早期加速与延迟负重康复方案对膝关节前交叉韧带重建术后疗效的Meta分析
A Meta-Analysis of Effect of Early Accelerated vs Delayed Weight-Bearing Rehabilitation Programs after Anterior Cruciate Ligament Reconstruction
DOI: 10.12677/hjbm.2025.155097, PDF, HTML, XML,   
作者: 朱 凯:阜阳幼儿师范高等专科学校健康和管理学院,安徽 阜阳
关键词: 前交叉韧带重建术康复训练负重Meta分析Anterior Cruciate Ligament Reconstruction Rehabilitation Training Weight-Bearing Meta-Analysis
摘要: 目的:本研究采用Meta分析评价早期加速与延迟负重康复方案对膝关节前交叉韧带(ACL)重建术后临床疗效,为术后康复方案优化提供循证依据。方法:检索PubMed、Embase、MEDLINE、Web of Science和Cochrane Library数据库(建库至2025年8月),纳入ACL术后成人患者采用延迟或加速负重康复方案的研究;提取IKDC、Lysholm、Tegner评分及膝关节松弛度等结局,并按Cochrane手册评价文献质量;采用R 4.0.5进行Meta分析。结果:共纳入14项研究。加速负重组IKDC评分更高;Lysholm、Tegner评分及膝关节松弛度与延迟负重组比较差异均无统计学意义。结论:在充分考虑个体差异及术后具体情况的前提下,早期加速负重康复有利于膝关节功能恢复,可作为更合适的选择之一。
Abstract: Objective: This meta-analysis compared early accelerated versus delayed weight-bearing rehabilitation after anterior cruciate ligament (ACL) reconstruction in adults to provide evidence-based guidance for postoperative care. Methods: We systematically searched PubMed, Embase, MEDLINE, Web of Science and the Cochrane Library from inception to August 2025 for randomized or quasi-randomized trials that assigned adult ACL-reconstruction patients to either an accelerated or a delayed weight-bearing protocol; data on IKDC, Lysholm and Tegner scores and knee laxity were extracted, study quality was appraised with the Cochrane risk-of-bias tool, and meta-analyses were performed in R 4.0.5. Results: Fourteen studies met the inclusion criteria. The accelerated group achieved significantly higher IKDC scores, whereas Lysholm, Tegner and laxity outcomes did not differ between groups. Conclusion: When individual patient factors and postoperative status are taken into account, early accelerated weight-bearing facilitates better knee function and can be considered a preferable rehabilitation option.
文章引用:朱凯. 早期加速与延迟负重康复方案对膝关节前交叉韧带重建术后疗效的Meta分析[J]. 生物医学, 2025, 15(5): 920-928. https://doi.org/10.12677/hjbm.2025.155097

1. 引言

前交叉韧带(Anterior Cruciate Ligament, ACL)损伤是一种常见于需要频繁进行跳跃、转向和快速变向的运动中的损伤,其发生率呈上升趋势[1]。ACL损伤通常导致膝关节活动度和稳定性下降,严重影响患者的日常生活质量[2]。随着对ACL损伤发生机制的深入理解以及手术技术的提高,ACL重建术目前已成为治疗ACL损伤的最佳方法[3]。该手术有助于恢复膝关节的稳定性,并减少长期后续关节软骨或半月板损伤。目前国内外指南对于存在其他联合损伤、膝关节功能不稳定和完全破裂的ACL的患者均推荐行ACL重建术[4],术后负重训练有助于膝关节周围的肌肉等长收缩,减少膝关节腔积液,增加早期关节软骨收缩,维持软骨下骨强度,并减少髌腱周围纤维化程度,因此选择科学有效的术后早期康复训练对于促进患者功能恢复至关重要。

