结缔组织病相关间质性肺疾病的临床相关生物标志物
Clinically Relevant Biomarkers of Interstitial Lung Disease Associated with Connective Tissue Diseases
DOI: 10.12677/acm.2025.1592490, PDF, HTML, XML,   
作者: 潘 登, 赵连波*:蒙城县第一人民医院呼吸与危重症医学科,安徽 蒙城
关键词: 生物标志物结缔组织病相关间质性肺疾病Biomarker Connective Tissue Disease Interstitial Lung Disease
摘要: 间质性肺病(ILD)是结缔组织病(CTD)的一种常见表现,最常影响类风湿关节炎(RA)、系统性硬化症(SSc)、特发性炎性肌病(IIM)和混合性CTD患者。间质性肺病也可发生在Sjögren综合征(SS)和系统性红斑狼疮患者中,但在这些疾病中较少见。在发展为CTD-ILD的患者中,一个亚群将发展为进行性表型,导致实质破坏、肺功能下降和早期死亡。早期和准确的诊断对于有效管理CTD-ILD患者至关重要,特别是因为已有有效的治疗方法可以稳定疾病,有时还可以改善患者肺功能。诊断ILD往往是微妙而困难的,因为许多CTD-ILD患者没有呼吸道症状,即使出现症状也是非特异性的。肺功能测试(PFT)可以帮助CTD患者检测是否合并ILD,但测试表现特征一般。一旦ILD被诊断出来,无法区分可能进展的患者仍然是难以捉摸的。临床预测模型已被开发用于预测CTD患者的ILD进展,但许多模型是针对CTD的,这降低了对更大的CTD-ILD人群的泛化性。预测CTD-ILD进展的能力将使患者和临床医生能够在治疗、肺移植和护理目标方面做出更明智的决定。生物标志物被定义为正常生物过程和致病过程的指标,有望提高我们准确诊断ILD和预测疾病轨迹的能力。理想的生物标志物应该是非侵入性或微创性的,在预测终点方面具有很高的准确性。最有可能为CTD患者的临床决策提供信息的生物标志物是那些在出现呼吸道症状和进行性表型之前预测早期疾病的生物标志物。在过去的十年中,许多研究已经确定了候选的基于血液和高分辨率计算机断层扫描(HRCT)的生物标志物,最近的组学研究已经将复合生物标志物添加到CTD-ILD人群中潜在的临床相关生物标志物列表中。然而,临床实施的障碍仍然存在。本文综述了CTD-ILD生物标志物研究的最新进展,重点是血液和HRCT生物标志物,并重点介绍了在CTD-ILD患者中推进这些生物标志物临床应用的策略。
Abstract: Interstitial lung disease (ILD) is a common manifestation of connective tissue disease (CTD), most frequently affecting patients with rheumatoid arthritis (RA), systemic sclerosis (SSc), idiopathic inflammatory myopathy (IIM), and mixed CTD. Interstitial lung disease can also occur in patients with Sjogren’s syndrome (SS) and systemic lupus erythematosus, but it is less common in these diseases. Among patients developing CTD-ILD, a subpopulation will progress to a progressive phenotype, leading to parenchymal destruction, decreased lung function and early death. Early and accurate diagnosis is crucial for the effective management of CTD-ILD patients, especially since there are already effective treatment methods that can stabilize the disease and sometimes improve the lung function of patients. Diagnosing ILD is often subtle and difficult because many CTD-ILD patients have no respiratory symptoms, and even if symptoms occur, they are non-specific. Pulmonary function tests (PFT) can help CTD patients detect whether they have ILD, but the test results are generally characterized. Once ILD is diagnosed, patients who cannot distinguish possible progression remain elusive. Clinical predictive models have been developed to predict the progression of ILD in CTD patients, but many of these models are targeted at CTD, which reduces the generalization for the larger CTD-ILD population. The ability to predict the progression of CTD-ILD will enable patients and clinicians to make more informed decisions regarding treatment, lung transplantation and care goals. Biomarkers are defined as indicators of normal biological processes and pathogenic processes, and are expected to enhance our ability to accurately diagnose ILD and predict disease trajectories. The ideal biomarker should be non-invasive or minimally invasive and have high accuracy in predicting endpoints. The biomarkers most likely to inform the clinical decision-making of CTD patients are those that predict early disease before the appearance of respiratory symptoms and progressive phenotypes. Over the past decade, many studies have identified candidate biomarkers based on blood and high-resolution computed tomography (HRCT), and recent omics studies have added composite biomarkers to the list of potential clinically relevant biomarkers in the CTD-ILD population. However, obstacles to clinical implementation still exist. This article reviews the latest progress in the research of CTD-ILD biomarkers, with a focus on blood and HRCT biomarkers, and particularly introduces the strategies for promoting the clinical application of these biomarkers in CTD-ILD patients.
文章引用:潘登, 赵连波. 结缔组织病相关间质性肺疾病的临床相关生物标志物[J]. 临床医学进展, 2025, 15(9): 304-309. https://doi.org/10.12677/acm.2025.1592490

