急性缺血性卒中预后的炎症生物标志物研究进展
Research Advances in Inflammatory Biomarkers for the Prognosis of Acute Ischemic Stroke
DOI: 10.12677/acm.2025.1592477, PDF, HTML, XML,   
作者: 张凯睿, 李美琪, 张佳慧, 魏小彤:延安大学咸阳医院神经内科,陕西 咸阳;延安大学医学院,陕西 延安;郭爱红*, 张 能:延安大学咸阳医院神经内科,陕西 咸阳
关键词: 缺血性卒中炎症预后Ischemic Stroke Inflammation Prognosis
摘要: 本文综述了炎症相关生物标志物与急性缺血性脑卒中(AIS)预后的关系。AIS起病急、危害大,87%的卒中为缺血性,我国患者超千万且致残率高。急性缺血性卒中(AIS)预后异质性强,炎症反应是继发性神经损伤的关键机制,相关标志物与预后是否良好有极大的相关性。高敏C反应蛋白(hsCRP)、白细胞介素家族、血细胞标志物等都展示出了巨大的潜力。本文就血液中常见的、易获得的炎性指标在急性缺血性卒中患者预后预测中的临床应用进行综述。
Abstract: This review summarizes the relationship between inflammation-related biomarkers and the prognosis of acute ischemic stroke (AIS). AIS is characterized by sudden onset and severe consequences, constituting 87% of all stroke cases. In China, the AIS patient population exceeds ten million and carries a high disability rate. Prognosis following AIS exhibits significant heterogeneity. The inflammatory response is a key mechanism underlying secondary neuronal injury, and related biomarkers show substantial correlation with favorable versus unfavorable outcomes. High-sensitivity C-reactive protein (hsCRP), the interleukin family, hematological markers, and others have demonstrated considerable potential. This article reviews the clinical utility of common, readily accessible inflammatory indicators in blood for predicting the prognosis of patients with acute ischemic stroke.
文章引用:张凯睿, 郭爱红, 张能, 李美琪, 张佳慧, 魏小彤. 急性缺血性卒中预后的炎症生物标志物研究进展[J]. 临床医学进展, 2025, 15(9): 215-222. https://doi.org/10.12677/acm.2025.1592477

1. 引言

急性缺血性卒中(AIS)是一种因脑部血流突然中断(通常由血管阻塞引起),导致局部脑组织缺血、缺氧性坏死,并引发突发性神经功能缺损的临床综合征。其通常起病急骤,常在数分钟至数小时达高峰,需要紧急干预。据美国心脏协会(AHA)与美国卒中协会(ASA)在2024年公布的流行病学调查数据显示,每年约有795,000人经历新的或复发的卒中,在所有卒中中,87%为缺血性卒中,10%为脑出血(ICH),3%为蛛网膜下腔出血(SAH) [1]。而在我国,根据中国卒中学会在2024年“世界卒中日”发布的流行病学报告,我国截至2024年现有卒中患者1494万人,其中缺血性卒中约占80%,每年新发卒中330万人,每年因卒中死亡154万人,卒中存活者中约有80%左右有不同程度的残疾,给家庭和社会带来了巨大负担。尽管大量高质量随机对照试验和荟萃分析明确证实了早期静脉溶栓和血管内取栓等再灌注治疗对改善急性缺血性脑卒中患者预后的显著有效性[2] [3],并被确立为标准治疗[4],卒中后的高致残率问题依然严峻。更值得注意的是,不同患者对治疗的反应和最终功能结局存在显著的异质性[5] [6]。这种现状凸显了探索能够早期、准确预测个体化预后的生物标志物的迫切需求和巨大价值。因此,为让临床医生能够尽可能以一种简便、快捷的方式预测AIS患者的结局以及制定个体化治疗方案,本文将针对不同的炎症标志物,尽可能全面详尽地描述其与AIS的预后关系。

缺血性脑卒中具有复杂的病理生理机制,其中强烈的炎症反应在脑损伤后迅速启动,并持续数天、数周甚至数月,在后续的神经功能恶化中起着至关重要的作用[7]-[9]。迄今为止,已有越来越多的研究表明,炎症反应在包括急性缺血性卒中在内的脑血管损伤中发挥着重要作用,炎症相关的生物标志物也在对急性缺血性卒中患者的短期与长期预后中有着不同程度的重要性[10] [11]

2. 高敏C反应蛋白(hsCRP)

高敏C反应蛋白(hsCRP)是检测急性炎症反应非常敏感的指标,其通过激活补体、抑制血管修复以及促进内皮细胞活化等机制来参与颅内血管炎症的形成,进而加重缺血性脑卒中的病程进展[12]-[15]

