[1]
|
Johnston, C.B. and Dagar, M. (2020) Osteoporosis in Older Adults. Medical Clinics of North America, 104, 873-884. https://doi.org/10.1016/j.mcna.2020.06.004
|
[2]
|
Aibar-Almazán, A., Voltes-Martínez, A., Castellote-Caballero, Y., Afanador-Restrepo, D.F., Carcelén-Fraile, M.D.C. and López-Ruiz, E. (2022) Current Status of the Diagnosis and Management of Osteoporosis. International Journal of Molecular Sciences, 23, Article 9465. https://doi.org/10.3390/ijms23169465
|
[3]
|
Vilaca, T., Eastell, R. and Schini, M. (2022) Osteoporosis in Men. The Lancet Diabetes & Endocrinology, 10, 273-283. https://doi.org/10.1016/s2213-8587(22)00012-2
|
[4]
|
Iantomasi, T., Romagnoli, C., Palmini, G., Donati, S., Falsetti, I., Miglietta, F., et al. (2023) Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with MicroRNAs. International Journal of Molecular Sciences, 24, Article 3772. https://doi.org/10.3390/ijms24043772
|
[5]
|
Kim, J., Lee, H., Kang, K.S., Chun, K. and Hwang, G.S. (2015) cordyceps Militarismushroom and Cordycepin Inhibit Rankl-Induced Osteoclast Differentiation. Journal of Medicinal Food, 18, 446-452. https://doi.org/10.1089/jmf.2014.3215
|
[6]
|
Zhang, D., Wang, Z., Qi, W., Lei, W. and Zhao, G. (2014) Cordycepin (3’-Deoxyadenosine) Down-Regulates the Proinflammatory Cytokines in Inflammation-Induced Osteoporosis Model. Inflammation, 37, 1044-1049. https://doi.org/10.1007/s10753-014-9827-z
|
[7]
|
Wang, F., Yin, P., Lu, Y., Zhou, Z., Jiang, C., Liu, Y., et al. (2015) Cordycepin Prevents Oxidative Stress-Induced Inhibition of Osteogenesis. Oncotarget, 6, 35496-35508. https://doi.org/10.18632/oncotarget.6072
|
[8]
|
Yang, L., Li, G., Chai, Z., Gong, Q. and Guo, J. (2020) Synthesis of Cordycepin: Current Scenario and Future Perspectives. Fungal Genetics and Biology, 143, Article ID: 103431. https://doi.org/10.1016/j.fgb.2020.103431
|
[9]
|
Dou, C., Cao, Z., Ding, N., Hou, T., Luo, F., Kang, F., et al. (2016) Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation. Nutrients, 8, Article 231. https://doi.org/10.3390/nu8040231
|
[10]
|
Yu, S., Kim, H., Kang, H., Park, B., Lee, J. and Kim, I. (2018) Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation in Vitro. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 5892957. https://doi.org/10.1155/2018/5892957
|
[11]
|
Frommer, K.W., Neumann, E. and Lange, U. (2016) Entzündung und Knochen: Osteoimmunologische Aspekte. Zeitschrift für Rheumatologie, 75, 444-450. https://doi.org/10.1007/s00393-016-0101-7
|
[12]
|
Adami, G., Orsolini, G., Adami, S., Viapiana, O., Idolazzi, L., Gatti, D., et al. (2016) Effects of TNF Inhibitors on Parathyroid Hormone and WNT Signaling Antagonists in Rheumatoid Arthritis. Calcified Tissue International, 99, 360-364. https://doi.org/10.1007/s00223-016-0161-3
|
[13]
|
Radhi, M., Ashraf, S., Lawrence, S., Tranholm, A.A., Wellham, P.A.D., Hafeez, A., et al. (2021) A Systematic Review of the Biological Effects of Cordycepin. Molecules, 26, Article 5886. https://doi.org/10.3390/molecules26195886
|
[14]
|
Yang, J., Cao, Y., Lv, Z., Jiang, T., Wang, L. and Li, Z. (2015) Cordycepin Protected against the TNF-α-Induced Inhibition of Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. International Journal of Immunopathology and Pharmacology, 28, 296-307. https://doi.org/10.1177/0394632015592160
|
[15]
|
Chen, J., Qiu, M., Dou, C., Cao, Z. and Dong, S. (2015) MicroRNAs in Bone Balance and Osteoporosis. Drug Development Research, 76, 235-245. https://doi.org/10.1002/ddr.21260
|
[16]
|
