[1]
|
Larwa, J., Stoy, C., Chafetz, R.S., Boniello, M. and Franklin, C. (2021) Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. International Journal of Environmental Research and Public Health, 18, Article 3826. https://doi.org/10.3390/ijerph18073826
|
[2]
|
Giesche, F., Niederer, D., Banzer, W. and Vogt, L. (2020) Evidence for the Effects of Prehabilitation before ACL-Reconstruction on Return to Sport-Related and Self-Reported Knee Function: A Systematic Review. PLOS ONE, 15, e0240192. https://doi.org/10.1371/journal.pone.0240192
|
[3]
|
Diermeier, T., Tisherman, R., Hughes, J., Tulman, M., Baum Coffey, E., Fink, C., et al. (2020) Quadriceps Tendon Anterior Cruciate Ligament Reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 28, 2644-2656. https://doi.org/10.1007/s00167-020-05902-z
|
[4]
|
周天平, 徐一宏, 徐卫东. 前交叉韧带损伤处理相关国际指南解读及其临床应用[J]. 中华关节外科杂志(电子版), 2021, 15(6): 718-724.
|
[5]
|
Morris, B.L., Poppe, T., Kim, K., Barnds, B., Schroeppel, P., Mullen, S., et al. (2021) Weightbearing Protocols after Posterolateral Corner Reconstruction: A Systematic Review. Orthopaedic Journal of Sports Medicine, 9. https://doi.org/10.1177/2325967120988274
|
[6]
|
Memmel, C., Krutsch, W., Szymski, D., Pfeifer, C., Henssler, L., Frankewycz, B., et al. (2022) Current Standards of Early Rehabilitation after Anterior Cruciate Ligament Reconstruction in German Speaking Countries—Differentiation Based on Tendon Graft and Concomitant Injuries. International Journal of Environmental Research and Public Health, 19, Article 4060. https://doi.org/10.3390/ijerph19074060
|
[7]
|
Tyler, T.F., McHugh, M.P., Gleim, G.W. and Nicholas, S.J. (1998) The Effect of Immediate Weightbearing after Anterior Cruciate Ligament Reconstruction. Clinical Orthopaedics and Related Research, 357, 141-148. https://doi.org/10.1097/00003086-199812000-00019
|
[8]
|
Henriksson, M., Rockborn, P. and Good, L. (2002) Range of Motion Training in Brace vs. Plaster Immobilization after Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Comparison with a 2‐Year Follow‐Up. Scandinavian Journal of Medicine & Science in Sports, 12, 73-80. https://doi.org/10.1034/j.1600-0838.2002.120203.x
|
[9]
|
Beynnon, B.D., Uh, B.S., Johnson, R.J., Abate, J.A., Nichols, C.E., Fleming, B.C., et al. (2005) Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Prospective, Randomized, Double-Blind Comparison of Programs Administered over 2 Different Time Intervals. The American Journal of Sports Medicine, 33, 347-359. https://doi.org/10.1177/0363546504268406
|
[10]
|
Isberg, J., Faxén, E., Brandsson, S., Eriksson, B.I., Kärrholm, J. and Karlsson, J. (2006) Early Active Extension after Anterior Cruciate Ligament Reconstruction Does Not Result in Increased Laxity of the Knee. Knee Surgery, Sports Traumatology, Arthroscopy, 14, 1108-1115. https://doi.org/10.1007/s00167-006-0138-2
|
[11]
|
Ito, Y., Deie, M., Adachi, N., Kobayashi, K., Kanaya, A., Miyamoto, A., et al. (2007) A Prospective Study of 3-Day versus 2-Week Immobilization Period after Anterior Cruciate Ligament Reconstruction. The Knee, 14, 34-38. https://doi.org/10.1016/j.knee.2006.10.004
|
[12]
|
Gerber, J.P., Marcus, R.L., Dibble, L.E., Greis, P.E., Burks, R.T. and LaStayo, P.C. (2007) Effects of Early Progressive Eccentric Exercise on Muscle Structure after Anterior Cruciate Ligament Reconstruction. The Journal of Bone & Joint Surgery, 89, 559-570. https://doi.org/10.2106/jbjs.f.00385
|
[13]
|
Gerber, J.P., Marcus, R.L., Dibble, L.E., Greis, P.E., Burks, R.T. and LaStayo, P.C. (2009) Effects of Early Progressive Eccentric Exercise on Muscle Size and Function after Anterior Cruciate Ligament Reconstruction: A 1-Year Follow-Up Study of a Randomized Clinical Trial. Physical Therapy, 89, 51-59. https://doi.org/10.2522/ptj.20070189
|
[14]
|
Beynnon, B.D., Johnson, R.J., Naud, S., Fleming, B.C., Abate, J.A., Brattbakk, B., et al. (2011) Accelerated versus Nonaccelerated Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Prospective, Randomized, Double-Blind Investigation Evaluating Knee Joint Laxity Using Roentgen Stere-Ophotogrammetric Analysis. The American Journal of Sports Medicine, 39, 2536-2548. https://doi.org/10.1177/0363546511422349
|
[15]
|
Zhu, W., Wang, D., Han, Y., Zhang, N. and Zeng, Y. (2012) Anterior Cruciate Ligament (ACL) Autograft Reconstruction with Hamstring Tendons: Clinical Research among Three Rehabilitation Procedures. European Journal of Orthopaedic Surgery & Traumatology, 23, 939-943. https://doi.org/10.1007/s00590-012-1106-9
