[1]
|
Lv, S., Liu, J., Zhou, Q., Huang, L. and Sun, T. (2014) Synthesis of Modified Chitosan Superplasticizer by Amidation and Sulfonation and Its Application Performance and Working Mechanism. Industrial & Engineering Chemistry Research, 53, 3908-3916. https://doi.org/10.1021/ie403786q
|
[2]
|
Alonso, M.J. and Sánchez, A. (2003) The Potential of Chitosan in Ocular Drug Delivery. Journal of Pharmacy and Pharmacology, 55, 1451-1463. https://doi.org/10.1211/0022357022476
|
[3]
|
Ali, A. and Ahmed, S. (2018) A Review on Chitosan and Its Nanocomposites in Drug Delivery. International Journal of Biological Macromolecules, 109, 273-286. https://doi.org/10.1016/j.ijbiomac.2017.12.078
|
[4]
|
Johansson, S.G.O., Bieber, T., Dahl, R., Friedmann, P.S., Lanier, B.Q., Lockey, R.F., et al. (2004) Revised Nomenclature for Allergy for Global Use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. Journal of Allergy and Clinical Immunology, 113, 832-836. https://doi.org/10.1016/j.jaci.2003.12.591
|
[5]
|
Bender, B.G., Ballard, R., Canono, B., Murphy, J.R. and Leung, D.Y.M. (2008) Disease Severity, Scratching, and Sleep Quality in Patients with Atopic Dermatitis. Journal of the American Academy of Dermatology, 58, 415-420. https://doi.org/10.1016/j.jaad.2007.10.010
|
[6]
|
Drucker, A.M., Wang, A.R., Li, W., Sevetson, E., Block, J.K. and Qureshi, A.A. (2017) The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Association. Journal of Investigative Dermatology, 137, 26-30. https://doi.org/10.1016/j.jid.2016.07.012
|
[7]
|
Leynaert, B., Neukirch, C., Liard, R., Bousquet, J. and Neukirch, F. (2000) Quality of Life in Allergic Rhinitis and Asthma. A Population-Based Study of Young Adults. American Journal of Respiratory and Critical Care Medicine, 162, 1391-1396. https://doi.org/10.1164/ajrccm.162.4.9912033
|
[8]
|
Meltzer, E.O. (2016) Allergic Rhinitis: Burden of Illness, Quality of Life, Comorbidities, and Control. Immunology and Allergy Clinics of North America, 36, 235-248. https://doi.org/10.1016/j.iac.2015.12.002
|
[9]
|
Majumder, J., Taratula, O. and Minko, T. (2019) Nanocarrier-Based Systems for Targeted and Site Specific Therapeutic Delivery. Advanced Drug Delivery Reviews, 144, 57-77. https://doi.org/10.1016/j.addr.2019.07.010
|
[10]
|
Wadhwa, S., Paliwal, R., Paliwal, S.R. and Vyas, S.P. (2009) Hyaluronic Acid Modified Chitosan Nanoparticles for Effective Management of Glaucoma: Development, Characterization, and Evaluation. Journal of Drug Targeting, 18, 292-302. https://doi.org/10.3109/10611860903450023
|
[11]
|
Elgadir, M.A., Uddin, M.S., Ferdosh, S., Adam, A., Chowdhury, A.J.K. and Sarker, M.Z.I. (2015) Impact of Chitosan Composites and Chitosan Nanoparticle Composites on Various Drug Delivery Systems: A Review. Journal of Food and Drug Analysis, 23, 619-629. https://doi.org/10.1016/j.jfda.2014.10.008