Li, Z., Gu, Y., Lin, Z., Ma, H. and Zhang, S. (2020) Cordycepin Promotes Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells and Accelerates Fracture Healing via Hypoxia in a Rat Model of Closed Femur Fracture. Biomedicine & Pharmacotherapy, 125, Article ID: 109991. https://doi.org/10.1016/j.biopha.2020.109991
|
[17]
|
Chen, Y., Zhu, D., Xu, Z., Yin, J., Yu, X., Mei, J., et al. (2017) The Protective Effect of Cordycepin on Alcohol-Induced Osteonecrosis of the Femoral Head. Cellular Physiology and Biochemistry, 42, 2391-2403. https://doi.org/10.1159/000480181
|
[18]
|
Zhang, D., Deng, H., Qi, W., Zhao, G. and Cao, X. (2015) Osteoprotective Effect of Cordycepin on Estrogen Deficiency-Induced Osteoporosis in Vitro and in Vivo. BioMed Research International, 2015, Article ID: 423869. https://doi.org/10.1155/2015/423869
|
[19]
|
Schröder, K. (2014) NADPH Oxidases in Bone Homeostasis and Osteoporosis. Cellular and Molecular Life Sciences, 72, 25-38. https://doi.org/10.1007/s00018-014-1712-2
|
[20]
|
Zhang, J., Xu, Y. and Shen, J. (2014) Cordycepin Inhibits Lipopolysaccharide (LPS)-Induced Tumor Necrosis Factor (TNF)-α Production via Activating Amp-Activated Protein Kinase (AMPK) Signaling. International Journal of Molecular Sciences, 15, 12119-12134. https://doi.org/10.3390/ijms150712119
|
[21]
|
Wang, H., Zheng, X., Zhang, Y., Huang, J., Zhou, W., Li, X., et al. (2021) The Endocrine Role of Bone: Novel Functions of Bone-Derived Cytokines. Biochemical Pharmacology, 183, Article ID: 114308. https://doi.org/10.1016/j.bcp.2020.114308
|
[22]
|
Rupp, T., Butscheidt, S., Vettorazzi, E., Oheim, R., Barvencik, F., Amling, M., et al. (2019) High FGF23 Levels Are Associated with Impaired Trabecular Bone Microarchitecture in Patients with Osteoporosis. Osteoporosis International, 30, 1655-1662. https://doi.org/10.1007/s00198-019-04996-7
|
[23]
|
Song, Z.H., Xie, W., Zhu, S.Y., Pan, J.J., Zhou, L.Y. and He, C.Q. (2018) Effects of PEMFs on Osx, Ocn, TRAP, and CTSK Gene Expression in Postmenopausal Osteoporosis Model Mice. International Journal of Clinical and Experimental Pathology, 11, 1784-1790.
|
[24]
|
Williams, C. and Sapra, A. (2023) Osteoporosis Markers. StatPearls.
|
[25]
|
Patil, S., Reda, R., Boreak, N., Taher, H.A., Melha, A.A., Albrakati, A., et al. (2021) Adipogenic Stimulation and Pyrrolidine Dithiocarbamate Induced Osteogenic Inhibition of Dental Pulp Stem Cells Is Countered by Cordycepin. Journal of Personalized Medicine, 11, Article 915. https://doi.org/10.3390/jpm11090915
|
[26]
|
McClung, M.R. (2021) Role of Bone-Forming Agents in the Management of Osteoporosis. Aging Clinical and Experimental Research, 33, 775-791. https://doi.org/10.1007/s40520-020-01708-8
|
[27]
|
Hodsman, A.B., Bauer, D.C., Dempster, D.W., Dian, L., Hanley, D.A., Harris, S.T., et al. (2005) Parathyroid Hormone and Teriparatide for the Treatment of Osteoporosis: A Review of the Evidence and Suggested Guidelines for Its Use. Endocrine Reviews, 26, 688-703. https://doi.org/10.1210/er.2004-0006
|
[28]
|
Kobza, A.O., Papaioannou, A., Lau, A.N. and Adachi, J.D. (2020) Romosozumab in the Treatment of Osteoporosis. Immunotherapy, 12, 965-981. https://doi.org/10.2217/imt-2020-0158
|
[29]
|
林清宇. Apelin-13在NONFH的临床意义及其与虫草素对rBMSCs成骨分化作用的研究[D]: [博士学位论文]. 广州: 广州中医药大学, 2021.
|
[30]
|
杨建平. 虫草素对人脂肪干细胞成骨分化作用的实验研究[D]: [博士学位论文]. 南京: 南京医科大学, 2017.
|
[31]
|
刘立柱, 李超艺, 林诗炜, 等. 虫草素通过抑制氧化应激和炎症反应对骨折愈合的影响研究[J]. 天津中医药, 2022, 39(3): 380-385.
|
[32]
|
夏晨. 光交联透明质酸水凝胶结合包裹虫草素壳聚糖治疗骨关节炎[D]: [硕士学位论文]. 杭州: 浙江大学, 2018.
|