|
[16]
|
Christensen, J.C., Goldfine, L.R. and West, H.S. (2013) The Effects of Early Aggressive Rehabilitation on Outcomes after Anterior Cruciate Ligament Reconstruction Using Autologous Hamstring Tendon: A Randomized Clinical Trial. Journal of Sport Rehabilitation, 22, 191-201. https://doi.org/10.1123/jsr.22.3.191
|
[17]
|
Fukuda, T.Y., Fingerhut, D., Moreira, V.C., Camarini, P.M.F., Scodeller, N.F., Duarte, A., et al. (2013) Open Kinetic Chain Exercises in a Restricted Range of Motion after Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Clinical Trial. The American Journal of Sports Medicine, 41, 788-794. https://doi.org/10.1177/0363546513476482
|
[18]
|
Luo, Y., Shen, W., Jiang, Z. and Sha, J. (2016) Treadmill Training with Partial Body-Weight Support after Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Journal of Physical Therapy Science, 28, 3325-3329. https://doi.org/10.1589/jpts.28.3325
|
[19]
|
Di Miceli, R., Marambio, C., Zati, A., Monesi, R. and Benedetti, M. (2017) Do Knee Bracing and Delayed Weight Bearing Affect Mid-Term Functional Outcome after Anterior Cruciate Ligament Reconstruction? Joints, 5, 202-206. https://doi.org/10.1055/s-0037-1606617
|
[20]
|
Tajima, T., Yamaguchi, N., Nagasawa, M., Morita, Y., Nakamura, Y. and Chosa, E. (2019) Early Weight-Bearing after Anterior Cruciate Ligament Reconstruction with Hamstring Grafts Induce Femoral Bone Tunnel Enlargement: A Prospective Clinical and Radiographic Study. BMC Musculoskeletal Disorders, 20, Article No. 274. https://doi.org/10.1186/s12891-019-2653-6
|
[21]
|
Filbay, S.R. and Grindem, H. (2019) Evidence-Based Recommendations for the Management of Anterior Cruciate Ligament (ACL) Rupture. Best Practice & Research Clinical Rheumatology, 33, 33-47. https://doi.org/10.1016/j.berh.2019.01.018
|
[22]
|
Culvenor, A.G., Girdwood, M.A., Juhl, C.B., Patterson, B.E., Haberfield, M.J., Holm, P.M., et al. (2022) Rehabilitation after Anterior Cruciate Ligament and Meniscal Injuries: A Best-Evidence Synthesis of Systematic Reviews for the OPTIKNEE Consensus. British Journal of Sports Medicine, 56, 1445-1453. https://doi.org/10.1136/bjsports-2022-105495
|
[23]
|
Kruse, L.M., Gray, B. and Wright, R.W. (2012) Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Systematic Review. Journal of Bone and Joint Surgery, 94, 1737-1748. https://doi.org/10.2106/jbjs.k.01246
|
[24]
|
Vadalà, A., Iorio, R., De Carli, A., Argento, G., Di Sanzo, V., Conteduca, F., et al. (2006) The Effect of Accelerated, Brace Free, Rehabilitation on Bone Tunnel Enlargement after ACL Reconstruction Using Hamstring Tendons: A CT Study. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 365-371. https://doi.org/10.1007/s00167-006-0219-2
|
[25]
|
Hoshino, Y., Kuroda, R., Nishizawa, Y., Nakano, N., Nagai, K., Araki, D., et al. (2017) Stress Distribution Is Deviated around the Aperture of the Femoral Tunnel in the Anatomic Anterior Cruciate Ligament Reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 1145-1151. https://doi.org/10.1007/s00167-017-4543-5
|
[26]
|
Fan, Z., Yan, J., Zhou, Z., Gao, Y., Tang, J., Li, Y., et al. (2022) Delayed versus Accelerated Weight-Bearing Rehabilitation Protocol Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Journal of Rehabilitation Medicine, 54, jrm00260. https://doi.org/10.2340/jrm.v53.1438
|
[27]
|
Hettrich, C.M., Gasinu, S., Beamer, B.S., Stasiak, M., Fox, A., Birmingham, P., et al. (2014) The Effect of Mechanical Load on Tendon-to-Bone Healing in a Rat Model. The American Journal of Sports Medicine, 42, 1233-1241. https://doi.org/10.1177/0363546514526138
|
[28]
|
Ma, R., Schär, M., Chen, T., Sisto, M., Nguyen, J., Voigt, C., et al. (2018) Effect of Dynamic Changes in Anterior Cruciate Ligament in Situ Graft Force on the Biological Healing Response of the Graft-Tunnel Interface. The American Journal of Sports Medicine, 46, 915-923. https://doi.org/10.1177/0363546517745624
|
[29]
|
Song, F., Jiang, D., Wang, T., Wang, Y., Chen, F., Xu, G., et al. (2017) Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells. Cellular Physiology and Biochemistry, 41, 875-889. https://doi.org/10.1159/000460005
|
[30]
|
Grant, J.A., Mohtadi, N.G.H., Maitland, M.E. and Zernicke, R.F. (2005) Comparison of Home versus Physical Therapy-Supervised Rehabilitation Programs after Anterior Cruciate Ligament Reconstruction: A Randomized Clinical Trial. The American Journal of Sports Medicine, 33, 1288-1297. https://doi.org/10.1177/0363546504273051
|