[1]
|
Mederos, M.A., Reber, H.A. and Girgis, M.D. (2021) Acute Pancreatitis. JAMA, 325, 382-390. https://doi.org/10.1001/jama.2020.20317
|
[2]
|
Tran, D.D., Oe, P.L., De Fijter, C.W., et al. (1993) Acute Renal Failure in Patients with Acute Pancreatitis: Prevalence, Risk Factors, and Outcome. Nephrol Dial Transplant, 8, 1079-1084.
|
[3]
|
Zhou, J., Li, Y., Tang, Y., Liu, F., Yu, S., Zhang, L., et al. (2015) Effect of Acute Kidney Injury on Mortality and Hospital Stay in Patient with Severe Acute Pancreatitis. Nephrology, 20, 485-491. https://doi.org/10.1111/nep.12439
|
[4]
|
Lin, H., Lai, J., Lai, Y., Lin, P., Chang, S. and Tang, G. (2011) Acute Renal Failure in Severe Pancreatitis: A Population-Based Study. Upsala Journal of Medical Sciences, 116, 155-159. https://doi.org/10.3109/03009734.2010.547636
|
[5]
|
Devani, K., Charilaou, P., Radadiya, D., Brahmbhatt, B., Young, M. and Reddy, C. (2018) Acute Pancreatitis: Trends in Outcomes and the Role of Acute Kidney Injury in Mortality—A Propensity-Matched Analysis. Pancreatology, 18, 870-877. https://doi.org/10.1016/j.pan.2018.10.002
|
[6]
|
Nassar, T.I. and Qunibi, W.Y. (2019) AKI Associated with Acute Pancreatitis. Clinical Journal of the American Society of Nephrology, 14, 1106-1115. https://doi.org/10.2215/cjn.13191118
|
[7]
|
Ruan, Q., Lu, H., Zhu, H., Guo, Y. and Bai, Y. (2020) A Network-Regulative Pattern in the Pathogenesis of Kidney Injury Following Severe Acute Pancreatitis. Biomedicine & Pharmacotherapy, 125, Article ID: 109978. https://doi.org/10.1016/j.biopha.2020.109978
|
[8]
|
何霄, 赵志芳, 刘琦. 急性胰腺炎合并急性肾功能损伤的研究进展[J]. 现代消化及介入诊疗, 2024, 29(4): 494-500.
|
[9]
|
Bloomfield, G.L., Blocher, C.R., Fakhry, I.F., Sica, D.A. and Sugerman, H.J. (1997) Elevated Intra-Abdominal Pressure Increases Plasma Renin Activity and Aldosterone Levels. The Journal of Trauma: Injury, Infection, and Critical Care, 42, 997-1005. https://doi.org/10.1097/00005373-199706000-00002
|
[10]
|
KDIGO Board Members (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney International Supplements, 2, 124-138.
|
[11]
|
Andreucci, M., Faga, T., Pisani, A., Perticone, M. and Michael, A. (2017) The Ischemic/nephrotoxic Acute Kidney Injury and the Use of Renal Biomarkers in Clinical Practice. European Journal of Internal Medicine, 39, 1-8. https://doi.org/10.1016/j.ejim.2016.12.001
|
[12]
|
Lima, C. and Macedo, E. (2018) Urinary Biochemistry in the Diagnosis of Acute Kidney Injury. Disease Markers, 2018, Article ID: 4907024. https://doi.org/10.1155/2018/4907024
|
[13]
|
Leem, A.Y., Park, M.S., Park, B.H., Jung, W.J., Chung, K.S., Kim, S.Y., et al. (2017) Value of Serum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Recovery. Yonsei Medical Journal, 58, 604-612. https://doi.org/10.3349/ymj.2017.58.3.604
|
[14]
|
Benli, E., Ayyildiz, S.N., Cirrik, S., Noyan, T., Ayyildiz, A. and Cirakoglu, A. (2017) Early Term Effect of Ureterorenoscopy (URS) on the Kidney: Research Measuring NGAL, KIM-1, FABP and CYS C Levels in Urine. International braz j urol, 43, 887-895. https://doi.org/10.1590/s1677-5538.ibju.2016.0638
|
[15]
|
Francoz, C., Glotz, D., Moreau, R. and Durand, F. (2010) The Evaluation of Renal Function and Disease in Patients with Cirrhosis. Journal of Hepatology, 52, 605-613. https://doi.org/10.1016/j.jhep.2009.11.025
|
[16]
|
