[1]
|
Tian, Q., Tang, W. and Cao, X. (2025) Mutational Landscape and Clinical Implications of VHL in Clear Cell Renal Cell Carcinoma: A Multi-Dataset Analysis of 1377. Clinical and Translational Oncology. https://doi.org/10.1007/s12094-025-03954-6
|
[2]
|
Wang, R., Uzzo, N., Chelluri, R., Mackrides, N., Ehya, H., Pei, J., et al. (2024) Genomic Evolution of Oligometastatic Clear Cell Renal Cell Carcinoma Presenting Two Decades Following Radical Nephrectomy. Urology, 184, 79-82. https://doi.org/10.1016/j.urology.2023.12.006
|
[3]
|
Zhao, J., Ding, X., Peng, C., Tian, X., Wang, M., Fu, Y., et al. (2024) Assessment of Ki-67 Proliferation Index in Prognosis Prediction in Patients with Nonmetastatic Clear Cell Renal Cell Carcinoma and Tumor Thrombus. Urologic Oncology: Seminars and Original Investigations, 42, 23.e5-23.e13. https://doi.org/10.1016/j.urolonc.2023.11.001
|
[4]
|
Masui, T., Yane, K., Ota, I., Kakudo, K., Wakasa, T., Koike, S., et al. (2025) Low Ki-67 Labeling Index Is a Clinically Useful Predictive Factor for Recurrence-Free Survival in Patients with Papillary Thyroid Carcinoma. Journal of Pathology and Translational Medicine, 59, 115-124. https://doi.org/10.4132/jptm.2024.11.08
|
[5]
|
Guo, T., Wang, T., Zhang, J., Chen, S. and Wang, X. (2022) HIF1A Predicts the Efficacy of Anti-Pd-1 Therapy in Advanced Clear Cell Renal Cell Carcinoma. Translational Oncology, 26, Article ID: 101554. https://doi.org/10.1016/j.tranon.2022.101554
|
[6]
|
Xue, Y., Wang, B., Tao, Y., Xia, J., Yuan, K., Zheng, J., et al. (2022) Patient-Derived Organoids Potentiate Precision Medicine in Advanced Clear Cell Renal Cell Carcinoma. Precision Clinical Medicine, 5, pbac028. https://doi.org/10.1093/pcmedi/pbac028
|
[7]
|
Yang, J., Gong, C., Zhao, J., Chen, L., Mei, X., Li, G., et al. (2020) Effects of BAP1, Ki-67 Index, and Id-1 in Patients with Clear Cell Renal Carcinoma and Their Correlation with Clinical Features and Prognosis. Translational Andrology and Urology, 9, 2242-2250. https://doi.org/10.21037/tau-20-1258
|
[8]
|
Li, B., Zhu, J., Wang, Y., Xu, Y., Gao, Z., Shi, H., et al. (2024) Radiomics Nomogram Based on CT Radiomics Features and Clinical Factors for Prediction of Ki-67 Expression and Prognosis in Clear Cell Renal Cell Carcinoma: A Two-Center Study. Cancer Imaging, 24, Article No. 103. https://doi.org/10.1186/s40644-024-00744-1
|
[9]
|
Aldera, A.P. and Govender, D. (2021) Carbonic Anhydrase IX: A Regulator of pH and Participant in Carcinogenesis. Journal of Clinical Pathology, 74, 350-354. https://doi.org/10.1136/jclinpath-2020-207073
|
[10]
|
Wang, Y., Yin, L., Cui, Y., Wang, L., Wu, J., Wang, J., et al. (2022) Prognostic Significance of Membranous Carbonic Anhydrase IX Expression in Patients with Nonmetastatic Clear Cell Renal Cell Carcinoma of Different Tumor Stages. Cancer Biotherapy and Radiopharmaceuticals, 37, 494-502. https://doi.org/10.1089/cbr.2020.3948
|
[11]
|
Shao, H.G., et al. (2024) Immunohistochemical Co-Expression of PAX2 and CAIX Predicts Better Prognosis in Clear Cell Renal Cell Carcinoma after Nephrectomy: A Retrospective Observational Study. Cellular and Molecular Biology, 70, 129-134. https://doi.org/10.14715/cmb/2024.70.6.20
|
[12]
|
