细胞产生[32]。研究发现在AP的早期,血清尿调素与eGFR呈正相关(与性别和年龄无关),与血清肌酐和胱抑素C呈负相关,且血清尿调素对AKI合并早期AP的诊断准确性(ROC曲线下面积为0.684)低于血清肌酐或胱抑素C [33]。但王宇涵等人提出入院当天血清肌酐水平并不是影响AP患者发生AKI的独立危险因素,多因素Logistic回归分析AP患者入院后发生AKI的影响因素,发现UMOD影响系数仅次于qSOFA评分,并且经ROC曲线分析发现,入院当天血清尿调素浓度对入院72小时内发生AKI的预警价值更高[34]

4. 炎性介质指标

4.1. 白细胞介素6 (Interleukin-6, IL-6)和白细胞介素8 (Interleukin-8, IL-8)

在AP的病理进展期间,随着炎症级联反应的启动,机体免疫细胞会释放多种细胞因子和趋化因子例如肿瘤坏死因子(TNF-α)、白细胞介素-1β (IL-1β)、单核细胞趋化蛋白-1 (MCP-1)、IL-6、IL-8和IL-18,这些促炎细胞因子导致细胞因子风暴综合征(CSS) [35],其可能通过促进中性粒细胞浸润、微血管通透性增加及氧化应激等机制加剧器官损伤。有研究通过同步动态监测AP患者早期病程中的四种促炎细胞因子(IL-6, IL-8, IL-18, TNF-α)水平[36],明确了IL-6、IL-8对于预测AP相关的早期器官功能衰竭,效果要优于IL-18和TNF-α。针对急性胰腺炎并发AKI的患者,另外有研究纳入IL-8进行多因素回归分析并构建模型,结果显示基线IL-8水平是其AKI发生的独立预测因子,当IL-8的截断值为105 pg/ml时,预测AKI的敏感性和特异性分别为87.5%和59.2%,并且在需要侵入性治疗(如经皮导管引流)或器官支持(如透析、血管活性药物)的患者中,其IL-6和IL-8水平显著升高,提示细胞因子风暴与治疗需求的关联性[37]

4.2. 白细胞介素18 (Interleukin-18, IL-18)

白细胞介素-18是由单核/巨噬细胞和其他抗原呈递细胞释放的一种促炎细胞因子[38],属于白细胞介素-1家族,由半胱氨酸蛋白水解酶1基因(Caspase-1)介导转化为活性形式。IL-18作为促炎因子,在器官缺血、脓毒症、自身免疫性疾病(如系统性红斑狼疮)和消化系统炎症等病理过程中,其血清水平会显著升高。在小鼠缺血再灌注诱导的肾损伤中,已有研究证明IL-18的释放是AKI发生发展过程中的一个关键因素[39],另外在诱导急性胰腺炎的大鼠模型中,也揭示了肾脏中IL-1β和IL-18的表达在实验性SAP的AKI发生中发挥重要作用,并且通过抑制Caspase-1的表达可减轻SAP大鼠的肾损伤[40]

有临床研究提示AP患者尿中的IL-18水平可能与其炎症严重程度有关[41],进一步的研究表明IL-18在AP合并肾衰竭和呼吸衰竭的患者中显著升高,但对多器官衰竭的预测能力则较弱,提示其作用可能局限于特定器官损伤[36]。此外,有研究者发现,将血清microRNA-21-3p和IL-18联合检测预测AKI的AUC曲线面积可从0.794提升至0.873 [42]

4.3. 降钙素原

健康个体中的降钙素原由甲状腺C细胞合成,并被特定的蛋白酶降解为降钙素,在严重细菌感染时,它可由多种细胞合成并释放入血,且其血清浓度与感染的严重程度相关,是诊断脓毒症、感染性休克等一种临床常用的生物标志物,研究表明PCT可一定程度上评估AP的严重程度和结果[43],而AP患者又常因肠道屏障功能障碍导致细菌易位,引发全身炎症反应,进而通过PCT介导的细胞毒性作用加剧肾损伤。