在一项对CHANCE试验[16]亚组分析的研究中,Li等人发现,高敏C反应蛋白可预测急性缺血性卒中患者的卒中复发和不良功能结局[17]。CHANCE试验纳入了来自全国73个中心的3044例患者,参与研究的患者均患有急性轻微卒中(NIHSS ≤ 3)或高危TIA (ABCD2评分 ≥ 4),该试验表明对于小卒中以及高复发风险的TIA患者,21天的双抗治疗能够降低这些患者新发卒中的早期风险,且不会增加出血风险。在此基础上,Li等人的研究将受试者根据CRP水平分为了3组(低风险,<1.0 mg/L;平均风险,1~3 mg/L;和高风险,>3 mg/L),对其进行了90天的随访,观察受试者90天内的卒中复发及不良功能结局的发生。最终得出结论:CRP > 3 mg/L的患者90天内复发卒中的风险较高,不良的功能结果(mRS 2-6)与高hsCRP水平显著相关。一项纳入了7603例AIS患者的中介分析指出[18],每增加1个标准差(SD),受试者的功能障碍风险增加14%。此外,在印度东部一家三级护理中心进行的一项横断面研究中也得出了类似的结论[19]

与此同时,也有一些研究得出了相反的结论。Seunghee等人进行的一项纳入了191例动脉粥样硬化型AIS患者的前瞻性队列研究表明[20],单一hsCRP与脑卒中复发风险无显著相关性(p > 0.05),这表明在这种情况下,全身炎症本身可能不是中风复发的有力预测因子。对于此两种不同的结果,我们认为,研究本身的纳排标准及样本量的大小是非常大的结果偏倚因素。针对hsCRP对于AIS预后的影响,需要更大样本量以及更加细致的卒中亚组分型,重新确定试验的纳排标准来进行更深入的研究。

3. 白细胞介素家族

白细胞介素是一大类主要由白细胞(如淋巴细胞、单核/巨噬细胞、粒细胞等)产生和分泌的、具有广泛生物活性的细胞因子,在炎症反应中起重要作用。研究发现,在脑血管疾病中,白细胞介素通过驱动炎症级联反应、参与机体免疫调节、损伤血脑屏障等作用参与卒中的发生[21]-[23]

在白细胞介素的众多亚型中,目前研究最多与AIS预后相关的是IL-1、IL-4、IL-6、IL-8和IL-10。早在1999年,N. Kostulas等人于Huddinge大学医院进行的一项纳入了29例急性缺血性卒中患者的前瞻性队列研究显示[24],缺血性脑卒中急性期(1~3天)的IL-1β、IL-8和IL-17 mRNA表达水平与患者神经功能损伤程度(通过斯堪的纳维亚中风量表即SNSS评估)呈负相关,即IL-1β、IL-8和IL-17 mRNA的表达对于AIS患者是有益的。关于溶栓后白细胞介素与预后的关系,也显示出了良好的趋势。由Maryam等人进行的一项前瞻性队列研究显示[25],IL-38升高幅度与3个月mRS评分呈显著负相关,即IL-38升高越多,预后越好。IL-38升高幅度与入院NIHSS评分呈负相关,提示病情越重,IL-38反应越弱,但本研究样本量较小,仅纳入了29例NIHSS评分 > 6的经过标准化溶栓治疗(发病 < 4.5 h)的急性缺血性卒中患者,故其结论需待更多的样本量去进行验证。一项纳入了116例动脉粥样硬化型急性缺血性卒中患者的回顾性分析显示[26],IL-6水平与不良预后(mRs ≥ 3分)显著相关,强调了在临床实践中监测患者IL-6水平的重要性。一项分析了来自第三次中国国家卒中登记研究的轻度AIS患者数据的研究也显示[27],IL-6是急性轻型缺血性卒中患者住院期间神经功能恶化的独立预测因子。在一项针对卒中后抑郁的研究中[28],研究者发现,IL-10降低是不良预后的独立危险因素,提示IL-10每升高1单位,不良预后风险降低38.5%,并且IL-10低组mRS ≥ 3比例显著更高(p < 0.001)。白介素由于其不同的亚型,对于急性缺血性卒中的预后可能是良好的,也有可能是其预后不良的因素之一,未来针对其不同的靶点,开发新的靶向治疗药物对临床急性缺血性卒中具有重要意义。