1. 基于血液的诊断生物标志物

基于血液的生物标志物在诊断CTD-ILD患者和为这些患者提供预后信息方面具有很高的希望,因为许多生物标志物反映了参与纤维形成的分子途径[1]-[3],并且可以在明显纤维化和呼吸道症状发展之前发出疾病的早期信号。此外,与更具侵入性的手术(如支气管肺泡灌洗和外科肺活检)相比,外周血采集的微创性更有利于这类生物标志物的临床应用[4]-[7]。基于血液的生物标志物包括临床批准的自身抗体和炎症标志物,以及通过靶向和无偏分析确定的研究生物标志物。然而,基于血液的生物标志物仍然面临的主要挑战是获得足够的测试性能来证明临床应用的合理性[8];这在CTD患者中尤其困难,因为许多基于血液的生物标志物可能反映全身和肺外过程[9]

自身抗体的检测在CTD-ILD的诊断中起着至关重要的作用,而自身抗体是唯一可用于临床的血液生物标志物。在CTD患者中发现的许多自身抗体与ILD的高风险相关。在SSc患者中,抗拓扑异构酶I抗体(抗Scl70)反复与ILD相关[10]。抗TH/To核糖核蛋白抗体和抗PM/Scl也被证明与ILD相关,尽管它们在SSc患者中很少被检测到[11]。此外,在2个大型SSc队列中,发现抗SSA/Ro的存在与SSc-ILD的发生率增加至少2倍相关[12]。相反,抗着丝粒抗体的缺乏与ILD的可能性降低相关[13]。在RA患者中,抗瓜氨酸环肽(CCP)抗体和高滴度类风湿因子可预测ILD,一些研究表明抗CCP滴度与HRCT严重程度之间存在相关性[14]。在IIM患者中,通常检测到抗tRNA合成酶抗体,最常见的是抗Jo-1、抗PL-7和PL-12抗体。这些抗合成酶抗体是抗合成酶综合征的标志,它具有发展为ILD的高风险,据报道90%以上的抗合成酶抗体阳性患者会发生ILD [15]。在IIM患者中发现的另一种抗体是(抗MDA5/CADM-140),它是临床上淀粉性肌炎和ILD高风险的一个亚群的特征[16]。不幸的是,许多这些抗体倾向于指示整体疾病程度和ILD的风险,而不是ILD的存在。

除了临床批准的自身抗体外,多项研究还集中在CTD-ILD患者肺上皮细胞功能障碍、异常免疫(细胞因子和趋化因子)和异常肺重塑(胶原肽/细胞外基质生物标志物)的分子标记上。其中描述最好的测试性能特征是Krebs von den Lungen 6 (KL-6),它在再生II型肺细胞上强烈表达,被认为是上皮损伤的标志。在不同的截止点上,KL-6在CTD患者中区分CTD-ILD的敏感性为73%至87%,特异性为70%至100% [17]-[21]。另一个被充分研究的肺上皮损伤和转换的标志物是表面活性剂蛋白D (SP-D)。作为CTD-ILD患者的生物标志物,根据所使用的二分类阈值,敏感性为68%~89.4%,特异性为70%~83%,AUC为0.72~0.983。在同一队列中比较KL-6与SP-D的研究中,SP-D的特异性普遍低于KL-6。

其他研究充分的血液生物标志物如下,包括SP-A [22];俱乐部细胞分泌蛋白16;肺活化调节趋化因子(PARC);白细胞介素(IL)-6、8和10;肿瘤坏死因子-α;金属蛋白酶(MMP)-7;Wnt家族成员5a (Wnt5a)。虽然没有报道列出的所有生物标志物的测试性能特征,但研究表明,与没有ILD的CTD患者相比,CTD-ILD患者中这些生物标志物的循环浓度更高。尽管研究这些基于血液的生物标志物取得了进展,但尚未在临床上实施。鉴于ILD发病机制的复杂性,很可能需要来自多种途径的生物标志物来达到足够的测试性能,以证明临床实施的合理性。Doyle及其同事证明了这种方法在检测RA-ILD方面的前景。一个由临床因素组成的模型,包括人口统计学和自身抗体,结合由MMP-7、PARC和SP-D组成的生物标志物特征,优于单独的临床特征或任何独立的生物标志物。