有日本学者收集了106名入ICU患者信息分析后提出[44],U-NGAL和PCT的联合运用可提高AKI早期诊断准确性,其在入院早期(第1~3天)即显示出高敏感性(U-NGAL: 60.9%~70.7%、PCT: 50.0%~69.8%)与特异性(U-NGAL: 67.9%~78.8%, PCT: 71.0%~82.8%),尤其对于AKI 3期和脓毒症患者中可作为AKI的有效补充诊断指标。同时一项前瞻性研究[45]在305名AP病例中发现,入ICU当天的AKI组血清PCT水平比非AKI组高100倍,当PCT截断值为3.30 ng/mL时,其敏感性和特异性分别达97.2%和92.3%,ROC曲线下面积为0.986,如此表明血清PCT一定程度上可以作为AP患者并发AKI的良好预测指标,但可能是由于CRP和IL-6易受多种非感染因素干扰,单独使用PCT预测AKI的效能要明显优于CRP和IL-6。

5. 肾脏阻力指数

如今,重症超声作为危重患者辅助诊疗过程中的可视化工具正在迅速普及推广,通过多普勒超声测量肾动脉(通常为段动脉或叶间动脉)血流频谱可得出反应肾脏灌注情况的肾脏阻力指数,其计算方法为:RRI = (肾动脉收缩期峰值流速 − 舒张期峰值流速)/动脉收缩期峰值流速。有前瞻性研究表明,对于危重病人入住ICU时测量的RRI是第一周内AKI 2期和3期发展的重要独立早期预测因子和鉴别因子[46],99名患者中的灵敏度为53%,特异性为87%,但对于AKI 1期则不是。在AP患者中,多因素Logistic回归分析表明RRI是AKI分级的独立预测因素,受试者工作曲线显示,RRI预测7天AKI ≥ 2级的曲线下面积(AUC)为0.87,同时RRI参数的升高提示患者更易进展为严重AKI (≥2级) [47]。但考虑到AKI在AP中的异质性机制(如肾前性、肾性及肾后性因素共存)以及RRI对系统性炎症和血流动力学变化的敏感性,Nikhil Bush等人提出入院时完善肾脏多普勒计算的RRI对AP患者AKI的诊断和预后表现较差[48]。考虑RRI可能受动脉粥样硬化、肾间质、腹内压、年龄以及中枢血流动力学参数、药物和糖尿病等因素的影响,近年有其他研究者将RRI联合其他指标来共同预测AP患者并发AKI似乎能体现出更好的价值[49]-[51]

6. 其他

除了上述相对广泛的肾脏标志物外,血管生成素-2已被证明与AP早期的血清肌酐、血清胱抑素C、血清和尿NGAL相关,且对急性胰腺炎前72小时的肾功能衰竭具有正向预测作用[52]。Seibert等人报道了尿钙保护蛋白测定在区分AKI中具有一定的价值[53]。其他潜在的生物标记物,如组织抑制剂金属蛋白酶-2 (TIMP-2)、尿胰岛素样生长因子结合蛋白7 (IGFBP-7) [54]和肝型脂肪酸结合蛋白(L-FABP) [55]等,也被提出可以在特定临床环境中不同程度地预测或早期诊断AKI,但目前暂未检索到这些标志物在AP患者中的研究,未来可能还需要相关的临床证据来证明其在急性胰腺炎中的作用。

7. 总结

总体而言,越来越多有趣的AKI早期生物标记物被发现并开始用于AP的相关研究,但大部分临床证据多来自于小样本的单中心研究,对于血清降钙素原、血清胱抑素C和尿液NGAL这些具有优秀实际运用优势的临床指标,目前大部分医院的检验科室都可以对其进行快速测量,应该鼓励未来对这些标记物进行更大规模的临床研究以验证其临床应用价值。不过目前鉴于AP合并AKI的复杂性和单一标志物有限的预测效能,越来越多人似乎开始关注并利用多项指标叠加,如彩色多普勒超声联合NGAL、KIM-1 [56]等,来提高其在AP相关AKI的早期诊断的敏感度与特异性,或者将多个机器学习模型集成开发为新预测模型[57]来应用于临床,这为进一步研究提供了不错的思路,有待于未来更进一步的探索讨论。