4. 血细胞相关生物标志物

血细胞在缺血性脑卒中的发生、发展和转归中扮演着复杂且关键的角色,既有致病性作用,也有潜在的修复功能。其中,白细胞具有促进血栓形成,介导缺血损伤和炎症反应以及潜在的修复作用[29] [30],是目前的研究热点。近年来,关于血细胞相关生物标志物对脑卒中预后的研究愈来愈多,查阅大量文献发现,复合炎性指标比单一标志物更有临床预测价值[31],故笔者对单一血细胞相关生物标志物不做过多赘述,将着重叙述复合生物标志物对急性缺血性卒中预后的预测价值。

Gong等人研究的一项多因素回归分析显示[32],在发病后4.5小时内接受了静脉溶栓的AIS患者中,中性粒细胞计数/淋巴细胞计数(NLR)每增加1单位,END (早期神经功能恶化)风险增加38.5%,血小板计数/淋巴细胞计数(PLR)每增加1单位,END风险增加1.3%,淋巴细胞计数/单核细胞计数(LMR)每增加1单位,END风险降低32%。而既往研究表明[33] [34],溶栓后的早期神经功能结局,包括溶栓后早期神经功能恶化(END)以及溶栓后早期神经功能改善(ENI),与接受静脉溶栓治疗的AIS患者的预后相关。Liu等人[35]、Ren等人[36]和Xu等人[37]通过直接收集AIS溶栓患者出院时和发病后3个月的mRS评分也得出了类似的结论。对于接受血栓切除术的AIS患者,Goyal等人进行的一项前瞻性研究也表明[38],3个月功能独立患者(mRS ≥ 3)的NLR值更低。对于仅接受常规治疗(未进行再灌注治疗)的AIS患者,Zhu等人的一项回顾性研究分析显示[39],NLR是短期预后(30天mRS > 2)的独立危险因素,而中性粒细胞/高密度脂蛋白比值(NHR)与短期预后无显著关联。在神经系统中,嗜酸性粒细胞此前多在血管炎中被提及,特别是嗜酸性肉芽肿性多血管炎(EGPA),对于卒中后的预后研究甚少。但有学者提出了EMR (嗜酸性粒细胞/单核细胞)这一比值[40],在比较了EMR与NLR、PLR之后,得出结论:低EMR水平与AIS患者3个月不良预后和死亡状态显著相关,且EMR预测不良预后的准确性高于PLR,与NLR预测能力相似。

纵然以上研究对NLR、PLR、LMR、NHR等炎症指标与经过不同治疗的AIS患者的关系呈现了积极的结果,但多篇文献指出这些炎症标志物计算公式相对单一且不全面,预测能力有限,通过研究发现了一些新型炎症标志物比如全身炎症指数(SIRI)、全身免疫炎症指数(SII)和炎症预后指数(IPI),在预测AIS患者预后中的作用。这些更为复杂的指标是基于中性粒细胞(N)、单核细胞(M)、淋巴细胞(L)、血小板(PLT)、白蛋白(ALB)和高敏C反应蛋白(Hs-CRP)来计算的(SIRI = N × M/L;SII = PLT × N/L;IPI = CRP × NLR/ALB)。最早的一项针对SIRI的回顾性研究分析显示[41],SIRI与卒中后NIHSS呈显著正相关,提示SIRI越高,脑卒中越严重。此后,有多项研究证实了这一结论。一项回顾性分析显示[42],高SIRI、SII、IPI是90天不良预后的独立预测因子(均p < 0.05),但此研究的样本量较小,不良预后组仅有33例,未来需要更大的样本量来佐证这一结论。另一项仅纳入了常规药物治疗的患者的研究显示[43],END组的SIRI显著升高(均p < 0.05),将SIRI与其他单一炎症指标(NLR、PLR)相比,SIRI的预测效能更佳,优于其他单一指标。Nan Wang等人研究了来自中国国家卒中登记研究III的患者[44],结果显示,最高SII四分位数组(Q4)的患者在90天和1年随访时功能预后差的风险显著增加。Yiyun Weng等人的研究也得出了类似的结果[45]

除此之外,还有另一种新的炎症指标也在AIS患者的功能预测方面展示了不俗的潜力——泛免疫炎症值(PIV)。PIV整合了中性粒细胞、单核细胞、血小板和淋巴细胞计数(公式:PIV = 中性粒细胞 × 血小板 × 单核细胞/淋巴细胞),较传统指标能够更全面地反映全身炎症状态。在一项对于接受了静脉溶栓治疗的AIS患者的研究中显示[46],预后不良组(3个月时mRS ≥ 3分)的PIV水平显著升高(p < 0.05)。且PIV与SII、PLR和NLR相比,预测能力没有显著差异,这可能为我们寻找新的炎症标志物提供了新的方向。

