[1]
|
Martin, S.S., Aday, A.W., Almarzooq, Z.I., et al. (2024) Correction to: 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e1164. https://doi.org/10.1161/CIR.0000000000001247
|
[2]
|
Campbell, B.C.V. and Khatri, P. (2020) Stroke. The Lancet, 396, 129-142. https://doi.org/10.1016/s0140-6736(20)31179-x
|
[3]
|
Goyal, M., Menon, B.K., van Zwam, W.H., Dippel, D.W.J., Mitchell, P.J., Demchuk, A.M., et al. (2016) Endovascular Thrombectomy after Large-Vessel Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Five Randomised Trials. The Lancet, 387, 1723-1731. https://doi.org/10.1016/s0140-6736(16)00163-x
|
[4]
|
Warner, J.J., Harrington, R.A., Sacco, R.L. and Elkind, M.S.V. (2019) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke. Stroke, 50, 3331-3332. https://doi.org/10.1161/strokeaha.119.027708
|
[5]
|
Campbell, B.C.V., De Silva, D.A., Macleod, M.R., Coutts, S.B., Schwamm, L.H., Davis, S.M., et al. (2019) Ischaemic Stroke. Nature Reviews Disease Primers, 5, Article No. 70. https://doi.org/10.1038/s41572-019-0118-8
|
[6]
|
Saver, J.L., Goyal, M., van der Lugt, A., Menon, B.K., Majoie, C.B.L.M., Dippel, D.W., et al. (2016) Time to Treatment with Endovascular Thrombectomy and Outcomes from Ischemic Stroke: A Meta-Analysis. JAMA, 316, Article 1279. https://doi.org/10.1001/jama.2016.13647
|
[7]
|
Fu, Y., Liu, Q., Anrather, J. and Shi, F. (2015) Immune Interventions in Stroke. Nature Reviews Neurology, 11, 524-535. https://doi.org/10.1038/nrneurol.2015.144
|
[8]
|
Zhu, F., Wang, Z., Song, J. and Ji, Y. (2024) Correlation Analysis of Inflammatory Markers with the Short-Term Prognosis of Acute Ischaemic Stroke. Scientific Reports, 14, Article No. 17772. https://doi.org/10.1038/s41598-024-66279-4
|
[9]
|
Li, J., Qiu, Y., Zhang, C., Wang, H., Bi, R., Wei, Y., et al. (2023) The Role of Protein Glycosylation in the Occurrence and Outcome of Acute Ischemic Stroke. Pharmacological Research, 191, Article 106726. https://doi.org/10.1016/j.phrs.2023.106726
|
[10]
|
DeLong, J.H., Ohashi, S.N., O’Connor, K.C. and Sansing, L.H. (2022) Inflammatory Responses after Ischemic Stroke. Seminars in Immunopathology, 44, 625-648. https://doi.org/10.1007/s00281-022-00943-7
|
[11]
|
Huang, S., Xie, W., Gao, Y., Jin, Y., Chen, Y., Zhou, G., et al. (2024) A Role for Systemic Inflammation in Stroke-Associated Infection and the Long-Term Prognosis of Acute Ischemic Stroke: A Mediation Analysis. Journal of Inflammation Research, 17, 6533-6545. https://doi.org/10.2147/jir.s474344
|
[12]
|
Torzewski, J., Torzewski, M., Bowyer, D.E., Fröhlich, M., Koenig, W., Waltenberger, J., et al. (1998) C-Reactive Protein Frequently Colocalizes with the Terminal Complement Complex in the Intima of Early Atherosclerotic Lesions of Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1386-1392. https://doi.org/10.1161/01.atv.18.9.1386
|
[13]
|
Verma, S., Wang, C., Li, S., Dumont, A.S., Fedak, P.W.M., Badiwala, M.V., et al. (2002) A Self-Fulfilling Prophecy: C-Reactive Protein Attenuates Nitric Oxide Production and Inhibits Angiogenesis. Circulation, 106, 913-919. https://doi.org/10.1161/01.cir.0000029802.88087.5e
|
[14]
|
Pasceri, V., Willerson, J.T. and Yeh, E.T.H. (2000) Direct Proinflammatory Effect of C-Reactive Protein on Human Endothelial Cells. Circulation, 102, 2165-2168. https://doi.org/10.1161/01.cir.102.18.2165
|
[15]
|
Arenillas, J.F., Álvarez-Sabín, J., Molina, C.A., Chacón, P., Montaner, J., Rovira, A., et al. (2003) C-Reactive Protein Predicts Further Ischemic Events in First-Ever Transient Ischemic Attack or Stroke Patients with Intracranial Large-Artery Occlusive Disease. Stroke, 34, 2463-2468. https://doi.org/10.1161/01.str.0000089920.93927.a7