参考文献

[1] Mederos, M.A., Reber, H.A. and Girgis, M.D. (2021) Acute Pancreatitis. JAMA, 325, 382-390.
https://doi.org/10.1001/jama.2020.20317
[2] Tran, D.D., Oe, P.L., De Fijter, C.W., et al. (1993) Acute Renal Failure in Patients with Acute Pancreatitis: Prevalence, Risk Factors, and Outcome. Nephrol Dial Transplant, 8, 1079-1084.
[3] Zhou, J., Li, Y., Tang, Y., Liu, F., Yu, S., Zhang, L., et al. (2015) Effect of Acute Kidney Injury on Mortality and Hospital Stay in Patient with Severe Acute Pancreatitis. Nephrology, 20, 485-491.
https://doi.org/10.1111/nep.12439
[4] Lin, H., Lai, J., Lai, Y., Lin, P., Chang, S. and Tang, G. (2011) Acute Renal Failure in Severe Pancreatitis: A Population-Based Study. Upsala Journal of Medical Sciences, 116, 155-159.
https://doi.org/10.3109/03009734.2010.547636
[5] Devani, K., Charilaou, P., Radadiya, D., Brahmbhatt, B., Young, M. and Reddy, C. (2018) Acute Pancreatitis: Trends in Outcomes and the Role of Acute Kidney Injury in Mortality—A Propensity-Matched Analysis. Pancreatology, 18, 870-877.
https://doi.org/10.1016/j.pan.2018.10.002
[6] Nassar, T.I. and Qunibi, W.Y. (2019) AKI Associated with Acute Pancreatitis. Clinical Journal of the American Society of Nephrology, 14, 1106-1115.
https://doi.org/10.2215/cjn.13191118
[7] Ruan, Q., Lu, H., Zhu, H., Guo, Y. and Bai, Y. (2020) A Network-Regulative Pattern in the Pathogenesis of Kidney Injury Following Severe Acute Pancreatitis. Biomedicine & Pharmacotherapy, 125, Article ID: 109978.
https://doi.org/10.1016/j.biopha.2020.109978
[8] 何霄, 赵志芳, 刘琦. 急性胰腺炎合并急性肾功能损伤的研究进展[J]. 现代消化及介入诊疗, 2024, 29(4): 494-500.
[9] Bloomfield, G.L., Blocher, C.R., Fakhry, I.F., Sica, D.A. and Sugerman, H.J. (1997) Elevated Intra-Abdominal Pressure Increases Plasma Renin Activity and Aldosterone Levels. The Journal of Trauma: Injury, Infection, and Critical Care, 42, 997-1005.
https://doi.org/10.1097/00005373-199706000-00002
[10] KDIGO Board Members (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements, 2, 124-138.
[11] Andreucci, M., Faga, T., Pisani, A., Perticone, M. and Michael, A. (2017) The Ischemic/nephrotoxic Acute Kidney Injury and the Use of Renal Biomarkers in Clinical Practice. European Journal of Internal Medicine, 39, 1-8.
https://doi.org/10.1016/j.ejim.2016.12.001
[12] Lima, C. and Macedo, E. (2018) Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease Markers, 2018, Article ID: 4907024.
https://doi.org/10.1155/2018/4907024
[13] Leem, A.Y., Park, M.S., Park, B.H., Jung, W.J., Chung, K.S., Kim, S.Y., et al. (2017) Value of Serum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Recovery. Yonsei Medical Journal, 58, 604-612.
https://doi.org/10.3349/ymj.2017.58.3.604
[14] Benli, E., Ayyildiz, S.N., Cirrik, S., Noyan, T., Ayyildiz, A. and Cirakoglu, A. (2017) Early Term Effect of Ureterorenoscopy (URS) on the Kidney: Research Measuring NGAL, KIM-1, FABP and CYS C Levels in Urine. International braz j urol, 43, 887-895.
https://doi.org/10.1590/s1677-5538.ibju.2016.0638
[15] Francoz, C., Glotz, D., Moreau, R. and Durand, F. (2010) The Evaluation of Renal Function and Disease in Patients with Cirrhosis. Journal of Hepatology, 52, 605-613.
https://doi.org/10.1016/j.jhep.2009.11.025