|
[12]
|
Younes, I. and Rinaudo, M. (2015) Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13, 1133-1174. https://doi.org/10.3390/md13031133
|
[13]
|
Singla, A.K. and Chawla, M. (2001) Chitosan: Some Pharmaceutical and Biological Aspects—An Update. Journal of Pharmacy and Pharmacology, 53, 1047-1067. https://doi.org/10.1211/0022357011776441
|
[14]
|
Benediktsdóttir, B.E., Baldursson, Ó. and Másson, M. (2014) Challenges in Evaluation of Chitosan and Trimethylated Chitosan (TMC) as Mucosal Permeation Enhancers: From Synthesis to in Vitro Application. Journal of Controlled Release, 173, 18-31. https://doi.org/10.1016/j.jconrel.2013.10.022
|
[15]
|
Rathinam, S., Ólafsdóttir, S., Jónsdóttir, S., Hjálmarsdóttir, M.Á. and Másson, M. (2020) Selective Synthesis of N, N, N-Trimethylated Chitosan Derivatives at Different Degree of Substitution and Investigation of Structure-Activity Relationship for Activity against P. Aeruginosa and MRSA. International Journal of Biological Macromolecules, 160, 548-557. https://doi.org/10.1016/j.ijbiomac.2020.05.109
|
[16]
|
Sahariah, P., Snorradóttir, B.S., Hjálmarsdóttir, M.Á., Sigurjónsson, Ó.E. and Másson, M. (2016) Experimental Design for Determining Quantitative Structure Activity Relationship for Antibacterial Chitosan Derivatives. Journal of Materials Chemistry B, 4, 4762-4770. https://doi.org/10.1039/c6tb00546b
|
[17]
|
Prajatelistia, E., Sanandiya, N.D., Nurrochman, A., Marseli, F., Choy, S. and Hwang, D.S. (2021) Biomimetic Janus Chitin Nanofiber Membrane for Potential Guided Bone Regeneration Application. Carbohydrate Polymers, 251, Article ID: 117032. https://doi.org/10.1016/j.carbpol.2020.117032
|
[18]
|
Huang, M., Fong, C., Khor, E. and Lim, L. (2005) Transfection Efficiency of Chitosan Vectors: Effect of Polymer Molecular Weight and Degree of Deacetylation. Journal of Controlled Release, 106, 391-406. https://doi.org/10.1016/j.jconrel.2005.05.004
|
[19]
|
MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill, I., Hinchcliffe, M., et al. (1998) Chitosan and Depolymerized Chitosan Oligomers as Condensing Carriers for in Vivo Plasmid Delivery. Journal of Controlled Release, 56, 259-272. https://doi.org/10.1016/s0168-3659(98)00097-2
|
[20]
|
Alsarra, I.A., Betigeri, S.S., Zhang, H., Evans, B.A. and Neau, S.H. (2002) Molecular Weight and Degree of Deacetylation Effects on Lipase-Loaded Chitosan Bead Characteristics. Biomaterials, 23, 3637-3644. https://doi.org/10.1016/s0142-9612(02)00096-0
|
[21]
|
Lee, D.W., Lim, C., Israelachvili, J.N. and Hwang, D.S. (2013) Strong Adhesion and Cohesion of Chitosan in Aqueous Solutions. Langmuir, 29, 14222-14229. https://doi.org/10.1021/la403124u
|
[22]
|