延迟负重康复方案指2周后启动膝关节运动和逐渐增大的负重锻炼,持续时间约12个月[5]。加速负重康复方案是指在手术后2周内开始实施逐步增加的负重康复训练,整个康复过程约持续6~9个月[6]。目前,延迟负重和早期加速负重两种康复方案在临床广泛应用,但在疗效上尚有争议。延迟负重方案可防止早期负重对新置入的ACL造成损伤,减少再撕裂的风险,但同时也会导致关节僵硬、活动度不佳和功能恢复延迟等问题。相比之下,早期加速负重方案能明显缩短功能恢复时间,但也同时会增加再撕裂和跟腱炎等并发症的风险。尽管多项随机控制试验和前瞻性研究比较了两种康复方案的有效性,但由于样本量和研究质量参差不齐,相关研究结果尚未达成一致。对两种方案的优缺点和疗效的系统性评价迫在眉睫。

本研究拟通过对多个权威数据库的广泛检索,收集有关延迟负重和早期加速负重康复方案的随机对照试验和前瞻性临床研究,采用Meta分析的方法对两种康复方案的临床疗效进行评价,包括关节功能恢复度和膝关节松弛度等指标。希望该研究能为ACL重建术后康复方案的优化提供有力的循证医学证据,达到更佳的治疗效果。

2. 材料与方法

2.1. 数据来源和检索策略

本研究根据系统性综述和Meta分析指南的声明(PRISMA)项目进行,于2025年8月使用以下数据库进行文献检索:PubMed、Embase、MEDLINE、Web of Science和Cochrane Library。检索策略采用关键词与自由词结合的方式,检索词主要为anterior cruciate ligament、surgery、operation、reconstruction、transplantation、weight-bearing、rehabilitation、weight training、time、delay、early、accelerate等。另外,独立筛选了相关文章和评论的参考文献,然后手工搜索可能的文章。

2.2. 纳入及排除标准

纳入标准:1) 研究对象均为成人且术后无严重并发症;2) 手术方法为关节镜下ACL重建术;3) 研究内容包括ACL重建术后患者采取延迟或加速康复方案并进行比较;4) 研究设计类型为随机、对照、回顾性或前瞻性队列研究。

排除标准为:1) 重复研究;2) 未以英语发表的研究;3) 随访时间少于3个月的研究;4) 对多处韧带损伤患者的研究。

2.3. 数据提取

两名审查人员将检索结果提取至EndNote X9软件。数据输入到预先构建的Excel电子表格中,包括以下收集的数据:一般信息包括主要作者,出版年份,研究设计,国家和随访时长;结果信息包括膝关节国际通用评分(International Knee Documentation Committee, IKDC)、Lysholm评分、Tegner评分、KT-1000测量值、股四头肌强度和骨隧道扩大值等。结果根据与临床实践的相关性进行分类。第一名审查者提取所有相关数据,第二名审查者检查准确性。

2.4. 偏倚风险的评估

两名审查人员根据Cochrane干预措施系统评价手册中概述的标准评估每项研究的偏倚风险,包括以下内容:随机序列生成,分配隐藏,参与者和人员盲法,结果评估盲法,结果数据完整性,选择性结果报告等。对于每个领域的判断,将文章设置为低风险。如果两位审查人之间存在分歧,则由第三位审查人进行判断。

2.5. 统计学方法

采用R 4.0.5软件进行统计分析。从研究中提取关于临床评分结果和通过KT-1000测量的膝关节松弛度的评分的平均值和标准差,并以森林图展示结果。其中,异质性检验采用Q检验和I2统计量进行,使用I2检验估计合并数据的异质性。当I2检验结果小于50%时,选择固定效应模型,反之采用随机效应模型。P < 0.05为差异有统计学意义。

3. 结果

3.1. 文献检索结果

共检索出1043篇文献,其中PubMed 293篇,MEDLINE 285篇,Embase 63篇,Web of Science 337篇,Cochrane Library 65篇。经EndNote X9查重后去掉重复文献623篇,经过阅读题目和摘要初筛后,共筛选出符合标准的文献29篇。浏览全文后去除15篇,最终将14篇文献纳入研究。共纳入470例膝关节ACL术后患者,其中加速负重康复组255例,延迟负重康复组215例。纳入研究基本特征及质量评价见表1

Table 1. Basic characteristics and quality assessment of included studies

1. 纳入研究基本特征及质量评价

纳入研究

文献类型

例数

(A/D)

