基于壳聚糖的纳米载体在特应性疾病治疗中的研究进展
Advances in Chitosan-Based Nanocarriers in the Treatment of Atopic Diseases
DOI: 10.12677/tcm.2025.149555, PDF, HTML, XML,    科研立项经费支持
作者: 李 璇*, 邓思瑶, 唐维康, 刘慧霞#:塔里木大学医学院,新疆 阿拉尔;张 蓉, 易 欣:成都中医药大学临床医学院,四川 成都
关键词: 壳聚糖纳米载体特应性疾病综述Chitosan Nanocarrier Atopic Diseases Review
摘要: 壳聚糖及其衍生物具有优异的生物相容性、可降解性和低免疫原性,兼具抗氧化、免疫调节和抗菌等多种生物活性。在药物递送领域,纳米载体技术显著改善了药物的水溶性、靶向性和安全性。目前研究的壳聚糖纳米递送系统主要包括:纳米颗粒(良好的亲水性和生物相容性)、静电纺纳米纤维(提升药物溶解度和渗透性)、纳米凝胶(高持水性)以及壳聚糖修饰脂质体(增强靶向性和组织穿透力)。这些载体系统凭借其显著的抗炎、抗过敏特性和高生物利用度,为哮喘、变应性鼻炎等特应性疾病的治疗提供了高效低毒的新策略,展现出广阔的临床应用前景。本文重点探讨壳聚糖纳米载体在特应性疾病治疗中的应用机制。
Abstract: Chitosan and its derivatives have excellent biocompatibility, degradability, and low immunogenicity, and combine a variety of biological activities, such as antioxidant, immunomodulatory, and antibacterial. In the field of drug delivery, nanocarrier technology has significantly improved the water solubility, targeting and safety of drugs. The chitosan nanodelivery systems studied so far mainly include: nanoparticles (good hydrophilicity and biocompatibility), electrostatically spun nanofibers (enhanced drug solubility and permeability), nanogels (high water-holding capacity), and chitosan-modified liposomes (enhanced targeting and tissue penetration). With their remarkable anti-inflammatory and anti-allergic properties and high bioavailability, these carrier systems provide a new strategy of high efficiency and low toxicity for the treatment of atopic diseases, such as asthma and allergic rhinitis, and show broad prospects for clinical applications. This paper focuses on the application mechanism of chitosan nanocarriers in the treatment of atopic diseases.
文章引用:李璇, 张蓉, 邓思瑶, 唐维康, 易欣, 刘慧霞. 基于壳聚糖的纳米载体在特应性疾病治疗中的研究进展[J]. 中医学, 2025, 14(9): 3805-3813. https://doi.org/10.12677/tcm.2025.149555

1. 引言

壳聚糖(CS)作为天然碱性多糖,因其独特的理化特性在医药领域具有重要应用价值。研究表明,CS表现出优异的水溶性、流变特性和抗凝血功能[1],其分子结构中的氨基使其具有pH响应特性,显著影响载体的稳定性和体内滞留时间[2]。这些特性使其成为理想的药物递送材料。CS最显著的特点是优异的生物粘附性和广谱抗菌活性,这使其在伤口敷料领域获得成功应用[3]。随着纳米技术的发展,目前已开发出多种CS基递送系统,包括纳米颗粒、微球和纳米纤维等新型制剂。这些纳米载体系统通过尺寸效应和表面修饰,显著提高了药物的水溶性、靶向性和控释性能。在药物递送领域,CS纳米载体因其良好的生物相容性和可降解性而备受关注。与传统载体相比,CS基纳米载体不仅能克服传统递送系统的局限性,还能实现药物的精准递送和可控释放。这种独特的优势使其成为当前生物医学研究的热点之一。

特应性疾病是由IgE介导的过敏反应性疾病,主要包括变应性鼻炎(AR)、特应性皮炎(AD)和哮喘等[4]。流行病学调查显示,这类疾病的全球发病率持续攀升,给公共卫生系统带来沉重负担[5]-[8]。虽然现有免疫治疗手段取得一定疗效,但传统药物治疗仍存在生物利用度低、靶向性差和代谢过快等瓶颈问题。近年来,纳米载体技术为解决这些问题提供了新思路。研究表明,基于壳聚糖(CS)的纳米递送系统具有显著优势:1) 改善药物溶解度和稳定性;2) 增强黏膜渗透性;3) 实现靶向递送;4) 延长药物作用时间[9]。特别是CS纳米载体与特应性疾病的病理特征高度匹配,在调节Th1/Th2免疫平衡、抑制肥大细胞活化等方面展现出独特价值[10]

特应性疾病(如AR、AD和哮喘)以黏膜过敏性炎症为主要特征。研究发现,壳聚糖纳米载体因其独特的理化特性,能有效针对这些疾病的病理特点发挥作用。尽管这类新型递药系统前景广阔,但目前仍缺乏对其作用机制的系统性总结。本文系统评述:1) CS的基本特性及其功能机制;2) CS基纳米载体(包括微球、纳米粒等)在特应性疾病治疗中的应用进展;3) 药物–载体相互作用的关键影响因素。通过整合最新研究进展,为开发新型治疗方案提供理论依据。