|
[16]
|
Wang, Y., Wang, Y., Zhao, X., Liu, L., Wang, D., Wang, C., et al. (2013) Clopidogrel with Aspirin in Acute Minor Stroke or Transient Ischemic Attack. New England Journal of Medicine, 369, 11-19. https://doi.org/10.1056/nejmoa1215340
|
[17]
|
Li, J., Zhao, X., Meng, X., Lin, J., Liu, L., Wang, C., et al. (2016) High-Sensitive C-Reactive Protein Predicts Recurrent Stroke and Poor Functional Outcome: Subanalysis of the Clopidogrel in High-Risk Patients with Acute Nondisabling Cerebrovascular Events Trial. Stroke, 47, 2025-2030. https://doi.org/10.1161/strokeaha.116.012901
|
[18]
|
Gu, H.Q., Yang, K.X., Lin, J.X., et al. (2022) Association between High-Sensitivity C-Reactive Protein, Functional Disability, and Stroke Recurrence in Patients with Acute Ischaemic Stroke: A Mediation Analysis. EBioMedicine, 80, 104054. https://doi.org/10.1016/j.ebiom.2022.104054
|
[19]
|
Vamshikrishnapatel, K., Biswas, R., Kumar, V. and Ojha, V.S. (2024) Can High-Sensitivity C Reactive Protein (HSCRP) Be Used as a Prognostic Marker of Functional Disability after Acute Ischaemic Stroke? A Cross-Sectional Study at a Tertiary Care Centre in Eastern India. BMJ Open, 14, e085078. https://doi.org/10.1136/bmjopen-2024-085078
|
[20]
|
Na, S., Kim, T., Koo, J., Hong, Y.J. and Kim, S. (2025) Vessel Wall Enhancement and High-Sensitivity CRP as Prognostic Markers in Intracranial Atherosclerotic Stroke: A Prospective Cohort Study. European Stroke Journal. https://doi.org/10.1177/23969873251317341
|
[21]
|
Zietz, A., Gorey, S., Kelly, P.J., Katan, M. and McCabe, J.J. (2023) Targeting Inflammation to Reduce Recurrent Stroke. International Journal of Stroke, 19, 379-387. https://doi.org/10.1177/17474930231207777
|
[22]
|
Endres, M., Moro, M.A., Nolte, C.H., Dames, C., Buckwalter, M.S. and Meisel, A. (2022) Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circulation Research, 130, 1167-1186. https://doi.org/10.1161/circresaha.121.319994
|
[23]
|
Kumari, S., Dhapola, R., Sharma, P., Nagar, P., Medhi, B. and HariKrishnaReddy, D. (2024) The Impact of Cytokines in Neuroinflammation-Mediated Stroke. Cytokine & Growth Factor Reviews, 78, 105-119. https://doi.org/10.1016/j.cytogfr.2024.06.002
|
[24]
|
Kostulas, N., Pelidou, S.H., Kivisäkk, P., Kostulas, V. and Link, H. (1999) Increased Il-1β, IL-8, and IL-17 mRNA Expression in Blood Mononuclear Cells Observed in a Prospective Ischemic Stroke Study. Stroke, 30, 2174-2179. https://doi.org/10.1161/01.str.30.10.2174
|
[25]
|
Zare Rafie, M., Esmaeilzadeh, A., Ghoreishi, A., Tahmasebi, S., Faghihzadeh, E. and Elahi, R. (2021) IL-38 as an Early Predictor of the Ischemic Stroke Prognosis. Cytokine, 146, Article 155626. https://doi.org/10.1016/j.cyto.2021.155626
|
[26]
|
Zhang, M., Zhao, H., Lu, N. and Zhang, S. (2024) Predictive Value of Interleukin-6 Combined with Serum Neuron-Specific Enolase on the Prognosis of Acute Ischemic Stroke. Clinical Neurology and Neurosurgery, 244, Article 108406. https://doi.org/10.1016/j.clineuro.2024.108406
|
[27]
|
Yi, L., Li, Z., Jiang, Y., Jiang, Y., Meng, X., Li, H., et al. (2024) Inflammatory Marker Profiles and In‐Hospital Neurological Deterioration in Patients with Acute Minor Ischemic Stroke. CNS Neuroscience & Therapeutics, 30, e14648. https://doi.org/10.1111/cns.14648
|
[28]
|
Chi, C., Huang, Y., Ye, S., Shao, M., Jiang, M., Yang, M., et al. (2021) Interleukin-10 Level Is Associated with Post-Stroke Depression in Acute Ischaemic Stroke Patients. Journal of Affective Disorders, 293, 254-260. https://doi.org/10.1016/j.jad.2021.06.037
|
[29]
|