平均年龄

(A/D,岁)

移植物

随访时间

(月)

结局指标

整体偏倚评估

Tyler (1998) [7]

RCT

25/20

骨–髌腱–骨移植

14

Lysholm评分、KT-1000测量值

中风险

Henriksson (2002) [8]

前瞻性

22/23

24/24

骨–髌腱–骨移植

24

Lysholm评分、Tegner评分

低风险

Beynnon (2005) [9]

RCT

11/14

30.4/34.7

骨–髌腱–骨移植

24

Tegner评分、KT-1000测量值

低风险

Isberg (2006) [10]

RCT

11/11

25/21

骨–髌腱–骨移植

24

Lysholm评分、KT-1000测量值、Tegner评分

低风险

Ito (2007) [11]

RCT

15/15

29.2/27.3

腘绳肌腱

12

Lysholm评分、KT-1000测量值

中风险

Parry (2007) [12]

RCT

20/20

骨–髌腱–骨移植

15

KT-1000测量值

中风险

Gerber (2009) [13]

RCT

20/20

29.3/29.3

腘绳肌腱或骨– 髌腱–骨移植

12

Lysholm评分、KT-1000测量值、Tegner评分

中风险

Beynnon (2011) [14]

RCT

19/17

29.7/30.2

骨–髌腱–骨移植

24

KT-1000测量值

低风险

Zhu (2012) [15]

回顾性

15/15

腘绳肌腱

12

IKDC评分

中风险

Christensen (2013) [16]

RCT

19/17

30.1/33.1

腘绳肌腱

6

IKDC评分、KT-1000测量值

低风险

Fukuda (2013) [17]

RCT

23/22

26.5/23.9

半腱肌腱

17

Lysholm评分、KT-1000测量值

低风险

Luo (2016) [18]

RCT

20/20

39.6/45.7

半腱肌腱

6

IKDC评分、KT-1000测量值

低风险

Di Miceli (2017) [19]

回顾性

16/6

30.2/31.4

半腱肌腱

42

IKDC评分

低风险

Tajima (2019) [20]

前瞻性

19/18

23.9/23.3

腘绳肌腱

12

Lysholm评分、Tegner评分、KT-1000测量值

低风险

3.2. Meat分析结果

对纳入的14篇文献中报道的IKDC评分、Lysholm评分、Tegner评分、KT-1000关节测量值等数据进行汇总,排除不全、不可用的数据后进行Meta分析。

3.2.1. IKDC评分比较

共4项研究[15] [16] [18] [19]报告了IKDC评分,涉及125例患者。各研究之间无统计学异质性(P = 0.54, I2 = 0%),故采用固定效应模型进行Meta分析,结果显示,在ACL重建术后,早期加速负重康复方案可以提高IKDC评分(Z = 3.30, P = 0.001)。见图1

Figure 1. Forest plot comparing IKDC scores between the delayed weight-bearing rehabilitation group and the accelerated weight-bearing rehabilitation group

1. 延迟负重康复组与加速负重康复组IKDC评分比较结果森林图

3.2.2. Lysholm评分比较

共有7项研究[7] [8] [10] [11] [13] [17] [20]报告了Lysholm评分,涉及264例患者。各研究之间无统计学异质性(P = 0.62, I2 = 0%),故采用固定效应模型进行Meta分析,结果显示,延迟与早期加速负重康复方案间差异无统计学意义(Z = 1.19, P = 0.235)。见图2

Figure 2. Forest plot comparing Lysholm scores between the delayed weight-bearing rehabilitation group and the accelerated weight-bearing rehabilitation group

2. 延迟负重康复组与加速负重康复组Lysholm评分比较结果森林图

3.2.3. Tegner评分比较

共有5项研究[8]-[10] [13] [20]报告了Tegner评分,涉及169例患者。研究间异质性不显著(P = 0.44, I2 = 0%),采用固定效应模型合并,结果显示两种方案差异无统计学意义(Z = 0.73, P = 0.464)。见图3

3.2.4. KT-1000关节测量值比较

共有11项研究[7] [9]-[14] [16]-[18] [20] (共399例患者)报告了术后膝关节松弛度。研究间异质性不显著(P = 0.58, I2 = 0%),采用固定效应模型合并,结果显示两组差异无统计学意义(Z = 1.72, P = 0.085)。见图4

Figure 3. Forest plot comparing Tegner scores between the delayed weight-bearing rehabilitation group and the accelerated weight-bearing rehabilitation group.