2. CS纳米载体现状

2.1. CS的结构

壳聚糖自1859年被发现以来,其独特的分子结构特征备受关注。作为由N-乙酰基-D-葡萄糖胺和D-葡萄糖胺通过β-(1→4)糖苷键连接而成的线性多糖[11],CS的每个D-葡萄糖胺单元含有1个氨基和2个羟基,这一特殊结构赋予其显著的正电荷特性,使其能与带负电的生物分子形成稳定复合物[11]。研究表明CS的游离氨基不仅增强了其水溶性[12],更为化学修饰提供了重要位点。

CS的关键特性参数包括:1) 脱乙酰度(DD):直接影响电荷分布、粘度和溶解度,DD越高则化学修饰潜力越大[13];2) 乙酰化度(DA = 100% − DD):通常低于50% [14],显著影响分子间相互作用和材料性能[15]-[17];3) 分子量(MW):研究显示MW为540 kDa时基因表达最优[18] [19],而低MW CS通常表现出更高的生物活性[20]。高MW CS则显示出更好的载药性能[21] [22],这可能与小分子在界面的容纳能力有关[23]

除上述特性外,CS还具有多种卓越性能:在理化特性方面表现出优异的黏膜粘附性、可控药物释放能力和渗透增强作用[24] [25];在生物活性方面则具有抗菌、抗氧化、免疫调节和促进组织修复等功能[26],这些特性使CS成为药物递送领域的理想材料。

2.2. 基于CS的衍生物

CS的化学修饰显著拓展了其应用潜力,通过硫醇化、硫酸化、羧甲基化和季铵化等修饰策略[27]-[32],可有效改善CS的溶解性并扩展其pH适用范围。这些衍生物在保留CS原有生物相容性和抗菌性的基础上,赋予材料新的功能特性:硫醇化CS通过硫醇基团与黏膜糖蛋白形成二硫键,显著增强黏膜黏附性[27] [28];硫酸化CS不仅提高水溶性,还能结合生长因子促进神经分化[29] [30];羧甲基化修饰使CS获得pH响应性溶解特性[31];季铵化则同步提升了材料的抗菌性和渗透性[32],这些功能化修饰为CS在药物递送和医用敷料等领域的应用创造了更多可能性。

2.3. 基于CS的纳米载体

近年来,基于CS的纳米递送系统因其独特的优势获得广泛研究。主要类型包括:1) CS纳米颗粒(NPs):具有优良的生物相容性和可降解性,通过调控CS分子量和浓度可获得理想粒径,增强靶向性[33];2) CS纳米纤维(NFs):通过静电纺丝技术制备,其多孔结构模拟细胞外基质,显著提升药物溶解度和渗透性[34] [35];3) CS纳米凝胶(NGs):通过交联形成三维网络结构,具有高持水性和稳定性[36];4) CS修饰脂质体(LPs):兼具脂质体和CS的优点,可改善药代动力学并增强组织靶向性[37]。这些纳米载体系统有效克服了传统递药系统的局限性,在提高药物生物利用度、降低毒副作用方面展现出显著优势。不同类型的CS纳米载体在针对特应性疾病的不同给药场景中各具特点:对于特应性皮炎等需要经皮肤给药的场景,CS纳米凝胶凭借其优异的持水性和生物黏附性,能在皮肤表面形成持续给药的凝胶层,减少药物因皮肤屏障作用导致的损失,更适合局部长期治疗;而在肺部吸入给药治疗过敏性哮喘时,CS纳米颗粒因粒径可控,且具有良好的分散性,能随气流深入肺部并快速释放药物,发挥速效作用;CS纳米纤维由于其多孔结构模拟细胞外基质,在皮肤创面修复相关的特应性疾病辅助治疗中,可促进药物渗透并为细胞生长提供支撑,展现出独特优势;CS修饰脂质体则因兼具脂质体的膜融合特性和CS的靶向性,在系统性特应性疾病治疗中,能通过改善药代动力学特性,延长药物循环时间,提高对病变组织的靶向递送效率,减少对正常组织的毒副作用。

3. CS纳米载体的作用

3.1. 抗氧化

CS纳米颗粒(NPs)作为抗氧化递送系统具有多方面优势[38]。实验证据表明:1) 基础抗氧化性能:CSNPs能有效清除DPPH、ABTS+等自由基[39],抑制脂质过氧化[38];2) 复合系统增效:Murugesan等开发的离子凝胶化CSNPs显著提升自由基清除能力[40],Musa团队构建的疝素/氧化石墨烯-CS系统对人肺A549细胞显示强抗氧化作用[41];3) 分子机制:葛梅丽等证实硫酸化β-葡聚糖-CSNPs通过抑制NO和TNF-α分泌发挥抗氧化效果[42],其作用涉及Nrf2/HO-1信号通路激活[42]。这些研究系统论证了CSNPs通过直接清除自由基、调控氧化应激通路等多重机制增强抗氧化活性的特点。