基于以上研究,针对白细胞介导的炎症反应将是卒中治疗研究的重要方向(如尝试使用抗炎药物、抑制白细胞浸润或活化的药物),但目前尚无成熟药物应用于临床。

5. 临床应用的挑战与对策

炎症反应在急性缺血性卒中(AIS)后的病理生理过程中扮演着复杂而关键的角色,多种炎症标志物被广泛研究并显示出预测预后的潜力。然而,将这些发现转化为可靠的临床工具仍面临诸多挑战。

首先,当前研究中最突出的问题之一是各类炎症标志物缺乏统一且经过临床验证的临界值。不同研究针对同一标志物提出的预后临界值存在显著差异,严重阻碍了临床标准化应用。例如,NLR的预后临界值在不同研究中波动于4.8~7.0之间[47] [48],这种不一致性使得临床医生难以制定统一决策标准。而临界值的异质性源于多种因素:研究人群差异(如年龄结构、基础疾病谱)、卒中严重程度分层不统一(NIHSS评分分段标准不同)、检测时间窗波动(从症状发生到血液样本采集的时间不一致)以及预后评估时点(如7天、30天、90天预后)的多样性。这些因素共同导致了研究间的异质性,使结果难以直接比较或整合。

其次,炎症反应作为机体对损伤的普遍应答机制,导致多数炎症标志物缺乏疾病特异性。例如,NLR升高不仅见于急性缺血性卒中,在心肌梗死、全身性感染、创伤及恶性肿瘤等多种病理状态下均可出现类似变化[49]-[51]。这种非特异性使单一标志物难以准确区分卒中与其他炎症性疾病,特别是在合并感染或慢性炎症性疾病的复杂病例中。此外,卒中本身具有高度异质性,不同病因分型可能伴随不同的炎症反应模式,而现有研究对这些差异的剖析尚不充分。

此外,炎症标志物的表达受多种非卒中因素影响,这些混杂因素若未充分控制,将严重削弱预后预测的准确性。主要包括:1) 基础疾病因素:比如糖尿病可导致慢性低度炎症状态,使基线NLR、SII升高[52] [53];2) 药物干扰:比如他汀类药物具有抗炎作用,可降低CRP、IL-6水平[54],而卒中前用药史常被回顾性研究忽视,导致结果偏倚。

因此,针对上述挑战,未来的研究应致力于以下方向,以推动炎症标志物在AIS预后评估中的临床应用:1) 开展大型多中心前瞻性队列研究:设计严谨、样本量充足、纳入代表性人群的研究,采用标准化的检测方法和统一的预后评估终点;2) 机器学习辅助优化:结合连续变量分析和临床特征,探索最优临界值或风险分层区间,而非简单二分类;3) 充分整合临床信息:必须强制纳入并充分校正关键混杂因素(NIHSS、年龄、梗死体积/位置、关键合并症、治疗方式);4) 动态监测:研究确定最能预测预后的关键采样时间点(如入院、24 h、72 h、7天)及其组合以及研究并比较不同动态指标(如峰值水平、曲线下面积、特定时间点的变化率)的预测效能。

炎症标志物在AIS预后评估中展现出重要前景,但其临床应用之路尚存显著障碍。解决标准化临界值缺失、标志物非特异性、混杂因素干扰等问题,是释放其潜力的关键。

6. 总结与展望

急性缺血性卒中(AIS)的预后评估与治疗干预正经历从经验医学向精准医学的深刻转变。炎症生物标志物作为这一转变的核心驱动力,已从单纯的预后预测工具逐步发展为治疗靶点筛选器和个体化用药导航仪。例如,首都医科大学的最新综述强调[55],基于基线炎症状态的分层治疗可显著提高干细胞疗效:高NLR (>5.2)或hsCRP (>5 mg/L)患者对间充质干细胞治疗响应率提升3倍。但目前多数抗炎干预仍停留于动物模型,这提示我们需开展基于生物标志物的适应性临床试验,推动高质量临床转化,建立“预测–干预–监测–调整”的个体化治疗闭环,最终推动脑卒中诊疗进入精准医学新时代。