de Campos, N.S.P., de Oliveira Beserra, A., Pereira, P.H.B., Chaves, A.S., Fonseca, F.L.A., da Silva Medina, T., et al. (2022) Immune Checkpoint Blockade via PD-L1 Potentiates More Cd28-Based than 4-1BB-Based Anti-Carbonic Anhydrase IX Chimeric Antigen Receptor T Cells. International Journal of Molecular Sciences, 23, Article No. 5448. https://doi.org/10.3390/ijms23105448
|
[13]
|
Massière, F., Wiedemann, N., Borrego, I., Hoehne, A., Osterkamp, F., Paschke, M., et al. (2024) Preclinical Characterization of DPI-4452: A68Ga/177Lu Theranostic Ligand for Carbonic Anhydrase IX. Journal of Nuclear Medicine, 65, 761-767. https://doi.org/10.2967/jnumed.123.266309
|
[14]
|
He, C., Liu, F., Tao, J., Wang, Z., Liu, J., Liu, S., et al. (2024) A CAIX Dual-Targeting Small-Molecule Probe for Noninvasive Imaging of ccRCC. Molecular Pharmaceutics, 21, 3383-3394. https://doi.org/10.1021/acs.molpharmaceut.4c00104
|
[15]
|
Pal, K., Madamsetty, V.S., Dutta, S.K., Wang, E., Angom, R.S. and Mukhopadhyay, D. (2019) Synchronous Inhibition of mTOR and VEGF/NRP1 Axis Impedes Tumor Growth and Metastasis in Renal Cancer. NPJ Precision Oncology, 3, Article No. 31. https://doi.org/10.1038/s41698-019-0105-2
|
[16]
|
Teranishi, R., Takahashi, T., Kurokawa, Y., Saito, T., Yamamoto, K., Momose, K., et al. (2024) Pimitespib, a Novel Heat Shock Protein 90 Inhibitor, Is Effective in Treating Renal Cell Carcinoma by Anti-Angiogenetic Signaling. Anticancer Research, 44, 3343-3348. https://doi.org/10.21873/anticanres.17154
|
[17]
|
H. Chou, W., H. Chakiryan, N. and V. Thomas, G. (2025) Cabozantinib-Exposed Renal Cell Carcinoma Organoids Suggest Transcriptomic Associations with Treatment Resistance in Clear Cell and Nonclear Cell Tumors. Journal of Kidney Cancer, 12, 37-45. https://doi.org/10.15586/jkcvhl.v12i2.386
|
[18]
|
Rataan, A.O., Xu, Y., Geary, S.M., Zakharia, Y., Kamel, E.S., Rustum, Y.M., et al. (2024) Targeting Transforming Growth Factor-Β1 by Methylseleninic Acid/Seleno-L-Methionine in Clear Cell Renal Cell Carcinoma: Mechanisms and Therapeutic Potential. Cancer Treatment and Research Communications, 42, Article ID: 100864. https://doi.org/10.1016/j.ctarc.2025.100864
|
[19]
|
Principe, D.R., Schulte, B.C., Kamath, S.D. and Munshi, H.G. (2021) Glandular Metastases from Renal Cell Carcinoma Show Poor Clinical Responses to Immune Checkpoint Inhibition but Durable Responses to Angiogenesis Inhibitors. BMJ Case Reports, 14, e243259. https://doi.org/10.1136/bcr-2021-243259
|
[20]
|
Chipuc, S., Bogdan, H., Serban, D., Badiu, D.C., Zgura, A. and Anghel, R. (2024) Immunotherapeutic Innovations in Clear Cell Renal Cell Carcinoma: Current Strategies and Future Directions. Cancer Diagnosis & Prognosis, 4, 558-562. https://doi.org/10.21873/cdp.10363
|
[21]
|
Lee, K.S., Yun, S., Lee, K., Moon, S. and Choe, G. (2020) Clinicopathological Implications of the Expression of Vascular Endothelial Growth Factor and Programmed Death Ligand 1 in Clear-Cell Renal Cell Carcinoma. Human Pathology, 99, 88-97. https://doi.org/10.1016/j.humpath.2020.03.013
|
[22]
|
Bui, M.H., Seligson, D., Han, K.R., et al. (2003) Carbonic Anhydrase IX Is an Independent Predictor of Survival in Advanced Renal Clear Cell Carcinoma: Implications for Prognosis and Therapy. Clinical Cancer Research, 9, 802-811.