3.2. 免疫调节

CS基纳米系统通过多途径调节免疫反应的研究取得重要进展。在免疫激活方面:1) Zhang等开发的甘露糖修饰CS胶束通过cGAS-STING通路促进DC成熟[43];2) N-2-HACC/CMCS NPs可增强Th1应答,上调cGAS/TBK1/IRF3信号[44]。在抗炎作用方面:1) Feihong D团队证实MTC-miR146b NPs通过TLR4/NF-κB通路抑制M1巨噬细胞活化[45];2) 植物提取物-CS复合物能显著降低TNF-α、IL-6等炎性因子[46] [47];3) 冯艳霞等发现多肽-CS NPs可抑制iNOS和促炎细胞因子基因表达[48]。其他免疫调节机制包括:1) Xiao-Yan H报道的双靶向NPs通过激活PI3K/Akt和MAPK通路增强免疫应答[49];2) 黑磷-CS水凝胶调控p-p38/Snail1信号促进上皮修复[50];3) Soojin S研究的CS NPs可激活NALT免疫,诱导IgG/IgA产生[51];4) Latexin-CS NPs抑制Treg细胞分化[52]。这些研究系统阐明了CS纳米载体在免疫调控中的多重作用机制。

4. CS纳米载体的应用

CS基纳米载体凭借其生物可降解性、组织相容性和低免疫原性,成为特应性疾病靶向治疗的理想选择。其优势体现在:增强药物稳定性、提高黏膜黏附性和实现可控缓释[53],显著提升临床疗效。

4.1. 特应性皮炎

CS纳米载体在特应性皮炎(AD)治疗中展现出显著优势。研究表明,负载氢化可的松(HC)和羟基酪氨酸(HT)的CSNPs (100~250 nm)通过延长药物滞留和增强皮肤渗透[54] [55],可显著改善AD症状(降低经表皮水分流失、红斑强度等) [56],同时减少不良反应[57]。机制研究显示,氢化可的松-CSNPs能有效抑制IL-4、IL-6、TNF-α等炎症因子表达[58]。此外,中药-CS复合系统(如没食子酸/白藜芦醇-CSNPs)通过抑制ROS产生和氧化损伤,为AD治疗提供了新思路[59]

4.2. 哮喘

CS纳米载体为哮喘治疗提供了新策略。研究表明,多种CS递药系统展现出良好效果:1) CS/果胶复合纳米颗粒增强特布他林鼻内递送[60];2) 透明质酸-FA-CSNPs通过雾化给药有效控制症状[61];3) 泼尼松龙-CSNPs口服片改善儿童用药依从性[62];4) 孟鲁司特-CSNPs实现肺部深度沉积[63]。其治疗机制包括:调节Th1/Th2和Th17/Treg平衡[64],抑制IL-4、IL-17等炎症因子;CS-肝素复合物阻止肥大细胞脱颗粒[65] [66];吲哚醌-CSNPs调控NPRA信号通路[67];pH敏感型CSNPs实现胃肠道靶向释放[68]。这些系统显著缓解气道炎症和支气管收缩,为哮喘治疗提供更安全有效的选择。

4.3. 过敏性鼻炎

CS纳米载体为过敏性鼻炎(AR)治疗提供了创新解决方案。研究表明:1) 色甘酸钠-CS纳米颗粒显著延长鼻腔滞留时间,提高患者依从性[69];2) pVAX1-Derp1/CSNPs有效保护DNA免受降解,增强基因治疗效果[70];3) 槲皮素-CSNPs通过调节INF-γ/IL-4平衡减轻炎症反应[71];4) 苍耳子油-CS纳米系统通过调控Th1/Th2免疫平衡和抑制肥大细胞活化发挥治疗作用。这些CS基递药系统展现出靶向性强、控释性能好和毒副作用低等优势[69]-[72],为AR治疗提供了更安全有效的选择。

5. 小结

壳聚糖基纳米载体凭借优异的生物相容性与低免疫原性,在特应性疾病治疗领域展现出独特优势。其作用机制主要包括:1) 延长药物滞留时间并增强黏膜渗透能力;2) 激活cGAS-STING通路以强化免疫应答;3) 调控TLR4/MAPK/NF-κB信号通路实现炎症抑制;4) 调节Th1/Th2及Th17/Treg平衡以减轻炎症反应。在过敏性鼻炎(AR)、特应性皮炎(AD)、哮喘等黏膜炎症性疾病中,CS载体通过提升氢化可的松、倍他米松等药物的生物利用度,可达成高效低毒的治疗效果。尽管CS纳米药物的研究已取得重要进展,但在分子机制解析与临床转化层面仍需深化探索。当前研究存在三方面局限性:一是机制研究多依赖小鼠等动物模型,其生理结构与人类存在差异,可能导致部分实验结果难以直接转化;二是临床前研究多为小样本量探索,缺乏大样本验证数据;三是长期毒性评估(如慢性给药后的器官蓄积效应)尚未完全明确,这些因素均可能影响其临床应用进程。现有研究证实,CS基纳米载体具备显著的抗炎、抗氧化及免疫调节作用,为特应性疾病的治疗提供了创新策略,其应用前景值得期待。

