[1]
|
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4
|
[2]
|
Mills, K.H.G. (2022) IL-17 and Il-17-Producing Cells in Protection versus Pathology. Nature Reviews Immunology, 23, 38-54. https://doi.org/10.1038/s41577-022-00746-9
|
[3]
|
Chen, J., Jiang, G., Li, Q., Zhou, Z. and Cheng, Q. (2014) Increased Serum Levels of Interleukin-18,-23 and-17 in Chinese Patients with Alzheimer’s Disease. Dementia and Geriatric Cognitive Disorders, 38, 321-329. https://doi.org/10.1159/000360606
|
[4]
|
Ribeiro, M., Brigas, H.C., Temido-Ferreira, M., Pousinha, P.A., Regen, T., Santa, C., et al. (2019) Meningeal γδ T Cell-Derived IL-17 Controls Synaptic Plasticity and Short-Term Memory. Science Immunology, 4, eaay5199. https://doi.org/10.1126/sciimmunol.aay5199
|
[5]
|
Lee, B., Kwon, J., Jeong, Y., Caris, H., Oh, D., Feng, M., et al. (2025) Inflammatory and Anti-Inflammatory Cytokines Bidirectionally Modulate Amygdala Circuits Regulating Anxiety. Cell, 188, 2190-2202.e15. https://doi.org/10.1016/j.cell.2025.03.005
|
[6]
|
Lee, Y., Ishikawa, T., Lee, H., Lee, B., Ryu, C., Davila Mejia, I., et al. (2025) Brain-Wide Mapping of Immune Receptors Uncovers a Neuromodulatory Role of IL-17E and the Receptor Il-17RB. Cell, 188, 2203-2217.e17. https://doi.org/10.1016/j.cell.2025.03.006
|
[7]
|
Heneka, M.T., Carson, M.J., Khoury, J.E., Landreth, G.E., Brosseron, F., Feinstein, D.L., et al. (2015) Neuroinflammation in Alzheimer’s Disease. The Lancet Neurology, 14, 388-405. https://doi.org/10.1016/s1474-4422(15)70016-5
|
[8]
|
Twarowski, B. and Herbet, M. (2023) Inflammatory Processes in Alzheimer’s Disease—Pathomechanism, Diagnosis and Treatment: A Review. International Journal of Molecular Sciences, 24, Article 6518. https://doi.org/10.3390/ijms24076518
|
[9]
|
Cao, M., Liu, J., Zhang, X., Wang, Y., Hou, Y., Song, Q., et al. (2023) IL-17A Promotes the Progression of Alzheimer’s Disease in APP/PS1 Mice. Immunity & Ageing, 20, Article No. 74. https://doi.org/10.1186/s12979-023-00397-x
|
[10]
|
Lu, Y., Zhang, P., Xu, F., Zheng, Y. and Zhao, H. (2023) Advances in the Study of IL-17 in Neurological Diseases and Mental Disorders. Frontiers in Neurology, 14, Article 1284304. https://doi.org/10.3389/fneur.2023.1284304
|
[11]
|
Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., et al. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192. https://doi.org/10.7150/ijbs.57078
|
[12]
|
Zenaro, E., Pietronigro, E., Bianca, V.D., Piacentino, G., Marongiu, L., Budui, S., et al. (2015) Neutrophils Promote Alzheimer’s Disease-Like Pathology and Cognitive Decline via LFA-1 Integrin. Nature Medicine, 21, 880-886. https://doi.org/10.1038/nm.3913
|
[13]
|
Chen, Z., Balachandran, Y.L., Chong, W.P. and Chan, K.W.Y. (2024) Roles of Cytokines in Alzheimer’s Disease. International Journal of Molecular Sciences, 25, Article 5803. https://doi.org/10.3390/ijms25115803
|
[14]
|
Chen, J., Li, Q., Jiang, G., Liu, J. and Cheng, Q. (2019) IL-18 Induced IL-23/IL-17 Expression Impairs Aβ Clearance in Cultured THP-1 and BV2 Cells. Cytokine, 119, 113-118. https://doi.org/10.1016/j.cyto.2019.03.003
|
[15]
|