NOTES

*通讯作者。

参考文献

[1] Martin, S.S., Aday, A.W., Almarzooq, Z.I., et al. (2024) Correction to: 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e1164.
https://doi.org/10.1161/CIR.0000000000001247
[2] Campbell, B.C.V. and Khatri, P. (2020) Stroke. The Lancet, 396, 129-142.
https://doi.org/10.1016/s0140-6736(20)31179-x
[3] Goyal, M., Menon, B.K., van Zwam, W.H., Dippel, D.W.J., Mitchell, P.J., Demchuk, A.M., et al. (2016) Endovascular Thrombectomy after Large-Vessel Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Five Randomised Trials. The Lancet, 387, 1723-1731.
https://doi.org/10.1016/s0140-6736(16)00163-x
[4] Warner, J.J., Harrington, R.A., Sacco, R.L. and Elkind, M.S.V. (2019) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke. Stroke, 50, 3331-3332.
https://doi.org/10.1161/strokeaha.119.027708
[5] Campbell, B.C.V., De Silva, D.A., Macleod, M.R., Coutts, S.B., Schwamm, L.H., Davis, S.M., et al. (2019) Ischaemic Stroke. Nature Reviews Disease Primers, 5, Article No. 70.
https://doi.org/10.1038/s41572-019-0118-8
[6] Saver, J.L., Goyal, M., van der Lugt, A., Menon, B.K., Majoie, C.B.L.M., Dippel, D.W., et al. (2016) Time to Treatment with Endovascular Thrombectomy and Outcomes from Ischemic Stroke: A Meta-Analysis. JAMA, 316, Article 1279.
https://doi.org/10.1001/jama.2016.13647
[7] Fu, Y., Liu, Q., Anrather, J. and Shi, F. (2015) Immune Interventions in Stroke. Nature Reviews Neurology, 11, 524-535.
https://doi.org/10.1038/nrneurol.2015.144
[8] Zhu, F., Wang, Z., Song, J. and Ji, Y. (2024) Correlation Analysis of Inflammatory Markers with the Short-Term Prognosis of Acute Ischaemic Stroke. Scientific Reports, 14, Article No. 17772.
https://doi.org/10.1038/s41598-024-66279-4
[9] Li, J., Qiu, Y., Zhang, C., Wang, H., Bi, R., Wei, Y., et al. (2023) The Role of Protein Glycosylation in the Occurrence and Outcome of Acute Ischemic Stroke. Pharmacological Research, 191, Article 106726.
https://doi.org/10.1016/j.phrs.2023.106726
[10] DeLong, J.H., Ohashi, S.N., O’Connor, K.C. and Sansing, L.H. (2022) Inflammatory Responses after Ischemic Stroke. Seminars in Immunopathology, 44, 625-648.
https://doi.org/10.1007/s00281-022-00943-7
[11] Huang, S., Xie, W., Gao, Y., Jin, Y., Chen, Y., Zhou, G., et al. (2024) A Role for Systemic Inflammation in Stroke-Associated Infection and the Long-Term Prognosis of Acute Ischemic Stroke: A Mediation Analysis. Journal of Inflammation Research, 17, 6533-6545.
https://doi.org/10.2147/jir.s474344
[12] Torzewski, J., Torzewski, M., Bowyer, D.E., Fröhlich, M., Koenig, W., Waltenberger, J., et al. (1998) C-Reactive Protein Frequently Colocalizes with the Terminal Complement Complex in the Intima of Early Atherosclerotic Lesions of Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1386-1392.
https://doi.org/10.1161/01.atv.18.9.1386
[13] Verma, S., Wang, C., Li, S., Dumont, A.S., Fedak, P.W.M., Badiwala, M.V., et al. (2002) A Self-Fulfilling Prophecy: C-Reactive Protein Attenuates Nitric Oxide Production and Inhibits Angiogenesis. Circulation, 106, 913-919.
https://doi.org/10.1161/01.cir.0000029802.88087.5e
[14] Pasceri, V., Willerson, J.T. and Yeh, E.T.H. (2000) Direct Proinflammatory Effect of C-Reactive Protein on Human Endothelial Cells. Circulation, 102, 2165-2168.
https://doi.org/10.1161/01.cir.102.18.2165
[15] Arenillas, J.F., Álvarez-Sabín, J., Molina, C.A., Chacón, P., Montaner, J., Rovira, A., et al. (2003) C-Reactive Protein Predicts Further Ischemic Events in First-Ever Transient Ischemic Attack or Stroke Patients with Intracranial Large-Artery Occlusive Disease. Stroke, 34, 2463-2468.