基金项目

新疆塔里木大学胡杨英才–引进人才科研启动金(博士)项目(TDZKBS202574)、(TDZKBS202576)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Lv, S., Liu, J., Zhou, Q., Huang, L. and Sun, T. (2014) Synthesis of Modified Chitosan Superplasticizer by Amidation and Sulfonation and Its Application Performance and Working Mechanism. Industrial & Engineering Chemistry Research, 53, 3908-3916.
https://doi.org/10.1021/ie403786q
[2] Alonso, M.J. and Sánchez, A. (2003) The Potential of Chitosan in Ocular Drug Delivery. Journal of Pharmacy and Pharmacology, 55, 1451-1463.
https://doi.org/10.1211/0022357022476
[3] Ali, A. and Ahmed, S. (2018) A Review on Chitosan and Its Nanocomposites in Drug Delivery. International Journal of Biological Macromolecules, 109, 273-286.
https://doi.org/10.1016/j.ijbiomac.2017.12.078
[4] Johansson, S.G.O., Bieber, T., Dahl, R., Friedmann, P.S., Lanier, B.Q., Lockey, R.F., et al. (2004) Revised Nomenclature for Allergy for Global Use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. Journal of Allergy and Clinical Immunology, 113, 832-836.
https://doi.org/10.1016/j.jaci.2003.12.591
[5] Bender, B.G., Ballard, R., Canono, B., Murphy, J.R. and Leung, D.Y.M. (2008) Disease Severity, Scratching, and Sleep Quality in Patients with Atopic Dermatitis. Journal of the American Academy of Dermatology, 58, 415-420.
https://doi.org/10.1016/j.jaad.2007.10.010
[6] Drucker, A.M., Wang, A.R., Li, W., Sevetson, E., Block, J.K. and Qureshi, A.A. (2017) The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association. Journal of Investigative Dermatology, 137, 26-30.
https://doi.org/10.1016/j.jid.2016.07.012
[7] Leynaert, B., Neukirch, C., Liard, R., Bousquet, J. and Neukirch, F. (2000) Quality of Life in Allergic Rhinitis and Asthma. A Population-Based Study of Young Adults. American Journal of Respiratory and Critical Care Medicine, 162, 1391-1396.
https://doi.org/10.1164/ajrccm.162.4.9912033
[8] Meltzer, E.O. (2016) Allergic Rhinitis: Burden of Illness, Quality of Life, Comorbidities, and Control. Immunology and Allergy Clinics of North America, 36, 235-248.
https://doi.org/10.1016/j.iac.2015.12.002
[9] Majumder, J., Taratula, O. and Minko, T. (2019) Nanocarrier-Based Systems for Targeted and Site Specific Therapeutic Delivery. Advanced Drug Delivery Reviews, 144, 57-77.
https://doi.org/10.1016/j.addr.2019.07.010
[10] Wadhwa, S., Paliwal, R., Paliwal, S.R. and Vyas, S.P. (2009) Hyaluronic Acid Modified Chitosan Nanoparticles for Effective Management of Glaucoma: Development, Characterization, and Evaluation. Journal of Drug Targeting, 18, 292-302.
https://doi.org/10.3109/10611860903450023
[11] Elgadir, M.A., Uddin, M.S., Ferdosh, S., Adam, A., Chowdhury, A.J.K. and Sarker, M.Z.I. (2015) Impact of Chitosan Composites and Chitosan Nanoparticle Composites on Various Drug Delivery Systems: A Review. Journal of Food and Drug Analysis, 23, 619-629.
https://doi.org/10.1016/j.jfda.2014.10.008
[12] Younes, I. and Rinaudo, M. (2015) Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13, 1133-1174.
https://doi.org/10.3390/md13031133
[13] Singla, A.K. and Chawla, M. (2001) Chitosan: Some Pharmaceutical and Biological Aspects—An Update. Journal of Pharmacy and Pharmacology, 53, 1047-1067.
https://doi.org/10.1211/0022357011776441
[14] Benediktsdóttir, B.E., Baldursson, Ó. and Másson, M. (2014) Challenges in Evaluation of Chitosan and Trimethylated Chitosan (TMC) as Mucosal Permeation Enhancers: From Synthesis to in Vitro Application. Journal of Controlled Release, 173, 18-31.
https://doi.org/10.1016/j.jconrel.2013.10.022
[15] Rathinam, S., Ólafsdóttir, S., Jónsdóttir, S., Hjálmarsdóttir, M.Á. and Másson, M. (2020) Selective Synthesis of N, N, N-Trimethylated Chitosan Derivatives at Different Degree of Substitution and Investigation of Structure-Activity Relationship for Activity against P. Aeruginosa and MRSA. International Journal of Biological Macromolecules, 160, 548-557.