3. 延迟负重康复组与加速负重康复组Tegner评分比较结果森林图

Figure 4. Forest plot comparing knee arthrochalasis degree results between the delayed weight-bearing rehabilitation group and the accelerated weight-bearing rehabilitation group

4. 延迟负重康复组与加速负重康复组膝关节松弛度比较结果森林图

3.3. 发表偏倚检测

根据Cochrane手册,对结局指标文献大于等于10篇的系统评价研究进行漏斗图评估其潜在的发表偏倚,漏斗图对称则显示存在发表偏倚的可能性较小。结果显示,KT-1000关节测量仪测量术后康复后膝关节前向移位差值的Meta分析中,发表偏倚风险较小。见图5

Figure 5. Funnel plot of publication bias in the included studies

5. 纳入研究发表偏倚漏斗图

4. 讨论

ACL重建术后康复对于确保患者恢复最佳功能、防止失用性肌萎缩和关节源性抑制等并发症至关重要[21]。关于术后负重时机的选择,临床实践中长期存在争议[22]。本次Meta分析的核心贡献在于,它系统地证实了早期加速负重康复方案在提升患者主观功能恢复方面优于延迟方案,同时并未增加客观测量的膝关节松弛度。研究发现,加速负重组的膝关节国际通用评分(IKDC)显著更高,而在Lysholm评分、Tegner活动评分及KT-1000测量的膝关节松弛度方面,两组无统计学差异。

本研究的一个关键发现是功能恢复与关节稳定性之间看似矛盾的现象:即加速负重组患者感受到了更好的膝关节功能(IKDC评分更高),但其客观的关节前后向稳定性(KT-1000测量值)与延迟负重组并无差异。这种现象的解释可能在于,膝关节的“功能”是一个多维度的概念,远不止于韧带的机械稳定性。IKDC评分作为一个综合性指标,不仅评估症状和体征,还重点关注患者在日常生活和体育活动中的功能表现及信心。早期加速负重通过尽早激活肌肉、改善本体感觉和神经肌肉控制,可能有效地提升了膝关节的动态稳定性。有研究表明,早期加速康复训练的患者可以更快地恢复正常的肌力,并增强股四头肌的肌肉体积和功能[23]-[25]。因此,IKDC评分的改善很可能源于更强的股四头肌功能、更优的运动模式和因早期活动而提高的患者满意度与生活质量,而非移植物本身物理特性的改变。这提示我们,临床决策不应仅依赖于对关节松弛度的客观测量,更应关注以患者为中心的功能性结果。

值得注意的是,本研究关于膝关节松弛度的结论与部分现有文献存在差异。例如,FAN等[26]一篇Meta分析曾指出,加速负重康复可能导致膝关节前后向松弛度增加和骨隧道扩大,因此建议采取更为保守的延迟负重方案。本研究纳入了11项关于KT-1000测量的研究,共涉及399例患者,结果并未发现两组间存在统计学上的显著差异(Z = 1.72, P = 0.085),且漏斗图分析显示此结果的发表偏倚风险较小。造成这种结论不一致的原因可能是多方面的:首先,本研究的文献检索截至2025年8月,可能纳入了FAN等研究(2022年发表)之后的新证据,从而改变了合并效应量;其次,两篇Meta分析在纳入研究的选择标准、随访时长或对“加速”与“延迟”方案的具体定义上可能存在差异,这种方法学上的异质性是导致结论不同的常见原因;最后,移植物类型、固定方式等混杂因素也可能对结果产生影响。尽管如此,本分析的综合证据表明,在所纳入的研究框架内,早期加速负重并未损害膝关节的前后向稳定性。