机器学习的出现进一步提高了风险预测,有可能成为诊断CTD-ILD的重要工具。机器学习包括建立、训练和自我评估迭代模型的数学算法,以自我提高预测能力[23]。Kass及其同事[24]证明了机器学习在RA患者中的前景,表明使用这种方法获得的生物标志物特征可以有效地区分这些患者的ILD,比单独的蛋白质具有更高的敏感性和特异性。虽然这种方法可以产生高度样本内预测分类器,但过度拟合仍然是一个问题,需要样本外验证。Kass及其同事证明了这一挑战,表明在独立RA队列中开发的高度预测性诊断特征差异很大,协变量很少重叠。Qin及其同事在RA患者中采用了类似的方法,显示3种机器学习算法可以区分AUC至少为0.95的ILD。然而,这些结果尚未得到外部验证。

2. 基于血液的预后生物标志物

与诊断一样,外周血生物标志物的使用有望成为CTD-ILD的预后工具。CTD-ILD研究进展的结果通常是生存,肺功能下降,包括用力肺活量(FVC)和一氧化碳弥散能力(DLCO),或这些测量的复合终点。随着最近对进行性肺纤维化的共识定义的发表,预计未来几年将有68项实质性研究对这一人群的进展进行最佳定义。

临床批准的自身抗体已经研究了CTD患者的预后。在一项大型SSc预后研究中,患者体内存在抗Scl-70抗体预示着FVC下降的速度更快相反,与抗Scl-70患者相比,抗PM/Scl抗体的存在与更少的FVC下降和更好的生存率相关。在抗Jo或抗MDA-5抗体的患者中,与无双抗体的患者相比,抗SSA/Ro同时阳性预示着更严重的ILD和死亡率。在日本队列中,抗MDA-5阳性的IIM患者被描述为快速进展和致命的ILD,其中33%至66%的患者经历6个月,抗体阳性预示着6倍的死亡风险。

尽管在生物标志物发现方面取得了令人印象深刻的进展,但仍有未满足的需求。目前,很少有生物标志物能够可靠地预测CTD患者是否存在ILD,而能够在CTD-ILD发生前预测其进展的生物标志物就更少了。虽然我们回顾了新兴的血液和HRCT生物标志物,但没有一种被纳入临床实践,反映了大多数的适度测试性能特征;这在很大程度上源于大多数生物标志物缺乏验证测试,因为大多数候选研究都是在回顾性单中心研究中进行的。在外部队列中验证这些有前景的生物标志物将是未来生物标志物研究的关键。同样重要的是测试性能特征的评估,这将允许临床医生权衡任何生物标志物的临床应用。此外,在临床应用之前,必须进行精心设计的、前瞻性的、多中心的研究。

随着多队列研究成为生物标志物研究的标准,确保在未来研究中选择的结果是统一和明确的将是至关重要的,特别是在预后生物标志物的研究中。可以理解的是,生存应该仍然是一个重要的结果。然而,在未来的生物标志物研究中,近期进展也应优先考虑。近期肺功能下降具有临床意义,因为患者可能需要早期干预,以及临床试验中的药物开发。目前,需要大样本量来确保足够的能力来检测肺功能衰退的差异,因此预测近期进展的能力将允许临床试验的丰富和更有效的招募。

3. 总结

当对生物标记物进行总体建模时,潜力会增加。多种生物标志物结合多种模式,可能结合临床、血液和放射组学生物标志物,在CTD-ILD风险预测中具有很高的潜力。机器学习可以无缝地处理日益庞大的数据集和快速增长的候选生物标志物。在回顾性地获得和验证候选签名后,有必要量化已识别的生物标志物,并前瞻性地验证最精确定义个体风险的特定阈值。

从血液和HRCT数据中获得的许多生物标志物已被证明对CTD-ILD患者具有信息性。大型血液平台的发展、放射学算法的改进以及机器学习的使用在CTD-ILD的诊断和预后方面显示出了早期的希望。预计在未来几年,聚合生物标志物的研究将迅速扩大,使精准医学更接近现实,并改善CTD-ILD患者的预后。