https://doi.org/10.1016/j.ijbiomac.2020.05.109
[16] Sahariah, P., Snorradóttir, B.S., Hjálmarsdóttir, M.Á., Sigurjónsson, Ó.E. and Másson, M. (2016) Experimental Design for Determining Quantitative Structure Activity Relationship for Antibacterial Chitosan Derivatives. Journal of Materials Chemistry B, 4, 4762-4770.
https://doi.org/10.1039/c6tb00546b
[17] Prajatelistia, E., Sanandiya, N.D., Nurrochman, A., Marseli, F., Choy, S. and Hwang, D.S. (2021) Biomimetic Janus Chitin Nanofiber Membrane for Potential Guided Bone Regeneration Application. Carbohydrate Polymers, 251, Article ID: 117032.
https://doi.org/10.1016/j.carbpol.2020.117032
[18] Huang, M., Fong, C., Khor, E. and Lim, L. (2005) Transfection Efficiency of Chitosan Vectors: Effect of Polymer Molecular Weight and Degree of Deacetylation. Journal of Controlled Release, 106, 391-406.
https://doi.org/10.1016/j.jconrel.2005.05.004
[19] MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill, I., Hinchcliffe, M., et al. (1998) Chitosan and Depolymerized Chitosan Oligomers as Condensing Carriers for in Vivo Plasmid Delivery. Journal of Controlled Release, 56, 259-272.
https://doi.org/10.1016/s0168-3659(98)00097-2
[20] Alsarra, I.A., Betigeri, S.S., Zhang, H., Evans, B.A. and Neau, S.H. (2002) Molecular Weight and Degree of Deacetylation Effects on Lipase-Loaded Chitosan Bead Characteristics. Biomaterials, 23, 3637-3644.
https://doi.org/10.1016/s0142-9612(02)00096-0
[21] Lee, D.W., Lim, C., Israelachvili, J.N. and Hwang, D.S. (2013) Strong Adhesion and Cohesion of Chitosan in Aqueous Solutions. Langmuir, 29, 14222-14229.
https://doi.org/10.1021/la403124u
[22] Lim, C., Lee, D.W., Israelachvili, J.N., Jho, Y. and Hwang, D.S. (2015) Contact Time-and Ph-Dependent Adhesion and Cohesion of Low Molecular Weight Chitosan Coated Surfaces. Carbohydrate Polymers, 117, 887-894.
https://doi.org/10.1016/j.carbpol.2014.10.033
[23] Pavinatto, A., Pavinatto, F.J., Delezuk, J.A.d.M., Nobre, T.M., Souza, A.L., Campana-Filho, S.P., et al. (2013) Low Molecular-Weight Chitosans Are Stronger Biomembrane Model Perturbants. Colloids and Surfaces B: Biointerfaces, 104, 48-53.
https://doi.org/10.1016/j.colsurfb.2012.11.047
[24] Bravo-Osuna, I., Vauthier, C., Farabollini, A., Palmieri, G.F. and Ponchel, G. (2007) Mucoadhesion Mechanism of Chitosan and Thiolated Chitosan-Poly(Isobutyl Cyanoacrylate) Core-Shell Nanoparticles. Biomaterials, 28, 2233-2243.
https://doi.org/10.1016/j.biomaterials.2007.01.005
[25] Dünnhaupt, S., Barthelmes, J., Rahmat, D., Leithner, K., Thurner, C.C., Friedl, H., et al. (2012) S-Protected Thiolated Chitosan for Oral Delivery of Hydrophilic Macromolecules: Evaluation of Permeation Enhancing and Efflux Pump Inhibitory Properties. Molecular Pharmaceutics, 9, 1331-1341.
https://doi.org/10.1021/mp200598j
[26] Madhumathi, K., Sudheesh Kumar, P.T., Abhilash, S., Sreeja, V., Tamura, H., Manzoor, K., et al. (2009) Development of Novel Chitin/Nanosilver Composite Scaffolds for Wound Dressing Applications. Journal of Materials Science: Materials in Medicine, 21, 807-813.
https://doi.org/10.1007/s10856-009-3877-z
[27] Bernkop-Schnürch, A. (2000) Chitosan and Its Derivatives: Potential Excipients for Peroral Peptide Delivery Systems. International Journal of Pharmaceutics, 194, 1-13.
https://doi.org/10.1016/s0378-5173(99)00365-8
[28] Leitner, V.M., Walker, G.F. and Bernkop-Schnürch, A. (2003) Thiolated Polymers: Evidence for the Formation of Disulphide Bonds with Mucus Glycoproteins. European Journal of Pharmaceutics and Biopharmaceutics, 56, 207-214.
https://doi.org/10.1016/s0939-6411(03)00061-4
[29] Nishimura, S., Kai, H., Shinada, K., Yoshida, T., Tokura, S., Kurita, K., et al. (1998) Regioselective Syntheses of Sulfated Polysaccharides: Specific Anti-HIV-1 Activity of Novel Chitin Sulfates. Carbohydrate Research, 306, 427-433.