从生物力学和组织学角度看,尽管早期负重可能通过刺激生长因子-β的生成而导致潜在的疤痕组织增生[27] [28],但越来越多的证据支持机械刺激对肌腱–骨愈合的积极作用。例如,一项对兔ACL重建模型的动物研究显示,负重训练可提高破坏载荷水平,促进骨膜来源的前体细胞增殖分化,从而增强肌腱–骨愈合的再生潜能[29]。临床研究也同样证实,早期功能性锻炼可在不影响移植物稳定的情况下,显著改善股四头肌、臀大肌以及膝关节功能,改善增幅高达50% [30]。本研究的结果与这些临床发现相符,即早期加速负重方案在促进功能性恢复方面具有明显优势,同时对膝关节松弛度的影响是安全的。

尽管本研究得出了有临床意义的结论,但其局限性亦不容忽视。首先,纳入的14项研究在手术方法、移植物选择、随访时间以及其他康复方案的影响等方面均存在一定的异质性。其次,结局指标不够统一,影响了更多研究的纳入和合并分析。因此,关于开始负重训练和康复过程的最佳时间仍有待更多高质量研究予以验证。

总之,本次Meta分析为ACL重建术后康复方案的选择提供了有力的循证医学证据。结果表明,与传统的延迟负重方案相比,早期加速负重康复方案在不牺牲膝关节稳定性的前提下,能更有效地促进患者主观膝关节功能的恢复。因此,在充分考虑患者个体差异和术后具体情况的基础上,早期加速负重康复方案可能是一个更为合适的选择。然而,关于康复训练的最佳时机及具体实施细节,还需要进一步的研究和探讨。