[16] Chai, X., Huang, H., Feng, G., Cao, Y., Cheng, Q., Li, S., et al. (2018) Baseline Serum Cystatin C Is a Potential Predictor for Acute Kidney Injury in Patients with Acute Pancreatitis. Disease Markers, 2018, Article ID: 8431219.
https://doi.org/10.1155/2018/8431219
[17] Wang, N., Han, F., Pan, J., Yao, G., Wang, Y., Xu, S., et al. (2023) Serum Cys C Predicts Acute Kidney Injury in Patients with Acute Pancreatitis: A Retrospective Study. Arab Journal of Gastroenterology, 24, 238-244.
https://doi.org/10.1016/j.ajg.2023.09.003
[18] Argyropoulos, C.P., Chen, S.S., Ng, Y., Roumelioti, M., Shaffi, K., Singh, P.P., et al. (2017) Rediscovering β-2 Microglobulin as a Biomarker across the Spectrum of Kidney Diseases. Frontiers in Medicine, 4, Article 73.
https://doi.org/10.3389/fmed.2017.00073
[19] Zeng, X., Hossain, D., Bostwick, D.G., Herrera, G.A. and Zhang, P.L. (2014) Urinary β2-Microglobulin Is a Good Indicator of Proximal Tubule Injury: A Correlative Study with Renal Biopsies. Journal of Biomarkers, 2014, Article ID: 492838.
https://doi.org/10.1155/2014/492838
[20] Yuan, L. and Jin, X. (2023) Predictive Value of Serum NGAL and Β2 Microglobulin in Blood and Urine Amongst Patients with Acute Pancreatitis and Acute Kidney Injury. Archivos Españoles de Urología, 76, 335-340.
https://doi.org/10.56434/j.arch.esp.urol.20237605.39
[21] Kjeldsen, L., Bainton, D., Sengelov, H. and Borregaard, N. (1994) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Matrix Protein of Specific Granules in Human Neutrophils. Blood, 83, 799-807.
https://doi.org/10.1182/blood.v83.3.799.bloodjournal833799
[22] Mori, K., Lee, H.T., Rapoport, D., Drexler, I.R., Foster, K., Yang, J., et al. (2005) Endocytic Delivery of Lipocalin-Siderophore-Iron Complex Rescues the Kidney from Ischemia-Reperfusion Injury. Journal of Clinical Investigation, 115, 610-621.
https://doi.org/10.1172/jci23056
[23] Chakraborty, S., Kaur, S., Muddana, V., Sharma, N., Wittel, U.A., Papachristou, G.I., et al. (2010) Elevated Serum Neutrophil Gelatinase-Associated Lipocalin Is an Early Predictor of Severity and Outcome in Acute Pancreatitis. American Journal of Gastroenterology, 105, 2050-2059.
https://doi.org/10.1038/ajg.2010.23
[24] Dai, X., Zeng, Z., Fu, C., Zhang, S., Cai, Y. and Chen, Z. (2015) Diagnostic Value of Neutrophil Gelatinase-Associated Lipocalin, Cystatin C, and Soluble Triggering Receptor Expressed on Myeloid Cells-1 in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury. Critical Care, 19, Article No. 233.
https://doi.org/10.1186/s13054-015-0941-6
[25] Albert, C., Zapf, A., Haase, M., Röver, C., Pickering, J.W., Albert, A., et al. (2020) Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy: A Systematic Review and Meta-analysis. American Journal of Kidney Diseases, 76, 826-841.e1.
https://doi.org/10.1053/j.ajkd.2020.05.015
[26] Siddappa, P.K., Kochhar, R., Sarotra, P., Medhi, B., Jha, V. and Gupta, V. (2018) Neutrophil Gelatinase‐Associated Lipocalin: An Early Biomarker for Predicting Acute Kidney Injury and Severity in Patients with Acute Pancreatitis. JGH Open, 3, 105-110.
https://doi.org/10.1002/jgh3.12112
[27] 陈艳红, 吴艳红, 于海明, 等. 中性粒细胞明胶酶相关载脂蛋白在重症急性胰腺炎合并急性肾损伤中的意义[J]. 临床肾脏病杂志, 2018, 18(5): 281-284.