https://doi.org/10.1016/s0008-6215(97)10081-7
[30] Doncel-Pérez, E., Aranaz, I., Bastida, A., Revuelta, J., Camacho, C., Acosta, N., et al. (2018) Synthesis, Physicochemical Characterization and Biological Evaluation of Chitosan Sulfate as Heparan Sulfate Mimics. Carbohydrate Polymers, 191, 225-233.
https://doi.org/10.1016/j.carbpol.2018.03.036
[31] Shariatinia, Z. (2018) Carboxymethyl Chitosan: Properties and Biomedical Applications. International Journal of Biological Macromolecules, 120, 1406-1419.
https://doi.org/10.1016/j.ijbiomac.2018.09.131
[32] Freitas, E.D., Moura Jr., C.F., Kerwald, J. and Beppu, M.M. (2020) An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers, 12, Article 2878.
https://doi.org/10.3390/polym12122878
[33] Iacob, A.T., Lupascu, F.G., Apotrosoaei, M., Vasincu, I.M., Tauser, R.G., Lupascu, D., et al. (2021) Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics, 13, Article 587.
https://doi.org/10.3390/pharmaceutics13040587
[34] Sofi, H.S., Abdal-hay, A., Ivanovski, S., Zhang, Y.S. and Sheikh, F.A. (2020) Electrospun Nanofibers for the Delivery of Active Drugs through Nasal, Oral and Vaginal Mucosa: Current Status and Future Perspectives. Materials Science and Engineering: C, 111, Article ID: 110756.
https://doi.org/10.1016/j.msec.2020.110756
[35] Kalantari, K., Afifi, A.M., Jahangirian, H. and Webster, T.J. (2019) Biomedical Applications of Chitosan Electrospun Nanofibers as a Green Polymer—Review. Carbohydrate Polymers, 207, 588-600.
https://doi.org/10.1016/j.carbpol.2018.12.011
[36] Cuggino, J.C., Blanco, E.R.O., Gugliotta, L.M., Alvarez Igarzabal, C.I. and Calderón, M. (2019) Crossing Biological Barriers with Nanogels to Improve Drug Delivery Performance. Journal of Controlled Release, 307, 221-246.
https://doi.org/10.1016/j.jconrel.2019.06.005
[37] Cheng, R., Liu, L., Xiang, Y., Lu, Y., Deng, L., Zhang, H., et al. (2020) Advanced Liposome-Loaded Scaffolds for Therapeutic and Tissue Engineering Applications. Biomaterials, 232, Article ID: 119706.
https://doi.org/10.1016/j.biomaterials.2019.119706
[38] Herdiana, Y., Husni, P., Nurhasanah, S., Shamsuddin, S. and Wathoni, N. (2023) Chitosan-based Nano Systems for Natural Antioxidants in Breast Cancer Therapy. Polymers, 15, Article 2953.
https://doi.org/10.3390/polym15132953
[39] Venkatesan, A., Samy, J.V.R.A., Balakrishnan, K., Natesan, V. and Kim, S. (2023) In Vitro Antioxidant, Anti-Inflammatory, Antimicrobial, and Antidiabetic Activities of Synthesized Chitosan-Loaded P-Coumaric Acid Nanoparticles. Current Pharmaceutical Biotechnology, 24, 1178-1194.
https://doi.org/10.2174/1389201023666220822112923
[40] Sindhu, M., Rajkumar, V., Annapoorani, C.A., Gunasekaran, C. and Kannan, M. (2023) Functionalized Nanoencapsulated Curcuma Longa Essential Oil in Chitosan Nanopolymer and Their Application for Antioxidant and Antimicrobial Efficacy. International Journal of Biological Macromolecules, 251, Article ID: 126387.
https://doi.org/10.1016/j.ijbiomac.2023.126387
[41] Jasim, L.M.M., Homayouni Tabrizi, M., Darabi, E. and Jaseem, M.M.M. (2023) The Antioxidant, Anti-Angiogenic, and Anticancer Impact of Chitosan-Coated Herniarin-Graphene Oxide Nanoparticles (CHG-NPs). Heliyon, 9, e20042.
https://doi.org/10.1016/j.heliyon.2023.e20042
[42] 葛梅丽, 吴迪, 李文等. 猴头菌β-葡聚糖-壳聚糖纳米颗粒制备及其体外生物活性[J]. 食用菌学报, 2023, 30(1): 79-90.
[43] Zhang, S., Zeng, Y., Wang, K., Song, G., Yu, Y., Meng, T., et al. (2023) Chitosan-Based Nano-Micelles for Potential Anti-Tumor Immunotherapy: Synergistic Effect of cGAS-STING Signaling Pathway Activation and Tumor Antigen Absorption. Carbohydrate Polymers, 321, Article ID: 121346.
https://doi.org/10.1016/j.carbpol.2023.121346