Lim, C., Lee, D.W., Israelachvili, J.N., Jho, Y. and Hwang, D.S. (2015) Contact Time-and Ph-Dependent Adhesion and Cohesion of Low Molecular Weight Chitosan Coated Surfaces. Carbohydrate Polymers, 117, 887-894. https://doi.org/10.1016/j.carbpol.2014.10.033
|
[23]
|
Pavinatto, A., Pavinatto, F.J., Delezuk, J.A.d.M., Nobre, T.M., Souza, A.L., Campana-Filho, S.P., et al. (2013) Low Molecular-Weight Chitosans Are Stronger Biomembrane Model Perturbants. Colloids and Surfaces B: Biointerfaces, 104, 48-53. https://doi.org/10.1016/j.colsurfb.2012.11.047
|
[24]
|
Bravo-Osuna, I., Vauthier, C., Farabollini, A., Palmieri, G.F. and Ponchel, G. (2007) Mucoadhesion Mechanism of Chitosan and Thiolated Chitosan-Poly(Isobutyl Cyanoacrylate) Core-Shell Nanoparticles. Biomaterials, 28, 2233-2243. https://doi.org/10.1016/j.biomaterials.2007.01.005
|
[25]
|
Dünnhaupt, S., Barthelmes, J., Rahmat, D., Leithner, K., Thurner, C.C., Friedl, H., et al. (2012) S-Protected Thiolated Chitosan for Oral Delivery of Hydrophilic Macromolecules: Evaluation of Permeation Enhancing and Efflux Pump Inhibitory Properties. Molecular Pharmaceutics, 9, 1331-1341. https://doi.org/10.1021/mp200598j
|
[26]
|
Madhumathi, K., Sudheesh Kumar, P.T., Abhilash, S., Sreeja, V., Tamura, H., Manzoor, K., et al. (2009) Development of Novel Chitin/Nanosilver Composite Scaffolds for Wound Dressing Applications. Journal of Materials Science: Materials in Medicine, 21, 807-813. https://doi.org/10.1007/s10856-009-3877-z
|
[27]
|
Bernkop-Schnürch, A. (2000) Chitosan and Its Derivatives: Potential Excipients for Peroral Peptide Delivery Systems. International Journal of Pharmaceutics, 194, 1-13. https://doi.org/10.1016/s0378-5173(99)00365-8
|
[28]
|
Leitner, V.M., Walker, G.F. and Bernkop-Schnürch, A. (2003) Thiolated Polymers: Evidence for the Formation of Disulphide Bonds with Mucus Glycoproteins. European Journal of Pharmaceutics and Biopharmaceutics, 56, 207-214. https://doi.org/10.1016/s0939-6411(03)00061-4
|
[29]
|
Nishimura, S., Kai, H., Shinada, K., Yoshida, T., Tokura, S., Kurita, K., et al. (1998) Regioselective Syntheses of Sulfated Polysaccharides: Specific Anti-HIV-1 Activity of Novel Chitin Sulfates. Carbohydrate Research, 306, 427-433. https://doi.org/10.1016/s0008-6215(97)10081-7
|
[30]
|
Doncel-Pérez, E., Aranaz, I., Bastida, A., Revuelta, J., Camacho, C., Acosta, N., et al. (2018) Synthesis, Physicochemical Characterization and Biological Evaluation of Chitosan Sulfate as Heparan Sulfate Mimics. Carbohydrate Polymers, 191, 225-233. https://doi.org/10.1016/j.carbpol.2018.03.036
|
[31]
|
Shariatinia, Z. (2018) Carboxymethyl Chitosan: Properties and Biomedical Applications. International Journal of Biological Macromolecules, 120, 1406-1419. https://doi.org/10.1016/j.ijbiomac.2018.09.131
|
[32]
|