|
[23]
|
Bui, M.H.T., Visapaa, H., Seligson, D., Kim, H., Han, K., Huang, Y., et al. (2004) Prognostic Value of Carbonic Anhydrase IX and KI67 as Predictors of Survival for Renal Clear Cell Carcinoma. Journal of Urology, 171, 2461-2466. https://doi.org/10.1097/01.ju.0000116444.08690.e2
|
[24]
|
Leibovich, B.C., Sheinin, Y., Lohse, C.M., Thompson, R.H., Cheville, J.C., Zavada, J., et al. (2007) Carbonic Anhydrase IX Is Not an Independent Predictor of Outcome for Patients with Clear Cell Renal Cell Carcinoma. Journal of Clinical Oncology, 25, 4757-4764. https://doi.org/10.1200/jco.2007.12.1087
|
[25]
|
Rasmussen, J.H., Olin, A.B., Lelkaitis, G., Hansen, A.E., Andersen, F.L., Johannesen, H.H., et al. (2021) Intratumor Heterogeneity Is Biomarker Specific and Challenges the Association with Heterogeneity in Multimodal Functional Imaging in Head and Neck Squamous Cell Carcinoma. European Journal of Radiology, 139, Article ID: 109668. https://doi.org/10.1016/j.ejrad.2021.109668
|
[26]
|
Stevens, C.A., Lyons, A.R., Dharmayat, K.I., Mahani, A., Ray, K.K., Vallejo-Vaz, A.J., et al. (2023) Ensemble Machine Learning Methods in Screening Electronic Health Records: A Scoping Review. Digital Health, 9. https://doi.org/10.1177/20552076231173225
|
[27]
|
Qiu, Z., Zhang, D., Garcia-Marques, F.J., Bermudez, A., Zhao, H., Peehl, D.M., et al. (2025) Identification of Molecular Subtypes of Clear-Cell Renal Cell Carcinoma in Patient-Derived Xenografts Using Multi-Omics. Cancers, 17, Article No. 1361. https://doi.org/10.3390/cancers17081361
|
[28]
|
Li, H., Chen, L., Ke, Z., Chen, S., Xue, X., Zheng, Q., et al. (2021) Angiogenesis-Related Molecular Subtypes and a Novel Prognostic Signature in Clear Cell Renal Cell Carcinoma Patients. International Journal of General Medicine, 14, 6325-6342. https://doi.org/10.2147/ijgm.s332732
|
[29]
|
Ghosalkar, J., Sonawane, V., Achrekar, S. and Joshi, K. (2025) Pharmacological Inhibition of Hypoxia Induced Acidosis Employing a CAIX Inhibitor Sensitizes Gemcitabine Resistant PDAC Cells. Scientific Reports, 15, Article No. 16782. https://doi.org/10.1038/s41598-025-93388-5
|
[30]
|
Corbacho-Alonso, N., Rodríguez-Sánchez, E., Sastre-Oliva, T., Mercado-García, E., Perales-Sánchez, I., Juarez-Alia, C., et al. (2023) Global Oxidative Status Is Linked to Calcific Aortic Stenosis: The Differences Due to Diabetes Mellitus and the Effects of Metformin. Antioxidants, 12, Article No. 1024. https://doi.org/10.3390/antiox12051024
|
[31]
|
Lin, P., Lin, Y., Gao, R., Wen, R., Qin, H., He, Y., et al. (2021) Radiomic Profiling of Clear Cell Renal Cell Carcinoma Reveals Subtypes with Distinct Prognoses and Molecular Pathways. Translational Oncology, 14, Article ID: 101078. https://doi.org/10.1016/j.tranon.2021.101078
|
[32]
|
Guan, B., Ren, F., Shan, W. and Zhang, S. (2022) Molecular Subtypes of M6a RNA Methylation Modification Patterns and Their Clinical Significance in Clear Cell Renal Cell Carcinoma. Translational Cancer Research, 11, 508-518. https://doi.org/10.21037/tcr-22-117
|
[33]
|
Siegbahn, P.E.M. (2024) Computational Model Study of the Experimentally Suggested Mechanism for Nitrogenase. The Journal of Physical Chemistry B, 128, 985-989. https://doi.org/10.1021/acs.jpcb.3c07675
|
[34]
|
Guo, J., Zhang, Y., Li, Y., Zhang, X., Zheng, J., Shi, H., et al. (2024) Model Experimental Study on the Mechanism of Collapse Induced by Leakage of Underground Pipeline. Scientific Reports, 14, Article No. 17717. https://doi.org/10.1038/s41598-024-68824-7
|
[35]
|
Sun, Y., Zhang, H., Huang, F., Gao, Q., Li, P., Li, D., et al. (2025) Deliod a Lightweight Detection Model for Intestinal Organoids Based on Deep Learning. Scientific Reports, 15, Article No. 5040. https://doi.org/10.1038/s41598-025-89409-y
|
[36]
|
Han, Y., Jia, Z., Xu, K., Li, Y., Lu, S. and Guan, L. (2024) CRISPR-Cpf1 System and Its Applications in Animal Genome Editing. Molecular Genetics and Genomics, 299, Article No. 75. https://doi.org/10.1007/s00438-024-02166-x
|
[37]
|
Israr, J. and Kumar, A. (2025) Current Progress in Crispr-Cas Systems for Rare Diseases. In: Progress in Molecular Biology and Translational Science, Elsevier, 163-203. https://doi.org/10.1016/bs.pmbts.2024.07.019
|
[38]
|
Kim, D., Lim, H., Youn, J., Park, T. and Kim, D.S. (2024) Scalable Production of Uniform and Mature Organoids in a 3D Geometrically-Engineered Permeable Membrane. Nature Communications, 15, Article No. 9420. https://doi.org/10.1038/s41467-024-53073-z
|