参考文献

[1] Larwa, J., Stoy, C., Chafetz, R.S., Boniello, M. and Franklin, C. (2021) Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. International Journal of Environmental Research and Public Health, 18, Article 3826.
https://doi.org/10.3390/ijerph18073826
[2] Giesche, F., Niederer, D., Banzer, W. and Vogt, L. (2020) Evidence for the Effects of Prehabilitation before ACL-Reconstruction on Return to Sport-Related and Self-Reported Knee Function: A Systematic Review. PLOS ONE, 15, e0240192.
https://doi.org/10.1371/journal.pone.0240192
[3] Diermeier, T., Tisherman, R., Hughes, J., Tulman, M., Baum Coffey, E., Fink, C., et al. (2020) Quadriceps Tendon Anterior Cruciate Ligament Reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 28, 2644-2656.
https://doi.org/10.1007/s00167-020-05902-z
[4] 周天平, 徐一宏, 徐卫东. 前交叉韧带损伤处理相关国际指南解读及其临床应用[J]. 中华关节外科杂志(电子版), 2021, 15(6): 718-724.
[5] Morris, B.L., Poppe, T., Kim, K., Barnds, B., Schroeppel, P., Mullen, S., et al. (2021) Weightbearing Protocols after Posterolateral Corner Reconstruction: A Systematic Review. Orthopaedic Journal of Sports Medicine, 9.
https://doi.org/10.1177/2325967120988274
[6] Memmel, C., Krutsch, W., Szymski, D., Pfeifer, C., Henssler, L., Frankewycz, B., et al. (2022) Current Standards of Early Rehabilitation after Anterior Cruciate Ligament Reconstruction in German Speaking Countries—Differentiation Based on Tendon Graft and Concomitant Injuries. International Journal of Environmental Research and Public Health, 19, Article 4060.
https://doi.org/10.3390/ijerph19074060
[7] Tyler, T.F., McHugh, M.P., Gleim, G.W. and Nicholas, S.J. (1998) The Effect of Immediate Weightbearing after Anterior Cruciate Ligament Reconstruction. Clinical Orthopaedics and Related Research, 357, 141-148.
https://doi.org/10.1097/00003086-199812000-00019
[8] Henriksson, M., Rockborn, P. and Good, L. (2002) Range of Motion Training in Brace vs. Plaster Immobilization after Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Comparison with a 2‐Year Follow‐Up. Scandinavian Journal of Medicine & Science in Sports, 12, 73-80.
https://doi.org/10.1034/j.1600-0838.2002.120203.x
[9] Beynnon, B.D., Uh, B.S., Johnson, R.J., Abate, J.A., Nichols, C.E., Fleming, B.C., et al. (2005) Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Prospective, Randomized, Double-Blind Comparison of Programs Administered over 2 Different Time Intervals. The American Journal of Sports Medicine, 33, 347-359.
https://doi.org/10.1177/0363546504268406
[10] Isberg, J., Faxén, E., Brandsson, S., Eriksson, B.I., Kärrholm, J. and Karlsson, J. (2006) Early Active Extension after Anterior Cruciate Ligament Reconstruction Does Not Result in Increased Laxity of the Knee. Knee Surgery, Sports Traumatology, Arthroscopy, 14, 1108-1115.
https://doi.org/10.1007/s00167-006-0138-2
[11] Ito, Y., Deie, M., Adachi, N., Kobayashi, K., Kanaya, A., Miyamoto, A., et al. (2007) A Prospective Study of 3-Day versus 2-Week Immobilization Period after Anterior Cruciate Ligament Reconstruction. The Knee, 14, 34-38.
https://doi.org/10.1016/j.knee.2006.10.004
[12] Gerber, J.P., Marcus, R.L., Dibble, L.E., Greis, P.E., Burks, R.T. and LaStayo, P.C. (2007) Effects of Early Progressive Eccentric Exercise on Muscle Structure after Anterior Cruciate Ligament Reconstruction. The Journal of Bone & Joint Surgery, 89, 559-570.
https://doi.org/10.2106/jbjs.f.00385
[13] Gerber, J.P., Marcus, R.L., Dibble, L.E., Greis, P.E., Burks, R.T. and LaStayo, P.C. (2009) Effects of Early Progressive Eccentric Exercise on Muscle Size and Function after Anterior Cruciate Ligament Reconstruction: A 1-Year Follow-Up Study of a Randomized Clinical Trial. Physical Therapy, 89, 51-59.
https://doi.org/10.2522/ptj.20070189
[14] Beynnon, B.D., Johnson, R.J., Naud, S., Fleming, B.C., Abate, J.A., Brattbakk, B., et al. (2011) Accelerated versus Nonaccelerated Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Prospective, Randomized, Double-Blind Investigation Evaluating Knee Joint Laxity Using Roentgen Stere-Ophotogrammetric Analysis. The American Journal of Sports Medicine, 39, 2536-2548.
https://doi.org/10.1177/0363546511422349
[15] Zhu, W., Wang, D., Han, Y., Zhang, N. and Zeng, Y. (2012) Anterior Cruciate Ligament (ACL) Autograft Reconstruction with Hamstring Tendons: Clinical Research among Three Rehabilitation Procedures. European Journal of Orthopaedic Surgery & Traumatology, 23, 939-943.