https://doi.org/10.1161/01.str.0000089920.93927.a7
[16] Wang, Y., Wang, Y., Zhao, X., Liu, L., Wang, D., Wang, C., et al. (2013) Clopidogrel with Aspirin in Acute Minor Stroke or Transient Ischemic Attack. New England Journal of Medicine, 369, 11-19.
https://doi.org/10.1056/nejmoa1215340
[17] Li, J., Zhao, X., Meng, X., Lin, J., Liu, L., Wang, C., et al. (2016) High-Sensitive C-Reactive Protein Predicts Recurrent Stroke and Poor Functional Outcome: Subanalysis of the Clopidogrel in High-Risk Patients with Acute Nondisabling Cerebrovascular Events Trial. Stroke, 47, 2025-2030.
https://doi.org/10.1161/strokeaha.116.012901
[18] Gu, H.Q., Yang, K.X., Lin, J.X., et al. (2022) Association between High-Sensitivity C-Reactive Protein, Functional Disability, and Stroke Recurrence in Patients with Acute Ischaemic Stroke: A Mediation Analysis. EBioMedicine, 80, 104054.
https://doi.org/10.1016/j.ebiom.2022.104054
[19] Vamshikrishnapatel, K., Biswas, R., Kumar, V. and Ojha, V.S. (2024) Can High-Sensitivity C Reactive Protein (HSCRP) Be Used as a Prognostic Marker of Functional Disability after Acute Ischaemic Stroke? A Cross-Sectional Study at a Tertiary Care Centre in Eastern India. BMJ Open, 14, e085078.
https://doi.org/10.1136/bmjopen-2024-085078
[20] Na, S., Kim, T., Koo, J., Hong, Y.J. and Kim, S. (2025) Vessel Wall Enhancement and High-Sensitivity CRP as Prognostic Markers in Intracranial Atherosclerotic Stroke: A Prospective Cohort Study. European Stroke Journal.
https://doi.org/10.1177/23969873251317341
[21] Zietz, A., Gorey, S., Kelly, P.J., Katan, M. and McCabe, J.J. (2023) Targeting Inflammation to Reduce Recurrent Stroke. International Journal of Stroke, 19, 379-387.
https://doi.org/10.1177/17474930231207777
[22] Endres, M., Moro, M.A., Nolte, C.H., Dames, C., Buckwalter, M.S. and Meisel, A. (2022) Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circulation Research, 130, 1167-1186.
https://doi.org/10.1161/circresaha.121.319994
[23] Kumari, S., Dhapola, R., Sharma, P., Nagar, P., Medhi, B. and HariKrishnaReddy, D. (2024) The Impact of Cytokines in Neuroinflammation-Mediated Stroke. Cytokine & Growth Factor Reviews, 78, 105-119.
https://doi.org/10.1016/j.cytogfr.2024.06.002
[24] Kostulas, N., Pelidou, S.H., Kivisäkk, P., Kostulas, V. and Link, H. (1999) Increased Il-1β, IL-8, and IL-17 mRNA Expression in Blood Mononuclear Cells Observed in a Prospective Ischemic Stroke Study. Stroke, 30, 2174-2179.
https://doi.org/10.1161/01.str.30.10.2174
[25] Zare Rafie, M., Esmaeilzadeh, A., Ghoreishi, A., Tahmasebi, S., Faghihzadeh, E. and Elahi, R. (2021) IL-38 as an Early Predictor of the Ischemic Stroke Prognosis. Cytokine, 146, Article 155626.
https://doi.org/10.1016/j.cyto.2021.155626
[26] Zhang, M., Zhao, H., Lu, N. and Zhang, S. (2024) Predictive Value of Interleukin-6 Combined with Serum Neuron-Specific Enolase on the Prognosis of Acute Ischemic Stroke. Clinical Neurology and Neurosurgery, 244, Article 108406.
https://doi.org/10.1016/j.clineuro.2024.108406
[27] Yi, L., Li, Z., Jiang, Y., Jiang, Y., Meng, X., Li, H., et al. (2024) Inflammatory Marker Profiles and In‐Hospital Neurological Deterioration in Patients with Acute Minor Ischemic Stroke. CNS Neuroscience & Therapeutics, 30, e14648.
https://doi.org/10.1111/cns.14648
[28] Chi, C., Huang, Y., Ye, S., Shao, M., Jiang, M., Yang, M., et al. (2021) Interleukin-10 Level Is Associated with Post-Stroke Depression in Acute Ischaemic Stroke Patients. Journal of Affective Disorders, 293, 254-260.
https://doi.org/10.1016/j.jad.2021.06.037