Wang, Y., Cui, W., Wu, H., Xu, X. and Xu, X. (2023) The Role of T Cells in Acute Ischemic Stroke. Brain Research Bulletin, 196, 20-33. https://doi.org/10.1016/j.brainresbull.2023.03.005
|
[30]
|
Li, Z., Bi, R., Sun, S., Chen, S., Chen, J., Hu, B., et al. (2022) The Role of Oxidative Stress in Acute Ischemic Stroke‐related Thrombosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8418820. https://doi.org/10.1155/2022/8418820
|
[31]
|
Curbelo, J., Luquero Bueno, S., Galván-Román, J.M., Ortega-Gómez, M., Rajas, O., Fernández-Jiménez, G., et al. (2019) Correction: Inflammation Biomarkers in Blood as Mortality Predictors in Community-Acquired Pneumonia Admitted Patients: Importance of Comparison with Neutrophil Count Percentage or Neutrophil-Lymphocyte Ratio. PLOS ONE, 14, e0212915. https://doi.org/10.1371/journal.pone.0212915
|
[32]
|
Gong, P., Liu, Y., Gong, Y., Chen, G., Zhang, X., Wang, S., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51. https://doi.org/10.1186/s12974-021-02090-6
|
[33]
|
Yeo, L.L., Paliwal, P., Teoh, H.L., Seet, R.C., Chan, B.P., Wakerley, B., et al. (2013) Early and Continuous Neurologic Improvements after Intravenous Thrombolysis Are Strong Predictors of Favorable Long-Term Outcomes in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 22, e590-e596. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.024
|
[34]
|
Mori, M., Naganuma, M., Okada, Y., Hasegawa, Y., Shiokawa, Y., Nakagawara, J., et al. (2012) Early Neurological Deterioration within 24 Hours after Intravenous Rt-Pa Therapy for Stroke Patients: The Stroke Acute Management with Urgent Risk Factor Assessment and Improvement Rt-Pa Registry. Cerebrovascular Diseases, 34, 140-146. https://doi.org/10.1159/000339759
|
[35]
|
Liu, Y., Wu, Z., Qu, J., Qiu, D., Luo, G., Yin, H., et al. (2020) High Neutrophil-to-Lymphocyte Ratio Is a Predictor of Poor Short-Term Outcome in Patients with Mild Acute Ischemic Stroke Receiving Intravenous Thrombolysis. Brain and Behavior, 10, e01857. https://doi.org/10.1002/brb3.1857
|
[36]
|
Ren, H., Han, L., Liu, H., Wang, L., Liu, X. and Gao, Y. (2017) Decreased Lymphocyte-to-Monocyte Ratio Predicts Poor Prognosis of Acute Ischemic Stroke Treated with Thrombolysis. Medical Science Monitor, 23, 5826-5833. https://doi.org/10.12659/msm.907919
|
[37]
|
Xu, J., He, X., Li, Q., Liu, J., Zhuang, M., Huang, F., et al. (2019) Higher Platelet-to-Lymphocyte Ratio Is Associated with Worse Outcomes after Intravenous Thrombolysis in Acute Ischaemic Stroke. Frontiers in Neurology, 10, Article ID: 1192. https://doi.org/10.3389/fneur.2019.01192
|
[38]
|
Goyal, N., Tsivgoulis, G., Chang, J.J., Malhotra, K., Pandhi, A., Ishfaq, M.F., et al. (2018) Admission Neutrophil-To-Lymphocyte Ratio as a Prognostic Biomarker of Outcomes in Large Vessel Occlusion Strokes. Stroke, 49, 1985-1987. https://doi.org/10.1161/strokeaha.118.021477
|
[39]
|
Zhu, F., Ji, Y., Song, J., Huang, G. and Zhang, Y. (2023) Correlations between NLR, NHR, and Clinicopathological Characteristics, and Prognosis of Acute Ischemic Stroke. Medicine, 102, e33957. https://doi.org/10.1097/md.0000000000033957
|
[40]
|
Chen, Y., Ren, J., Yang, N., Huang, H., Hu, X., Sun, F., et al. (2021) Eosinophil-to-Monocyte Ratio Is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients after Intravenous Thrombolysis. Clinical Interventions in Aging, 16, 853-862. https://doi.org/10.2147/cia.s309923
|
[41]
|
Zhang, Y., Xing, Z., Zhou, K. and Jiang, S. (2021) The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clinical Interventions in Aging, 16, 1997-2007. https://doi.org/10.2147/cia.s339221
|
[42]
|