Chai, X., Huang, H., Feng, G., Cao, Y., Cheng, Q., Li, S., et al. (2018) Baseline Serum Cystatin C Is a Potential Predictor for Acute Kidney Injury in Patients with Acute Pancreatitis. Disease Markers, 2018, Article ID: 8431219. https://doi.org/10.1155/2018/8431219
|
[17]
|
Wang, N., Han, F., Pan, J., Yao, G., Wang, Y., Xu, S., et al. (2023) Serum Cys C Predicts Acute Kidney Injury in Patients with Acute Pancreatitis: A Retrospective Study. Arab Journal of Gastroenterology, 24, 238-244. https://doi.org/10.1016/j.ajg.2023.09.003
|
[18]
|
Argyropoulos, C.P., Chen, S.S., Ng, Y., Roumelioti, M., Shaffi, K., Singh, P.P., et al. (2017) Rediscovering β-2 Microglobulin as a Biomarker across the Spectrum of Kidney Diseases. Frontiers in Medicine, 4, Article 73. https://doi.org/10.3389/fmed.2017.00073
|
[19]
|
Zeng, X., Hossain, D., Bostwick, D.G., Herrera, G.A. and Zhang, P.L. (2014) Urinary β2-Microglobulin Is a Good Indicator of Proximal Tubule Injury: A Correlative Study with Renal Biopsies. Journal of Biomarkers, 2014, Article ID: 492838. https://doi.org/10.1155/2014/492838
|
[20]
|
Yuan, L. and Jin, X. (2023) Predictive Value of Serum NGAL and Β2 Microglobulin in Blood and Urine Amongst Patients with Acute Pancreatitis and Acute Kidney Injury. Archivos Españoles de Urología, 76, 335-340. https://doi.org/10.56434/j.arch.esp.urol.20237605.39
|
[21]
|
Kjeldsen, L., Bainton, D., Sengelov, H. and Borregaard, N. (1994) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Matrix Protein of Specific Granules in Human Neutrophils. Blood, 83, 799-807. https://doi.org/10.1182/blood.v83.3.799.bloodjournal833799
|
[22]
|
Mori, K., Lee, H.T., Rapoport, D., Drexler, I.R., Foster, K., Yang, J., et al. (2005) Endocytic Delivery of Lipocalin-Siderophore-Iron Complex Rescues the Kidney from Ischemia-Reperfusion Injury. Journal of Clinical Investigation, 115, 610-621. https://doi.org/10.1172/jci23056
|
[23]
|
Chakraborty, S., Kaur, S., Muddana, V., Sharma, N., Wittel, U.A., Papachristou, G.I., et al. (2010) Elevated Serum Neutrophil Gelatinase-Associated Lipocalin Is an Early Predictor of Severity and Outcome in Acute Pancreatitis. American Journal of Gastroenterology, 105, 2050-2059. https://doi.org/10.1038/ajg.2010.23
|
[24]
|
Dai, X., Zeng, Z., Fu, C., Zhang, S., Cai, Y. and Chen, Z. (2015) Diagnostic Value of Neutrophil Gelatinase-Associated Lipocalin, Cystatin C, and Soluble Triggering Receptor Expressed on Myeloid Cells-1 in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury. Critical Care, 19, Article No. 233. https://doi.org/10.1186/s13054-015-0941-6
|
[25]
|
Albert, C., Zapf, A., Haase, M., Röver, C., Pickering, J.W., Albert, A., et al. (2020) Neutrophil Gelatinase-Associated Lipocalin Measured on Clinical Laboratory Platforms for the Prediction of Acute Kidney Injury and the Associated Need for Dialysis Therapy: A Systematic Review and Meta-analysis. American Journal of Kidney Diseases, 76, 826-841.e1. https://doi.org/10.1053/j.ajkd.2020.05.015
|
[26]
|
Siddappa, P.K., Kochhar, R., Sarotra, P., Medhi, B., Jha, V. and Gupta, V. (2018) Neutrophil Gelatinase‐Associated Lipocalin: An Early Biomarker for Predicting Acute Kidney Injury and Severity in Patients with Acute Pancreatitis. JGH Open, 3, 105-110. https://doi.org/10.1002/jgh3.12112
|
[27]
|
陈艳红, 吴艳红, 于海明, 等. 中性粒细胞明胶酶相关载脂蛋白在重症急性胰腺炎合并急性肾损伤中的意义[J]. 临床肾脏病杂志, 2018, 18(5): 281-284.