[44] Zhao, Z., Peng, Y., Shi, X. and Zhao, K. (2023) Chitosan Derivative Composite Nanoparticles as Adjuvants Enhance the Cellular Immune Response via Activation of the cGAS-Sting Pathway. International Journal of Pharmaceutics, 636, Article ID: 122847.
https://doi.org/10.1016/j.ijpharm.2023.122847
[45] Deng, F., He, S., Cui, S., Shi, Y., Tan, Y., Li, Z., et al. (2018) A Molecular Targeted Immunotherapeutic Strategy for Ulcerative Colitis via Dual-Targeting Nanoparticles Delivering MIR-146b to Intestinal Macrophages. Journal of Crohns and Colitis, 13, 482-494.
https://doi.org/10.1093/ecco-jcc/jjy181
[46] Alshehri, K.M. and Abdella, E.M. (2023) Development of Ternary Nanoformulation Comprising Bee Pollen-Thymol Oil Extracts and Chitosan Nanoparticles for Anti-Inflammatory and Anticancer Applications. International Journal of Biological Macromolecules, 242, Article ID: 124584.
https://doi.org/10.1016/j.ijbiomac.2023.124584
[47] Milad, S.S., Ali, S.E., Attia, M.Z., Khattab, M.S., EL-Ashaal, E.S., Elshoky, H.A., et al. (2023) Enhanced Immune Responses in Dexamethasone Immunosuppressed Male Rats Supplemented with Herbal Extracts, Chitosan Nanoparticles, and Their Conjugates. International Journal of Biological Macromolecules, 250, Article ID: 126170.
https://doi.org/10.1016/j.ijbiomac.2023.126170
[48] 冯艳霞. 核桃粕多肽/鞣花酸协同抗炎活性及其复合纳米颗粒的制备研究[D]: [博士学位论文]. 北京: 北京林业大学, 2023.
[49] He, X., Liu, B., Wu, J., Ai, S., Zhuo, R. and Cheng, S. (2017) A Dual Macrophage Targeting Nanovector for Delivery of Oligodeoxynucleotides to Overcome Cancer-Associated Immunosuppression. ACS Applied Materials & Interfaces, 9, 42566-42576.
https://doi.org/10.1021/acsami.7b13594
[50] 王小萌. 黑磷纳米片复合水凝胶的构建及其对感染性皮肤烧伤的作用研究[D]: [博士学位论文]. 长春: 吉林大学, 2023.
[51] Shim, S., Soh, S.H., Im, Y.B., Ahn, C., Park, H., Park, H., et al. (2020) Induction of Systemic Immunity through Nasal-Associated Lymphoid Tissue (NALT) of Mice Intranasally Immunized with Brucella abortus Malate Dehydrogenase-Loaded Chitosan Nanoparticles. PLOS ONE, 15, e0228463.
https://doi.org/10.1371/journal.pone.0228463
[52] 陈炫铭. 负载Latexin蛋白的壳聚糖纳米颗粒的制备及其在肿瘤免疫调节中的作用[D]: [硕士学位论文]. 桂林: 广西师范大学, 2023.
[53] Balde, A., Kim, S., Benjakul, S. and Nazeer, R.A. (2022) Pulmonary Drug Delivery Applications of Natural Polysaccharide Polymer Derived Nano/Micro-Carrier Systems: A Review. International Journal of Biological Macromolecules, 220, 1464-1479.
https://doi.org/10.1016/j.ijbiomac.2022.09.116
[54] Siddique, M.I., Katas, H., Amin, M.C.I.M., Ng, S., Zulfakar, M.H. and Jamil, A. (2016) In-Vivo Dermal Pharmacokinetics, Efficacy, and Safety of Skin Targeting Nanoparticles for Corticosteroid Treatment of Atopic Dermatitis. International Journal of Pharmaceutics, 507, 72-82.
https://doi.org/10.1016/j.ijpharm.2016.05.005
[55] Chuah, L., Loo, H., Goh, C.F., Fu, J. and Ng, S. (2023) Chitosan-Based Drug Delivery Systems for Skin Atopic Dermatitis: Recent Advancements and Patent Trends. Drug Delivery and Translational Research, 13, 1436-1455.
https://doi.org/10.1007/s13346-023-01307-w
[56] Siddique, M.I., Katas, H., Sarfraz, M., Chohan, T.A., Jamil, A. and Mohd Amin, M.C.I. (2021) Clinical Insights into Topically Applied Multipronged Nanoparticles in Subjects with Atopic Dermatitis. Journal of Drug Delivery Science and Technology, 65, Article ID: 102744.
https://doi.org/10.1016/j.jddst.2021.102744
[57] Siddique, M.I., Katas, H., Amin, M.C.I.M., Ng, S., Zulfakar, M.H., Buang, F., et al. (2015) Minimization of Local and Systemic Adverse Effects of Topical Glucocorticoids by Nanoencapsulation: In Vivo Safety of Hydrocortisone-Hydroxytyrosol Loaded Chitosan Nanoparticles. Journal of Pharmaceutical Sciences, 104, 4276-4286.
https://doi.org/10.1002/jps.24666
[58] Katas, H., Hussain, Z., Mohd Amin, M.C.I., Kumolosasi, E. and Sahudin, S. (2014) Downregulation of Immunological Mediators in 2, 4-Dinitrofluorobenzene-Induced Atopic Dermatitis-Like Skin Lesions by Hydrocortisone-Loaded Chitosan Nanoparticles. International Journal of Nanomedicine, 9, 5143-5156.