Cristiano, C., Volpicelli, F., Lippiello, P., Buono, B., Raucci, F., Piccolo, M., et al. (2019) Neutralization of IL‐17 Rescues Amyloid‐β‐Induced Neuroinflammation and Memory Impairment. British Journal of Pharmacology, 176, 3544-3557. https://doi.org/10.1111/bph.14586
|
[16]
|
Yan, X., Lai, L., Ao, Q., Tian, X. and Zhang, Y. (2022) Interleukin-17a in Alzheimer’s Disease: Recent Advances and Controversies. Current Neuropharmacology, 20, 372-383. https://doi.org/10.2174/1570159x19666210823110004
|
[17]
|
Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., et al. (2009) Cellular Mechanisms of IL‐17‐Induced Blood‐Brain Barrier Disruption. The FASEB Journal, 24, 1023-1034. https://doi.org/10.1096/fj.09-141978
|
[18]
|
Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., et al. (2007) Human TH17 Lymphocytes Promote Blood-Brain Barrier Disruption and Central Nervous System Inflammation. Nature Medicine, 13, 1173-1175. https://doi.org/10.1038/nm1651
|
[19]
|
Siffrin, V., et al. (2010) In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis. Immunity, 33, 424-436.
|
[20]
|
Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125. https://doi.org/10.2174/1570159x18666200528142429
|
[21]
|
Hao, W., Luo, Q., Tomic, I., Quan, W., Hartmann, T., Menger, M.D., et al. (2024) Modulation of Alzheimer’s Disease Brain Pathology in Mice by Gut Bacterial Depletion: The Role of Il-17a. Gut Microbes, 16, Article ID: 2363014. https://doi.org/10.1080/19490976.2024.2363014
|
[22]
|
Mangina, C.A. and Sokolov, E.N. (2006) Neuronal Plasticity in Memory and Learning Abilities: Theoretical Position and Selective Review. International Journal of Psychophysiology, 60, 203-214. https://doi.org/10.1016/j.ijpsycho.2005.11.004
|
[23]
|
Zhang, J., Ke, K.F., Liu, Z., Qiu, Y.H. and Peng, Y.P. (2013) Th17 Cell-Mediated Neuroinflammation Is Involved in Neurodegeneration of Ab1-42-Induced Alzheimer’s Disease Model Rats. PLOS ONE, 8, e75786.
|
[24]
|
Tfilin, M. and Turgeman, G. (2019) Interleukine-17 Administration Modulates Adult Hippocampal Neurogenesis and Improves Spatial Learning in Mice. Journal of Molecular Neuroscience, 69, 254-263. https://doi.org/10.1007/s12031-019-01354-4
|
[25]
|
Brigas, H.C., Ribeiro, M., Coelho, J.E., Gomes, R., Gomez-Murcia, V., Carvalho, K., et al. (2021) IL-17 Triggers the Onset of Cognitive and Synaptic Deficits in Early Stages of Alzheimer’s Disease. Cell Reports, 36, Article ID: 109574. https://doi.org/10.1016/j.celrep.2021.109574
|
[26]
|
Li, J., Casanova, J. and Puel, A. (2018) Mucocutaneous IL-17 Immunity in Mice and Humans: Host Defense vs. Excessive Inflammation. Mucosal Immunology, 11, 581-589. https://doi.org/10.1038/mi.2017.97
|
[27]
|
Langley, R.G., Elewski, B.E., Lebwohl, M., Reich, K., Griffiths, C.E.M., Papp, K., et al. (2014) Secukinumab in Plaque Psoriasis—Results of Two Phase 3 Trials. New England Journal of Medicine, 371, 326-338. https://doi.org/10.1056/nejmoa1314258
|
[28]
|
Wu, S., Xu, Y., Yang, L., Guo, L. and Jiang, X. (2023) Short-term Risk and Long-Term Incidence Rate of Infection and Malignancy with IL-17 and IL-23 Inhibitors in Adult Patients with Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 14, Article 1294416. https://doi.org/10.3389/fimmu.2023.1294416
|