NOTES

*通讯作者。

参考文献

[1] Juge, P., Lee, J.S., Ebstein, E., Furukawa, H., Dobrinskikh, E., Gazal, S., et al. (2018) muc5b Promoter Variant and Rheumatoid Arthritis with Interstitial Lung Disease. New England Journal of Medicine, 379, 2209-2219.
https://doi.org/10.1056/nejmoa1801562
[2] Reiseter, S., Gunnarsson, R., Mogens Aaløkken, T., Lund, M.B., Mynarek, G., Corander, J., et al. (2017) Progression and Mortality of Interstitial Lung Disease in Mixed Connective Tissue Disease: A Long-Term Observational Nationwide Cohort Study. Rheumatology, 57, 255-262.
https://doi.org/10.1093/rheumatology/kex077
[3] Flament, T., Bigot, A., Chaigne, B., Henique, H., Diot, E. and Marchand-Adam, S. (2016) Pulmonary Manifestations of Sjögren’s Syndrome. European Respiratory Review, 25, 110-123.
https://doi.org/10.1183/16000617.0011-2016
[4] Flaherty, K.R., Wells, A.U., Cottin, V., Devaraj, A., Walsh, S.L.F., Inoue, Y., et al. (2019) Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. New England Journal of Medicine, 381, 1718-1727.
https://doi.org/10.1056/nejmoa1908681
[5] Adegunsoye, A., Oldham, J.M., Bellam, S.K., Montner, S., Churpek, M.M., Noth, I., et al. (2019) Computed Tomography Honeycombing Identifies a Progressive Fibrotic Phenotype with Increased Mortality across Diverse Interstitial Lung Diseases. Annals of the American Thoracic Society, 16, 580-588.
https://doi.org/10.1513/annalsats.201807-443oc
[6] Huapaya, J.A., Silhan, L., Pinal-Fernandez, I., Casal-Dominguez, M., Johnson, C., Albayda, J., et al. (2019) Long-Term Treatment with Azathioprine and Mycophenolate Mofetil for Myositis-Related Interstitial Lung Disease. Chest, 156, 896-906.
https://doi.org/10.1016/j.chest.2019.05.023
[7] Duarte, A.C., Cordeiro, A., Fernandes, B.M., Bernardes, M., Martins, P., Cordeiro, I., et al. (2019) Rituximab in Connective Tissue Disease-Associated Interstitial Lung Disease. Clinical Rheumatology, 38, 2001-2009.
https://doi.org/10.1007/s10067-019-04557-7
[8] Khanna, D., Lin, C.J.F., Furst, D.E., Goldin, J., Kim, G., Kuwana, M., et al. (2020) Tocilizumab in Systemic Sclerosis: A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Respiratory Medicine, 8, 963-974.
https://doi.org/10.1016/s2213-2600(20)30318-0
[9] Pugashetti, J.V., Kitich, A., Alqalyoobi, S., Maynard-Paquette, A., Pritchard, D., Graham, J., et al. (2020) Derivation and Validation of a Diagnostic Prediction Tool for Interstitial Lung Disease. Chest, 158, 620-629.
https://doi.org/10.1016/j.chest.2020.02.044
[10] Jandali, B., Salazar, G.A., Hudson, M., Fritzler, M.J., Lyons, M.A., Estrada‐Y‐Martin, R.M., et al. (2022) The Effect of anti‐scl‐70 Antibody Determination Method on Its Predictive Significance for Interstitial Lung Disease Progression in Systemic Sclerosis. ACR Open Rheumatology, 4, 345-351.
https://doi.org/10.1002/acr2.11398
[11] Lazzaroni, M., Marasco, E., Campochiaro, C., DeVries-Bouwstra, J., Gonzalez-Perez, M., Rojas-Serrano, J., et al. (2021) The Clinical Phenotype of Systemic Sclerosis Patients with Anti-PM/Scl Antibodies: Results from the EUSTAR Cohort. Rheumatology, 60, 5028-5041.
https://doi.org/10.1093/rheumatology/keab152
[12] Hudson, M., Pope, J., Mahler, M., Tatibouet, S., Steele, R., Baron, M., et al. (2012) Clinical Significance of Antibodies to Ro52/TRIM21 in Systemic Sclerosis. Arthritis Research & Therapy, 14, R50.
https://doi.org/10.1186/ar3763