https://doi.org/10.1007/s00590-012-1106-9
[16] Christensen, J.C., Goldfine, L.R. and West, H.S. (2013) The Effects of Early Aggressive Rehabilitation on Outcomes after Anterior Cruciate Ligament Reconstruction Using Autologous Hamstring Tendon: A Randomized Clinical Trial. Journal of Sport Rehabilitation, 22, 191-201.
https://doi.org/10.1123/jsr.22.3.191
[17] Fukuda, T.Y., Fingerhut, D., Moreira, V.C., Camarini, P.M.F., Scodeller, N.F., Duarte, A., et al. (2013) Open Kinetic Chain Exercises in a Restricted Range of Motion after Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Clinical Trial. The American Journal of Sports Medicine, 41, 788-794.
https://doi.org/10.1177/0363546513476482
[18] Luo, Y., Shen, W., Jiang, Z. and Sha, J. (2016) Treadmill Training with Partial Body-Weight Support after Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Journal of Physical Therapy Science, 28, 3325-3329.
https://doi.org/10.1589/jpts.28.3325
[19] Di Miceli, R., Marambio, C., Zati, A., Monesi, R. and Benedetti, M. (2017) Do Knee Bracing and Delayed Weight Bearing Affect Mid-Term Functional Outcome after Anterior Cruciate Ligament Reconstruction? Joints, 5, 202-206.
https://doi.org/10.1055/s-0037-1606617
[20] Tajima, T., Yamaguchi, N., Nagasawa, M., Morita, Y., Nakamura, Y. and Chosa, E. (2019) Early Weight-Bearing after Anterior Cruciate Ligament Reconstruction with Hamstring Grafts Induce Femoral Bone Tunnel Enlargement: A Prospective Clinical and Radiographic Study. BMC Musculoskeletal Disorders, 20, Article No. 274.
https://doi.org/10.1186/s12891-019-2653-6
[21] Filbay, S.R. and Grindem, H. (2019) Evidence-Based Recommendations for the Management of Anterior Cruciate Ligament (ACL) Rupture. Best Practice & Research Clinical Rheumatology, 33, 33-47.
https://doi.org/10.1016/j.berh.2019.01.018
[22] Culvenor, A.G., Girdwood, M.A., Juhl, C.B., Patterson, B.E., Haberfield, M.J., Holm, P.M., et al. (2022) Rehabilitation after Anterior Cruciate Ligament and Meniscal Injuries: A Best-Evidence Synthesis of Systematic Reviews for the OPTIKNEE Consensus. British Journal of Sports Medicine, 56, 1445-1453.
https://doi.org/10.1136/bjsports-2022-105495
[23] Kruse, L.M., Gray, B. and Wright, R.W. (2012) Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Systematic Review. Journal of Bone and Joint Surgery, 94, 1737-1748.
https://doi.org/10.2106/jbjs.k.01246
[24] Vadalà, A., Iorio, R., De Carli, A., Argento, G., Di Sanzo, V., Conteduca, F., et al. (2006) The Effect of Accelerated, Brace Free, Rehabilitation on Bone Tunnel Enlargement after ACL Reconstruction Using Hamstring Tendons: A CT Study. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 365-371.
https://doi.org/10.1007/s00167-006-0219-2
[25] Hoshino, Y., Kuroda, R., Nishizawa, Y., Nakano, N., Nagai, K., Araki, D., et al. (2017) Stress Distribution Is Deviated around the Aperture of the Femoral Tunnel in the Anatomic Anterior Cruciate Ligament Reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 1145-1151.
https://doi.org/10.1007/s00167-017-4543-5
[26] Fan, Z., Yan, J., Zhou, Z., Gao, Y., Tang, J., Li, Y., et al. (2022) Delayed versus Accelerated Weight-Bearing Rehabilitation Protocol Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Journal of Rehabilitation Medicine, 54, jrm00260.
https://doi.org/10.2340/jrm.v53.1438
[27] Hettrich, C.M., Gasinu, S., Beamer, B.S., Stasiak, M., Fox, A., Birmingham, P., et al. (2014) The Effect of Mechanical Load on Tendon-to-Bone Healing in a Rat Model. The American Journal of Sports Medicine, 42, 1233-1241.
https://doi.org/10.1177/0363546514526138
[28] Ma, R., Schär, M., Chen, T., Sisto, M., Nguyen, J., Voigt, C., et al. (2018) Effect of Dynamic Changes in Anterior Cruciate Ligament in Situ Graft Force on the Biological Healing Response of the Graft-Tunnel Interface. The American Journal of Sports Medicine, 46, 915-923.
https://doi.org/10.1177/0363546517745624
[29] Song, F., Jiang, D., Wang, T., Wang, Y., Chen, F., Xu, G., et al. (2017) Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells. Cellular Physiology and Biochemistry, 41, 875-889.
https://doi.org/10.1159/000460005
[30] Grant, J.A., Mohtadi, N.G.H., Maitland, M.E. and Zernicke, R.F. (2005) Comparison of Home versus Physical Therapy-Supervised Rehabilitation Programs after Anterior Cruciate Ligament Reconstruction: A Randomized Clinical Trial. The American Journal of Sports Medicine, 33, 1288-1297.
https://doi.org/10.1177/0363546504273051