|
[28]
|
Kokkoris, S., Pipili, C., Grapsa, E., Kyprianou, T. and Nanas, S. (2013) Novel Biomarkers of Acute Kidney Injury in the General Adult ICU: A Review. Renal Failure, 35, 579-591. https://doi.org/10.3109/0886022x.2013.773835
|
[29]
|
Moresco, R.N., Bochi, G.V., Stein, C.S., De Carvalho, J.A.M., Cembranel, B.M. and Bollick, Y.S. (2018) Urinary Kidney Injury Molecule-1 in Renal Disease. Clinica Chimica Acta, 487, 15-21. https://doi.org/10.1016/j.cca.2018.09.011
|
[30]
|
Shao, X., Tian, L., Xu, W., Zhang, Z., Wang, C., Qi, C., et al. (2014) Diagnostic Value of Urinary Kidney Injury Molecule 1 for Acute Kidney Injury: A Meta-Analysis. PLOS ONE, 9, e84131. https://doi.org/10.1371/journal.pone.0084131
|
[31]
|
Wajda, J., Dumnicka, P., Kolber, W., Sporek, M., Maziarz, B., Ceranowicz, P., et al. (2020) The Marker of Tubular Injury, Kidney Injury Molecule-1 (KIM-1), in Acute Kidney Injury Complicating Acute Pancreatitis: A Preliminary Study. Journal of Clinical Medicine, 9, Article 1463. https://doi.org/10.3390/jcm9051463
|
[32]
|
Serafini-Cessi, F., Malagolini, N. and Cavallone, D. (2003) Tamm-Horsfall Glycoprotein: Biology and Clinical Relevance. American Journal of Kidney Diseases, 42, 658-676. https://doi.org/10.1016/s0272-6386(03)00829-1
|
[33]
|
Kuśnierz-Cabala, B., Gala-Błądzińska, A., Mazur-Laskowska, M., Dumnicka, P., Sporek, M., Matuszyk, A., et al. (2017) Serum Uromodulin Levels in Prediction of Acute Kidney Injury in the Early Phase of Acute Pancreatitis. Molecules, 22, Article 988. https://doi.org/10.3390/molecules22060988
|
[34]
|
王宇涵, 吴贵恺, 郑荣娟, 等. 血清尿调节素在急性胰腺炎早期急性肾损伤患者外周血中的表达及临床意义[J]. 中国急救医学, 2019, 39(10): 958-962.
|
[35]
|
Mahapatra, S.J. and Garg, P.K. (2025) Organ Failure and Prediction of Severity in Acute Pancreatitis. Gastroenterology Clinics of North America, 54, 1-19. https://doi.org/10.1016/j.gtc.2024.09.001
|
[36]
|
Malmstrøm, M.L., Hansen, M.B., Andersen, A.M., Ersbøll, A.K., Nielsen, O.H., Jørgensen, L.N., et al. (2012) Cytokines and Organ Failure in Acute Pancreatitis: Inflammatory Response in Acute Pancreatitis. Pancreas, 41, 271-277. https://doi.org/10.1097/mpa.0b013e3182240552
|
[37]
|
Prasada, R., Muktesh, G., Samanta, J., Sarma, P., Singh, S., Arora, S.K., et al. (2020) Natural History and Profile of Selective Cytokines in Patients of Acute Pancreatitis with Acute Kidney Injury. Cytokine, 133, Article ID: 155177. https://doi.org/10.1016/j.cyto.2020.155177
|
[38]
|
Schrezenmeier, E.V., Barasch, J., Budde, K., Westhoff, T. and Schmidt‐Ott, K.M. (2016) Biomarkers in Acute Kidney Injury—Pathophysiological Basis and Clinical Performance. Acta Physiologica, 219, 556-574. https://doi.org/10.1111/apha.12764
|
[39]
|
Wu, H., Craft, M.L., Wang, P., Wyburn, K.R., Chen, G., Ma, J., et al. (2008) IL-18 Contributes to Renal Damage after Ischemia-Reperfusion. Journal of the American Society of Nephrology, 19, 2331-2341. https://doi.org/10.1681/asn.2008020170
|
[40]
|
Zhang, X. (2014) Caspase-1 Inhibition Alleviates Acute Renal Injury in Rats with Severe Acute Pancreatitis. World Journal of Gastroenterology, 20, 10457-10463. https://doi.org/10.3748/wjg.v20.i30.10457
|
[41]
|
王虹, 蔡治方, 敖弟书, 等. 尿IL-18及NGAL在重症急性胰腺炎患者并发急性肾损伤的早期诊断价值[J]. 免疫学杂志, 2012, 28(7): 642-644.
|
[42]
|
宋云婷, 徐翠萍, 谭通. 血清miR-21-3p、IL-18水平检测对重症急性胰腺炎患者急性肾损伤预测评估的临床价值[J]. 临床和实验医学杂志, 2024, 23(13): 1385-1388.
|
[43]
|
Pavlidis, T.E., Pavlidis, E.T. and Sakantamis, A.K. (2010) Advances in Prognostic Factors in Acute Pancreatitis: A Mini-Review. Hepatobiliary & Pancreatic Diseases International, 9, 482-486.