Freitas, E.D., Moura Jr., C.F., Kerwald, J. and Beppu, M.M. (2020) An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers, 12, Article 2878. https://doi.org/10.3390/polym12122878
|
[33]
|
Iacob, A.T., Lupascu, F.G., Apotrosoaei, M., Vasincu, I.M., Tauser, R.G., Lupascu, D., et al. (2021) Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics, 13, Article 587. https://doi.org/10.3390/pharmaceutics13040587
|
[34]
|
Sofi, H.S., Abdal-hay, A., Ivanovski, S., Zhang, Y.S. and Sheikh, F.A. (2020) Electrospun Nanofibers for the Delivery of Active Drugs through Nasal, Oral and Vaginal Mucosa: Current Status and Future Perspectives. Materials Science and Engineering: C, 111, Article ID: 110756. https://doi.org/10.1016/j.msec.2020.110756
|
[35]
|
Kalantari, K., Afifi, A.M., Jahangirian, H. and Webster, T.J. (2019) Biomedical Applications of Chitosan Electrospun Nanofibers as a Green Polymer—Review. Carbohydrate Polymers, 207, 588-600. https://doi.org/10.1016/j.carbpol.2018.12.011
|
[36]
|
Cuggino, J.C., Blanco, E.R.O., Gugliotta, L.M., Alvarez Igarzabal, C.I. and Calderón, M. (2019) Crossing Biological Barriers with Nanogels to Improve Drug Delivery Performance. Journal of Controlled Release, 307, 221-246. https://doi.org/10.1016/j.jconrel.2019.06.005
|
[37]
|
Cheng, R., Liu, L., Xiang, Y., Lu, Y., Deng, L., Zhang, H., et al. (2020) Advanced Liposome-Loaded Scaffolds for Therapeutic and Tissue Engineering Applications. Biomaterials, 232, Article ID: 119706. https://doi.org/10.1016/j.biomaterials.2019.119706
|
[38]
|
Herdiana, Y., Husni, P., Nurhasanah, S., Shamsuddin, S. and Wathoni, N. (2023) Chitosan-based Nano Systems for Natural Antioxidants in Breast Cancer Therapy. Polymers, 15, Article 2953. https://doi.org/10.3390/polym15132953
|
[39]
|
Venkatesan, A., Samy, J.V.R.A., Balakrishnan, K., Natesan, V. and Kim, S. (2023) In Vitro Antioxidant, Anti-Inflammatory, Antimicrobial, and Antidiabetic Activities of Synthesized Chitosan-Loaded P-Coumaric Acid Nanoparticles. Current Pharmaceutical Biotechnology, 24, 1178-1194. https://doi.org/10.2174/1389201023666220822112923
|
[40]
|
Sindhu, M., Rajkumar, V., Annapoorani, C.A., Gunasekaran, C. and Kannan, M. (2023) Functionalized Nanoencapsulated Curcuma Longa Essential Oil in Chitosan Nanopolymer and Their Application for Antioxidant and Antimicrobial Efficacy. International Journal of Biological Macromolecules, 251, Article ID: 126387. https://doi.org/10.1016/j.ijbiomac.2023.126387
|
[41]
|
Jasim, L.M.M., Homayouni Tabrizi, M., Darabi, E. and Jaseem, M.M.M. (2023) The Antioxidant, Anti-Angiogenic, and Anticancer Impact of Chitosan-Coated Herniarin-Graphene Oxide Nanoparticles (CHG-NPs). Heliyon, 9, e20042. https://doi.org/10.1016/j.heliyon.2023.e20042
|
[42]
|
葛梅丽, 吴迪, 李文等. 猴头菌β-葡聚糖-壳聚糖纳米颗粒制备及其体外生物活性[J]. 食用菌学报, 2023, 30(1): 79-90.