[13] Wangkaew, S., Euathrongchit, J., Wattanawittawas, P., Kasitanon, N. and Louthrenoo, W. (2015) Incidence and Predictors of Interstitial Lung Disease (ILD) in Thai Patients with Early Systemic Sclerosis: Inception Cohort Study. Modern Rheumatology, 26, 588-593.
https://doi.org/10.3109/14397595.2015.1115455
[14] Kamiya, H. and Panlaqui, O.M. (2021) Systematic Review and Meta-Analysis of the Risk of Rheumatoid Arthritis-Associated Interstitial Lung Disease Related to Anti-Cyclic Citrullinated Peptide (CCP) Antibody. BMJ Open, 11, e040465.
https://doi.org/10.1136/bmjopen-2020-040465
[15] Marie, I., Josse, S., Decaux, O., Dominique, S., Diot, E., Landron, C., et al. (2012) Comparison of Long-Term Outcome between Anti-Jo1-and Anti-PL7/PL12 Positive Patients with Antisynthetase Syndrome. Autoimmunity Reviews, 11, 739-745.
https://doi.org/10.1016/j.autrev.2012.01.006
[16] Tsuji, H., Nakashima, R., Hosono, Y., Imura, Y., Yagita, M., Yoshifuji, H., et al. (2020) Multicenter Prospective Study of the Efficacy and Safety of Combined Immunosuppressive Therapy with High‐Dose Glucocorticoid, Tacrolimus, and Cyclophosphamide in Interstitial Lung Diseases Accompanied by Anti-Melanoma Differentiation-Associated Gene 5-Positive Dermatomyositis. Arthritis & Rheumatology, 72, 488-498.
https://doi.org/10.1002/art.41105
[17] Fotoh, D.S., Helal, A., Rizk, M.S. and Esaily, H.A. (2021) Serum Krebs Von Den Lungen-6 and Lung Ultrasound B Lines as Potential Diagnostic and Prognostic Factors for Rheumatoid Arthritis-Associated Interstitial Lung Disease. Clinical Rheumatology, 40, 2689-2697.
https://doi.org/10.1007/s10067-021-05585-y
[18] Zheng, M., Lou, A., Zhang, H., Zhu, S., Yang, M. and Lai, W. (2021) Serum KL-6, CA19-9, CA125 and CEA Are Diagnostic Biomarkers for Rheumatoid Arthritis-Associated Interstitial Lung Disease in the Chinese Population. Rheumatology and Therapy, 8, 517-527.
https://doi.org/10.1007/s40744-021-00288-x
[19] Qin, Y., Wang, Y., Meng, F., Feng, M., Zhao, X., Gao, C., et al. (2022) Identification of Biomarkers by Machine Learning Classifiers to Assist Diagnose Rheumatoid Arthritis-Associated Interstitial Lung Disease. Arthritis Research & Therapy, 24, Article No. 115.
https://doi.org/10.1186/s13075-022-02800-2
[20] Takanashi, S., Nishina, N., Nakazawa, M., Kaneko, Y. and Takeuchi, T. (2019) Usefulness of Serum Krebs Von Den Lungen-6 for the Management of Myositis-Associated Interstitial Lung Disease. Rheumatology, 58, 1034-1039.
https://doi.org/10.1093/rheumatology/key420
[21] Lee, J.S., Lee, E.Y., Ha, Y., Kang, E.H., Lee, Y.J. and Song, Y.W. (2019) Serum KL-6 Levels Reflect the Severity of Interstitial Lung Disease Associated with Connective Tissue Disease. Arthritis Research & Therapy, 21, Article No. 58.
https://doi.org/10.1186/s13075-019-1835-9
[22] Chen, F., Lu, X., Shu, X., Peng, Q., Tian, X. and Wang, G. (2015) Predictive Value of Serum Markers for the Development of Interstitial Lung Disease in Patients with Polymyositis and Dermatomyositis: A Comparative and Prospective Study. Internal Medicine Journal, 45, 641-647.
https://doi.org/10.1111/imj.12754
[23] Maher, T.M., Nambiar, A.M. and Wells, A.U. (2022) The Role of Precision Medicine in Interstitial Lung Disease. European Respiratory Journal, 60, Article ID: 2102146.
https://doi.org/10.1183/13993003.02146-2021
[24] Kass, D.J., Nouraie, M., Glassberg, M.K., Ramreddy, N., Fernandez, K., Harlow, L., et al. (2020) Comparative Profiling of Serum Protein Biomarkers in Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis. Arthritis & Rheumatology, 72, 409-419.
https://doi.org/10.1002/art.41123