|
[44]
|
Imoto, Y., Wakasaki, A., Izumida, K., Shimada, H., Ohkubo, K., Kawano, Y., et al. (2021) Analysis of the Diagnostic Capabilities of Urinary Neutrophil Gelatinase‐associated Lipocalin and Serum Procalcitonin for Acute Kidney Injury at the Early Stage of Critical Care Intensive Care Unit Admission. Journal of Clinical Laboratory Analysis, 35, e23852. https://doi.org/10.1002/jcla.23852
|
[45]
|
Huang, H., Nie, X., Cai, B., Tang, J., He, Y., Miao, Q., et al. (2013) Procalcitonin Levels Predict Acute Kidney Injury and Prognosis in Acute Pancreatitis: A Prospective Study. PLOS ONE, 8, e82250. https://doi.org/10.1371/journal.pone.0082250
|
[46]
|
Haitsma Mulier, J.L.G., Rozemeijer, S., Röttgering, J.G., Spoelstra-de Man, A.M.E., Elbers, P.W.G., Tuinman, P.R., et al. (2018) Renal Resistive Index as an Early Predictor and Discriminator of Acute Kidney Injury in Critically Ill Patients; a Prospective Observational Cohort Study. PLOS ONE, 13, e0197967. https://doi.org/10.1371/journal.pone.0197967
|
[47]
|
武钧, 许志伟, 张泓, 等. 肾血管阻力指数对重症急性胰腺炎相关性急性肾损伤早期预测价值的临床研究[J]. 中华危重病急救医学, 2019, 31(8): 998-1003.
|
[48]
|
Bush, N., Rana, S.S., Gupta, P., Kang, M., Gupta, R., Suri, V., et al. (2020) Renal Doppler Changes in Patients with Acute Pancreatitis: A Prospective Study. Pancreatology, 20, 1275-1280. https://doi.org/10.1016/j.pan.2020.08.007
|
[49]
|
谭超, 张裕实, 孙振华, 等. 肾阻力指数联合uNGAL, CysC对急性胰腺炎肾损伤的预测价值[J]. 临床医学进展, 2022, 12(7): 6695-6704.
|
[50]
|
周冰. 肾血管阻力指数联合胱抑制素C对重症胰腺炎相关性急性肾损伤早期预测价值的研究[J]. 中文科技期刊数据库(引文版)医药卫生, 2025(1): 193-196.
|
[51]
|
严俊, 闻勇, 曹葆强. 肾阻力指数联合血液指标对急性胰腺炎并发急性肾损伤的预测价值[J]. 中国临床医学, 2024, 31(3): 457-462.
|
[52]
|
Sporek, M., Dumnicka, P., Gala-Bladzinska, A., Ceranowicz, P., Warzecha, Z., Dembinski, A., et al. (2016) Angiopoietin-2 Is an Early Indicator of Acute Pancreatic-Renal Syndrome in Patients with Acute Pancreatitis. Mediators of Inflammation, 2016, Article ID: 5780903. https://doi.org/10.1155/2016/5780903
|
[53]
|
Seibert, F.S., Pagonas, N., Arndt, R., Heller, F., Dragun, D., Persson, P., et al. (2013) Calprotectin and Neutrophil Gelatinase-Associated Lipocalin in the Differentiation of Pre‐Renal and Intrinsic Acute Kidney Injury. Acta Physiologica, 207, 700-708. https://doi.org/10.1111/apha.12064
|
[54]
|
Kashani, K., Al-Khafaji, A., Ardiles, T., et al. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, Article No. R25.
|
[55]
|
Doi, K., Negishi, K., Ishizu, T., Katagiri, D., Fujita, T., Matsubara, T., et al. (2011) Evaluation of New Acute Kidney Injury Biomarkers in a Mixed Intensive Care Unit. Critical Care Medicine, 39, 2464-2469. https://doi.org/10.1097/ccm.0b013e318225761a
|
[56]
|
马玉婷, 向鹏月, 韩晓明, 等. 彩色多普勒超声联合NGAL, KIM-1在重症急性胰腺炎合并急性肾损伤中的早期诊断价值[J]. 湖北民族学院学报: 医学版, 2016, 33(3): 24-26.
|
[57]
|
Li, F., Wang, Z., Bian, R., Xue, Z., Cai, J., Zhou, Y., et al. (2025) Predicting the Risk of Acute Kidney Injury in Patients with Acute Pancreatitis Complicated by Sepsis Using a Stacked Ensemble Machine Learning Model: A Retrospective Study Based on the MIMIC Database. BMJ Open, 15, e087427. https://doi.org/10.1136/bmjopen-2024-087427
|