[29] Wang, Y., Cui, W., Wu, H., Xu, X. and Xu, X. (2023) The Role of T Cells in Acute Ischemic Stroke. Brain Research Bulletin, 196, 20-33.
https://doi.org/10.1016/j.brainresbull.2023.03.005
[30] Li, Z., Bi, R., Sun, S., Chen, S., Chen, J., Hu, B., et al. (2022) The Role of Oxidative Stress in Acute Ischemic Stroke‐related Thrombosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8418820.
https://doi.org/10.1155/2022/8418820
[31] Curbelo, J., Luquero Bueno, S., Galván-Román, J.M., Ortega-Gómez, M., Rajas, O., Fernández-Jiménez, G., et al. (2019) Correction: Inflammation Biomarkers in Blood as Mortality Predictors in Community-Acquired Pneumonia Admitted Patients: Importance of Comparison with Neutrophil Count Percentage or Neutrophil-Lymphocyte Ratio. PLOS ONE, 14, e0212915.
https://doi.org/10.1371/journal.pone.0212915
[32] Gong, P., Liu, Y., Gong, Y., Chen, G., Zhang, X., Wang, S., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51.
https://doi.org/10.1186/s12974-021-02090-6
[33] Yeo, L.L., Paliwal, P., Teoh, H.L., Seet, R.C., Chan, B.P., Wakerley, B., et al. (2013) Early and Continuous Neurologic Improvements after Intravenous Thrombolysis Are Strong Predictors of Favorable Long-Term Outcomes in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 22, e590-e596.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.024
[34] Mori, M., Naganuma, M., Okada, Y., Hasegawa, Y., Shiokawa, Y., Nakagawara, J., et al. (2012) Early Neurological Deterioration within 24 Hours after Intravenous Rt-Pa Therapy for Stroke Patients: The Stroke Acute Management with Urgent Risk Factor Assessment and Improvement Rt-Pa Registry. Cerebrovascular Diseases, 34, 140-146.
https://doi.org/10.1159/000339759
[35] Liu, Y., Wu, Z., Qu, J., Qiu, D., Luo, G., Yin, H., et al. (2020) High Neutrophil-to-Lymphocyte Ratio Is a Predictor of Poor Short-Term Outcome in Patients with Mild Acute Ischemic Stroke Receiving Intravenous Thrombolysis. Brain and Behavior, 10, e01857.
https://doi.org/10.1002/brb3.1857
[36] Ren, H., Han, L., Liu, H., Wang, L., Liu, X. and Gao, Y. (2017) Decreased Lymphocyte-to-Monocyte Ratio Predicts Poor Prognosis of Acute Ischemic Stroke Treated with Thrombolysis. Medical Science Monitor, 23, 5826-5833.
https://doi.org/10.12659/msm.907919
[37] Xu, J., He, X., Li, Q., Liu, J., Zhuang, M., Huang, F., et al. (2019) Higher Platelet-to-Lymphocyte Ratio Is Associated with Worse Outcomes after Intravenous Thrombolysis in Acute Ischaemic Stroke. Frontiers in Neurology, 10, Article ID: 1192.
https://doi.org/10.3389/fneur.2019.01192
[38] Goyal, N., Tsivgoulis, G., Chang, J.J., Malhotra, K., Pandhi, A., Ishfaq, M.F., et al. (2018) Admission Neutrophil-To-Lymphocyte Ratio as a Prognostic Biomarker of Outcomes in Large Vessel Occlusion Strokes. Stroke, 49, 1985-1987.
https://doi.org/10.1161/strokeaha.118.021477
[39] Zhu, F., Ji, Y., Song, J., Huang, G. and Zhang, Y. (2023) Correlations between NLR, NHR, and Clinicopathological Characteristics, and Prognosis of Acute Ischemic Stroke. Medicine, 102, e33957.
https://doi.org/10.1097/md.0000000000033957
[40] Chen, Y., Ren, J., Yang, N., Huang, H., Hu, X., Sun, F., et al. (2021) Eosinophil-to-Monocyte Ratio Is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients after Intravenous Thrombolysis. Clinical Interventions in Aging, 16, 853-862.
https://doi.org/10.2147/cia.s309923
[41] Zhang, Y., Xing, Z., Zhou, K. and Jiang, S. (2021) The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clinical Interventions in Aging, 16, 1997-2007.
https://doi.org/10.2147/cia.s339221