[28] Kokkoris, S., Pipili, C., Grapsa, E., Kyprianou, T. and Nanas, S. (2013) Novel Biomarkers of Acute Kidney Injury in the General Adult ICU: A Review. Renal Failure, 35, 579-591.
https://doi.org/10.3109/0886022x.2013.773835
[29] Moresco, R.N., Bochi, G.V., Stein, C.S., De Carvalho, J.A.M., Cembranel, B.M. and Bollick, Y.S. (2018) Urinary Kidney Injury Molecule-1 in Renal Disease. Clinica Chimica Acta, 487, 15-21.
https://doi.org/10.1016/j.cca.2018.09.011
[30] Shao, X., Tian, L., Xu, W., Zhang, Z., Wang, C., Qi, C., et al. (2014) Diagnostic Value of Urinary Kidney Injury Molecule 1 for Acute Kidney Injury: A Meta-Analysis. PLOS ONE, 9, e84131.
https://doi.org/10.1371/journal.pone.0084131
[31] Wajda, J., Dumnicka, P., Kolber, W., Sporek, M., Maziarz, B., Ceranowicz, P., et al. (2020) The Marker of Tubular Injury, Kidney Injury Molecule-1 (KIM-1), in Acute Kidney Injury Complicating Acute Pancreatitis: A Preliminary Study. Journal of Clinical Medicine, 9, Article 1463.
https://doi.org/10.3390/jcm9051463
[32] Serafini-Cessi, F., Malagolini, N. and Cavallone, D. (2003) Tamm-Horsfall Glycoprotein: Biology and Clinical Relevance. American Journal of Kidney Diseases, 42, 658-676.
https://doi.org/10.1016/s0272-6386(03)00829-1
[33] Kuśnierz-Cabala, B., Gala-Błądzińska, A., Mazur-Laskowska, M., Dumnicka, P., Sporek, M., Matuszyk, A., et al. (2017) Serum Uromodulin Levels in Prediction of Acute Kidney Injury in the Early Phase of Acute Pancreatitis. Molecules, 22, Article 988.
https://doi.org/10.3390/molecules22060988
[34] 王宇涵, 吴贵恺, 郑荣娟, 等. 血清尿调节素在急性胰腺炎早期急性肾损伤患者外周血中的表达及临床意义[J]. 中国急救医学, 2019, 39(10): 958-962.
[35] Mahapatra, S.J. and Garg, P.K. (2025) Organ Failure and Prediction of Severity in Acute Pancreatitis. Gastroenterology Clinics of North America, 54, 1-19.
https://doi.org/10.1016/j.gtc.2024.09.001
[36] Malmstrøm, M.L., Hansen, M.B., Andersen, A.M., Ersbøll, A.K., Nielsen, O.H., Jørgensen, L.N., et al. (2012) Cytokines and Organ Failure in Acute Pancreatitis: Inflammatory Response in Acute Pancreatitis. Pancreas, 41, 271-277.
https://doi.org/10.1097/mpa.0b013e3182240552
[37] Prasada, R., Muktesh, G., Samanta, J., Sarma, P., Singh, S., Arora, S.K., et al. (2020) Natural History and Profile of Selective Cytokines in Patients of Acute Pancreatitis with Acute Kidney Injury. Cytokine, 133, Article ID: 155177.
https://doi.org/10.1016/j.cyto.2020.155177
[38] Schrezenmeier, E.V., Barasch, J., Budde, K., Westhoff, T. and Schmidt‐Ott, K.M. (2016) Biomarkers in Acute Kidney Injury—Pathophysiological Basis and Clinical Performance. Acta Physiologica, 219, 556-574.
https://doi.org/10.1111/apha.12764
[39] Wu, H., Craft, M.L., Wang, P., Wyburn, K.R., Chen, G., Ma, J., et al. (2008) IL-18 Contributes to Renal Damage after Ischemia-Reperfusion. Journal of the American Society of Nephrology, 19, 2331-2341.
https://doi.org/10.1681/asn.2008020170
[40] Zhang, X. (2014) Caspase-1 Inhibition Alleviates Acute Renal Injury in Rats with Severe Acute Pancreatitis. World Journal of Gastroenterology, 20, 10457-10463.
https://doi.org/10.3748/wjg.v20.i30.10457
[41] 王虹, 蔡治方, 敖弟书, 等. 尿IL-18及NGAL在重症急性胰腺炎患者并发急性肾损伤的早期诊断价值[J]. 免疫学杂志, 2012, 28(7): 642-644.
[42] 宋云婷, 徐翠萍, 谭通. 血清miR-21-3p、IL-18水平检测对重症急性胰腺炎患者急性肾损伤预测评估的临床价值[J]. 临床和实验医学杂志, 2024, 23(13): 1385-1388.