Ma, F., Li, L., Xu, L., Wu, J., Zhang, A., Liao, J., et al. (2023) The Relationship between Systemic Inflammation Index, Systemic Immune-Inflammatory Index, and Inflammatory Prognostic Index and 90-Day Outcomes in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Neuroinflammation, 20, Article No. 220. https://doi.org/10.1186/s12974-023-02890-y
|
[43]
|
Wang, J., Zhang, X., Tian, J., Li, H., Tang, H. and Yang, C. (2022) Predictive Values of Systemic Inflammatory Responses Index in Early Neurological Deterioration in Patients with Acute Ischemic Stroke. Journal of Integrative Neuroscience, 21, Article No. 94. https://doi.org/10.31083/j.jin2103094
|
[44]
|
Wang, N., Yang, Y., Qiu, B., Gao, Y., Wang, A., Xu, Q., et al. (2022) Correlation of the Systemic Immune-Inflammation Index with Short-and Long-Term Prognosis after Acute Ischemic Stroke. Aging, 14, 6567-6578. https://doi.org/10.18632/aging.204228
|
[45]
|
Weng, Y., Zeng, T., Huang, H., Ren, J., Wang, J., Yang, C., et al. (2021) Systemic Immune-Inflammation Index Predicts 3-Month Functional Outcome in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Clinical Interventions in Aging, 16, 877-886. https://doi.org/10.2147/cia.s311047
|
[46]
|
Wang, S., Zhang, L., Qi, H., Zhang F, L., Fang, Q. and Qiu, L. (2023) Pan-Immune-Inflammatory Value Predicts the 3 Months Outcome in Acute Ischemic Stroke Patients after Intravenous Thrombolysis. Current Neurovascular Research, 20, 464-471. https://doi.org/10.2174/0115672026276427231024045957
|
[47]
|
马翠红, 靳佳敏, 张俊莲, 等. 血常规中炎症指标在脑梗死预后中的预测价值[J]. 中风与神经疾病杂志, 2020, 37(8): 720-724.
|
[48]
|
Ferro, D., Matias, M., Neto, J., Dias, R., Moreira, G., Petersen, N., et al. (2021) Neutrophil-to-Lymphocyte Ratio Predicts Cerebral Edema and Clinical Worsening Early after Reperfusion Therapy in Stroke. Stroke, 52, 859-867. https://doi.org/10.1161/strokeaha.120.032130
|
[49]
|
Li, X., Che, L., Wang, W., Liu, L. and Ning, Z. (2023) The Neutrophil-Lymphocyte Ratio to Predict Poor Prognosis of Critical Acute Myocardial Infarction Patients. Biochemia medica, 33, Article No. 010702. https://doi.org/10.11613/bm.2023.010702
|
[50]
|
Cupp, M.A., Cariolou, M., Tzoulaki, I., Aune, D., Evangelou, E. and Berlanga-Taylor, A.J. (2020) Neutrophil to Lymphocyte Ratio and Cancer Prognosis: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. BMC Medicine, 18, Article No. 360. https://doi.org/10.1186/s12916-020-01817-1
|
[51]
|
Zahorec, R. (2021) Neutrophil-to-lymphocyte Ratio, Past, Present and Future Perspectives. Bratislava Medical Journal, 122, 474-488. https://doi.org/10.4149/bll_2021_078
|
[52]
|
Li, J., Wang, X., Jia, W., Wang, K., Wang, W., Diao, W., et al. (2024) Association of the Systemic Immuno-Inflammation Index, Neutrophil-to-Lymphocyte Ratio, and Platelet-to-Lymphocyte Ratio with Diabetic Microvascular Complications. Frontiers in Endocrinology, 15, Article No. 1367376. https://doi.org/10.3389/fendo.2024.1367376
|
[53]
|
赵丽珍, 李卫民, 姜瑞霞. 系统免疫炎症指数对社区老年2型糖尿病患者并发糖尿病肾病的临床诊断价值研究[J]. 中国全科医学, 2023, 26(18): 2227-2231.
|
[54]
|
Saleh, D.O., Abo El Nasr, N.M.E., Elbaset, M.A., Shabana, M.E., Esatbeyoglu, T., Afifi, S.M., et al. (2025) Role of Rosuvastatin and Pitavastatin in Alleviating Diabetic Cardiomyopathy in Rats: Targeting of RISK, NF-κB/NLRP3 Inflammasome and TLR4/NF-κB Signaling Cascades. PLOS One, 20, e0325767. https://doi.org/10.1371/journal.pone.0325767
|
[55]
|
Wang, Y., Yuan, T., Lyu, T., Zhang, L., Wang, M., He, Z., et al. (2025) Mechanism of Inflammatory Response and Therapeutic Effects of Stem Cells in Ischemic Stroke: Current Evidence and Future Perspectives. Neural Regeneration Research, 20, 67-81. https://doi.org/10.4103/1673-5374.393104
|