[42] Ma, F., Li, L., Xu, L., Wu, J., Zhang, A., Liao, J., et al. (2023) The Relationship between Systemic Inflammation Index, Systemic Immune-Inflammatory Index, and Inflammatory Prognostic Index and 90-Day Outcomes in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Neuroinflammation, 20, Article No. 220.
https://doi.org/10.1186/s12974-023-02890-y
[43] Wang, J., Zhang, X., Tian, J., Li, H., Tang, H. and Yang, C. (2022) Predictive Values of Systemic Inflammatory Responses Index in Early Neurological Deterioration in Patients with Acute Ischemic Stroke. Journal of Integrative Neuroscience, 21, Article No. 94.
https://doi.org/10.31083/j.jin2103094
[44] Wang, N., Yang, Y., Qiu, B., Gao, Y., Wang, A., Xu, Q., et al. (2022) Correlation of the Systemic Immune-Inflammation Index with Short-and Long-Term Prognosis after Acute Ischemic Stroke. Aging, 14, 6567-6578.
https://doi.org/10.18632/aging.204228
[45] Weng, Y., Zeng, T., Huang, H., Ren, J., Wang, J., Yang, C., et al. (2021) Systemic Immune-Inflammation Index Predicts 3-Month Functional Outcome in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Clinical Interventions in Aging, 16, 877-886.
https://doi.org/10.2147/cia.s311047
[46] Wang, S., Zhang, L., Qi, H., Zhang F, L., Fang, Q. and Qiu, L. (2023) Pan-Immune-Inflammatory Value Predicts the 3 Months Outcome in Acute Ischemic Stroke Patients after Intravenous Thrombolysis. Current Neurovascular Research, 20, 464-471.
https://doi.org/10.2174/0115672026276427231024045957
[47] 马翠红, 靳佳敏, 张俊莲, 等. 血常规中炎症指标在脑梗死预后中的预测价值[J]. 中风与神经疾病杂志, 2020, 37(8): 720-724.
[48] Ferro, D., Matias, M., Neto, J., Dias, R., Moreira, G., Petersen, N., et al. (2021) Neutrophil-to-Lymphocyte Ratio Predicts Cerebral Edema and Clinical Worsening Early after Reperfusion Therapy in Stroke. Stroke, 52, 859-867.
https://doi.org/10.1161/strokeaha.120.032130
[49] Li, X., Che, L., Wang, W., Liu, L. and Ning, Z. (2023) The Neutrophil-Lymphocyte Ratio to Predict Poor Prognosis of Critical Acute Myocardial Infarction Patients. Biochemia medica, 33, Article No. 010702.
https://doi.org/10.11613/bm.2023.010702
[50] Cupp, M.A., Cariolou, M., Tzoulaki, I., Aune, D., Evangelou, E. and Berlanga-Taylor, A.J. (2020) Neutrophil to Lymphocyte Ratio and Cancer Prognosis: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. BMC Medicine, 18, Article No. 360.
https://doi.org/10.1186/s12916-020-01817-1
[51] Zahorec, R. (2021) Neutrophil-to-lymphocyte Ratio, Past, Present and Future Perspectives. Bratislava Medical Journal, 122, 474-488.
https://doi.org/10.4149/bll_2021_078
[52] Li, J., Wang, X., Jia, W., Wang, K., Wang, W., Diao, W., et al. (2024) Association of the Systemic Immuno-Inflammation Index, Neutrophil-to-Lymphocyte Ratio, and Platelet-to-Lymphocyte Ratio with Diabetic Microvascular Complications. Frontiers in Endocrinology, 15, Article No. 1367376.
https://doi.org/10.3389/fendo.2024.1367376
[53] 赵丽珍, 李卫民, 姜瑞霞. 系统免疫炎症指数对社区老年2型糖尿病患者并发糖尿病肾病的临床诊断价值研究[J]. 中国全科医学, 2023, 26(18): 2227-2231.
[54] Saleh, D.O., Abo El Nasr, N.M.E., Elbaset, M.A., Shabana, M.E., Esatbeyoglu, T., Afifi, S.M., et al. (2025) Role of Rosuvastatin and Pitavastatin in Alleviating Diabetic Cardiomyopathy in Rats: Targeting of RISK, NF-κB/NLRP3 Inflammasome and TLR4/NF-κB Signaling Cascades. PLOS One, 20, e0325767.
https://doi.org/10.1371/journal.pone.0325767
[55] Wang, Y., Yuan, T., Lyu, T., Zhang, L., Wang, M., He, Z., et al. (2025) Mechanism of Inflammatory Response and Therapeutic Effects of Stem Cells in Ischemic Stroke: Current Evidence and Future Perspectives. Neural Regeneration Research, 20, 67-81.
https://doi.org/10.4103/1673-5374.393104