https://doi.org/10.2147/ijn.s71543
[59] Dhayanandamoorthy, Y., Antoniraj, M.G., Kandregula, C.A.B. and Kandasamy, R. (2020) Aerosolized Hyaluronic Acid Decorated, Ferulic Acid Loaded Chitosan Nanoparticle: A Promising Asthma Control Strategy. International Journal of Pharmaceutics, 591, Article ID: 119958.
https://doi.org/10.1016/j.ijpharm.2020.119958
[60] Zhang, H., Han, M., Tian, Y., Zhang, J., Li, S., Yang, D., et al. (2015) Development of Oral Dispersible Tablets Containing Prednisolone Nanoparticles for the Management of Pediatric Asthma. Drug Design, Development and Therapy, 9, 5815-5825.
https://doi.org/10.2147/dddt.s86075
[61] Ullah, F., Shah, K.U., Shah, S.U., Nawaz, A., Nawaz, T., Khan, K.A., et al. (2022) Synthesis, Characterization and in Vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast. Polymers, 14, Article 3564.
https://doi.org/10.3390/polym14173564
[62] Lv, Y., Zhang, J. and Wang, C. (2021) Self-Assembled Chitosan Nanoparticles for Intranasal Delivery of Recombinant Protein Interleukin-17 Receptor C (IL-17RC): Preparation and Evaluation in Asthma Mice. Bioengineered, 12, 3029-3039.
https://doi.org/10.1080/21655979.2021.1940622
[63] Yang, W., Dong, Z., Li, Y., Zhang, Y., Fu, H. and Xie, Y. (2021) Therapeutic Efficacy of Chitosan Nanoparticles Loaded with BCG-Polysaccharide Nucleic Acid and Ovalbumin on Airway Inflammation in Asthmatic Mice. European Journal of Clinical Microbiology & Infectious Diseases, 40, 1623-1631.
https://doi.org/10.1007/s10096-021-04183-9
[64] Yu, H.Q., Liu, Z.G., Guo, H., et al. (2011) [Therapeutic Effect on Murine Asthma with Sublingual Use of Dermatophagoides Farinae/Chitosan Nanoparticle Vaccine]. Chinese Journal of Parasitology & Parasitic Diseases, 29, 4-9.
[65] Oyarzun‐Ampuero, F.A., Brea, J., Loza, M.I., Alonso, M.J. and Torres, D. (2011) A Potential Nanomedicine Consisting of Heparin‐Loaded Polysaccharide Nanocarriers for the Treatment of Asthma. Macromolecular Bioscience, 12, 176-183.
https://doi.org/10.1002/mabi.201100102
[66] Oyarzun-Ampuero, F.A., Brea, J., Loza, M.I., Torres, D. and Alonso, M.J. (2009) Chitosan-Hyaluronic Acid Nanoparticles Loaded with Heparin for the Treatment of Asthma. International Journal of Pharmaceutics, 381, 122-129.
https://doi.org/10.1016/j.ijpharm.2009.04.009
[67] Kandasamy, R., Park, S.J., Boyapalle, S., Mohapatra, S., Hellermann, G.R., Lockey, R.F., et al. (2010) Isatin Down-Regulates Expression of Atrial Natriuretic Peptide Receptor A and Inhibits Airway Inflammation in a Mouse Model of Allergic Asthma. International Immunopharmacology, 10, 218-225.
https://doi.org/10.1016/j.intimp.2009.11.003
[68] 陈娜, 谢铁民, 张一凡等. pH敏感壳聚糖与地塞米松磷酸钠纳米载药体系制备及炎症抑制作用[J]. 中国组织工程研究, 2018, 22(22): 3550-3556.
[69] Abruzzo, A., Cerchiara, T., Bigucci, F., Zuccheri, G., Cavallari, C., Saladini, B., et al. (2019) Cromolyn-Crosslinked Chitosan Nanoparticles for the Treatment of Allergic Rhinitis. European Journal of Pharmaceutical Sciences, 131, 136-145.
https://doi.org/10.1016/j.ejps.2019.02.015
[70] Shi, W.D., Cao, W., Liu, Y., et al. (2013) [Construction of Recombinant House Dust Mite Group 1 Allergen Vaccine and Study on Immune Response Induced by Nasal Immunization]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 48, 26-31.
[71] Su, Y., Sun, B., Gao, X., Liu, S., Hao, R. and Han, B. (2020) Chitosan Hydrogel Doped with PEG-PLA Nanoparticles for the Local Delivery of miRNA-146a to Treat Allergic Rhinitis. Pharmaceutics, 12, Article 907.
https://doi.org/10.3390/pharmaceutics12100907
[72] Feng, H., Xiong, X., Xu, Q., Zhang, Z., Feng, J. and Wu, Y. (2020) Study on the Immunomodulatory Effect of Quercetin Nanoparticles Loaded with Chitosan on a Mouse Model of Ovalbumin-Induced Food Allergy. Nanoscience and Nanotechnology Letters, 12, 915-920.
https://doi.org/10.1166/nnl.2020.3197