[43] Pavlidis, T.E., Pavlidis, E.T. and Sakantamis, A.K. (2010) Advances in Prognostic Factors in Acute Pancreatitis: A Mini-Review. Hepatobiliary & Pancreatic Diseases International, 9, 482-486.
[44] Imoto, Y., Wakasaki, A., Izumida, K., Shimada, H., Ohkubo, K., Kawano, Y., et al. (2021) Analysis of the Diagnostic Capabilities of Urinary Neutrophil Gelatinase‐associated Lipocalin and Serum Procalcitonin for Acute Kidney Injury at the Early Stage of Critical Care Intensive Care Unit Admission. Journal of Clinical Laboratory Analysis, 35, e23852.
https://doi.org/10.1002/jcla.23852
[45] Huang, H., Nie, X., Cai, B., Tang, J., He, Y., Miao, Q., et al. (2013) Procalcitonin Levels Predict Acute Kidney Injury and Prognosis in Acute Pancreatitis: A Prospective Study. PLOS ONE, 8, e82250.
https://doi.org/10.1371/journal.pone.0082250
[46] Haitsma Mulier, J.L.G., Rozemeijer, S., Röttgering, J.G., Spoelstra-de Man, A.M.E., Elbers, P.W.G., Tuinman, P.R., et al. (2018) Renal Resistive Index as an Early Predictor and Discriminator of Acute Kidney Injury in Critically Ill Patients; a Prospective Observational Cohort Study. PLOS ONE, 13, e0197967.
https://doi.org/10.1371/journal.pone.0197967
[47] 武钧, 许志伟, 张泓, 等. 肾血管阻力指数对重症急性胰腺炎相关性急性肾损伤早期预测价值的临床研究[J]. 中华危重病急救医学, 2019, 31(8): 998-1003.
[48] Bush, N., Rana, S.S., Gupta, P., Kang, M., Gupta, R., Suri, V., et al. (2020) Renal Doppler Changes in Patients with Acute Pancreatitis: A Prospective Study. Pancreatology, 20, 1275-1280.
https://doi.org/10.1016/j.pan.2020.08.007
[49] 谭超, 张裕实, 孙振华, 等. 肾阻力指数联合uNGAL, CysC对急性胰腺炎肾损伤的预测价值[J]. 临床医学进展, 2022, 12(7): 6695-6704.
[50] 周冰. 肾血管阻力指数联合胱抑制素C对重症胰腺炎相关性急性肾损伤早期预测价值的研究[J]. 中文科技期刊数据库(引文版)医药卫生, 2025(1): 193-196.
[51] 严俊, 闻勇, 曹葆强. 肾阻力指数联合血液指标对急性胰腺炎并发急性肾损伤的预测价值[J]. 中国临床医学, 2024, 31(3): 457-462.
[52] Sporek, M., Dumnicka, P., Gala-Bladzinska, A., Ceranowicz, P., Warzecha, Z., Dembinski, A., et al. (2016) Angiopoietin-2 Is an Early Indicator of Acute Pancreatic-Renal Syndrome in Patients with Acute Pancreatitis. Mediators of Inflammation, 2016, Article ID: 5780903.
https://doi.org/10.1155/2016/5780903
[53] Seibert, F.S., Pagonas, N., Arndt, R., Heller, F., Dragun, D., Persson, P., et al. (2013) Calprotectin and Neutrophil Gelatinase-Associated Lipocalin in the Differentiation of Pre‐Renal and Intrinsic Acute Kidney Injury. Acta Physiologica, 207, 700-708.
https://doi.org/10.1111/apha.12064
[54] Kashani, K., Al-Khafaji, A., Ardiles, T., et al. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, Article No. R25.
[55] Doi, K., Negishi, K., Ishizu, T., Katagiri, D., Fujita, T., Matsubara, T., et al. (2011) Evaluation of New Acute Kidney Injury Biomarkers in a Mixed Intensive Care Unit. Critical Care Medicine, 39, 2464-2469.
https://doi.org/10.1097/ccm.0b013e318225761a
[56] 马玉婷, 向鹏月, 韩晓明, 等. 彩色多普勒超声联合NGAL, KIM-1在重症急性胰腺炎合并急性肾损伤中的早期诊断价值[J]. 湖北民族学院学报: 医学版, 2016, 33(3): 24-26.
[57] Li, F., Wang, Z., Bian, R., Xue, Z., Cai, J., Zhou, Y., et al. (2025) Predicting the Risk of Acute Kidney Injury in Patients with Acute Pancreatitis Complicated by Sepsis Using a Stacked Ensemble Machine Learning Model: A Retrospective Study Based on the MIMIC Database. BMJ Open, 15, e087427.
https://doi.org/10.1136/bmjopen-2024-087427