|
[43]
|
Zhang, S., Zeng, Y., Wang, K., Song, G., Yu, Y., Meng, T., et al. (2023) Chitosan-Based Nano-Micelles for Potential Anti-Tumor Immunotherapy: Synergistic Effect of cGAS-STING Signaling Pathway Activation and Tumor Antigen Absorption. Carbohydrate Polymers, 321, Article ID: 121346. https://doi.org/10.1016/j.carbpol.2023.121346
|
[44]
|
Zhao, Z., Peng, Y., Shi, X. and Zhao, K. (2023) Chitosan Derivative Composite Nanoparticles as Adjuvants Enhance the Cellular Immune Response via Activation of the cGAS-Sting Pathway. International Journal of Pharmaceutics, 636, Article ID: 122847. https://doi.org/10.1016/j.ijpharm.2023.122847
|
[45]
|
Deng, F., He, S., Cui, S., Shi, Y., Tan, Y., Li, Z., et al. (2018) A Molecular Targeted Immunotherapeutic Strategy for Ulcerative Colitis via Dual-Targeting Nanoparticles Delivering MIR-146b to Intestinal Macrophages. Journal of Crohn’s and Colitis, 13, 482-494. https://doi.org/10.1093/ecco-jcc/jjy181
|
[46]
|
Alshehri, K.M. and Abdella, E.M. (2023) Development of Ternary Nanoformulation Comprising Bee Pollen-Thymol Oil Extracts and Chitosan Nanoparticles for Anti-Inflammatory and Anticancer Applications. International Journal of Biological Macromolecules, 242, Article ID: 124584. https://doi.org/10.1016/j.ijbiomac.2023.124584
|
[47]
|
Milad, S.S., Ali, S.E., Attia, M.Z., Khattab, M.S., EL-Ashaal, E.S., Elshoky, H.A., et al. (2023) Enhanced Immune Responses in Dexamethasone Immunosuppressed Male Rats Supplemented with Herbal Extracts, Chitosan Nanoparticles, and Their Conjugates. International Journal of Biological Macromolecules, 250, Article ID: 126170. https://doi.org/10.1016/j.ijbiomac.2023.126170
|
[48]
|
冯艳霞. 核桃粕多肽/鞣花酸协同抗炎活性及其复合纳米颗粒的制备研究[D]: [博士学位论文]. 北京: 北京林业大学, 2023.
|
[49]
|
He, X., Liu, B., Wu, J., Ai, S., Zhuo, R. and Cheng, S. (2017) A Dual Macrophage Targeting Nanovector for Delivery of Oligodeoxynucleotides to Overcome Cancer-Associated Immunosuppression. ACS Applied Materials & Interfaces, 9, 42566-42576. https://doi.org/10.1021/acsami.7b13594
|
[50]
|
王小萌. 黑磷纳米片复合水凝胶的构建及其对感染性皮肤烧伤的作用研究[D]: [博士学位论文]. 长春: 吉林大学, 2023.
|
[51]
|
Shim, S., Soh, S.H., Im, Y.B., Ahn, C., Park, H., Park, H., et al. (2020) Induction of Systemic Immunity through Nasal-Associated Lymphoid Tissue (NALT) of Mice Intranasally Immunized with Brucella abortus Malate Dehydrogenase-Loaded Chitosan Nanoparticles. PLOS ONE, 15, e0228463. https://doi.org/10.1371/journal.pone.0228463
|
[52]
|
陈炫铭. 负载Latexin蛋白的壳聚糖纳米颗粒的制备及其在肿瘤免疫调节中的作用[D]: [硕士学位论文]. 桂林: 广西师范大学, 2023.
|
[53]
|
Balde, A., Kim, S., Benjakul, S. and Nazeer, R.A. (2022) Pulmonary Drug Delivery Applications of Natural Polysaccharide Polymer Derived Nano/Micro-Carrier Systems: A Review. International Journal of Biological Macromolecules, 220, 1464-1479. https://doi.org/10.1016/j.ijbiomac.2022.09.116
|
[54]
|
Siddique, M.I., Katas, H., Amin, M.C.I.M., Ng, S., Zulfakar, M.H. and Jamil, A. (2016) In-Vivo Dermal Pharmacokinetics, Efficacy, and Safety of Skin Targeting Nanoparticles for Corticosteroid Treatment of Atopic Dermatitis. International Journal of Pharmaceutics, 507, 72-82. https://doi.org/10.1016/j.ijpharm.2016.05.005
|
[55]
|
Chuah, L., Loo, H., Goh, C.F., Fu, J. and Ng, S. (2023) Chitosan-Based Drug Delivery Systems for Skin Atopic Dermatitis: Recent Advancements and Patent Trends. Drug Delivery and Translational Research, 13, 1436-1455. https://doi.org/10.1007/s13346-023-01307-w
|
[56]
|
Siddique, M.I., Katas, H., Sarfraz, M., Chohan, T.A., Jamil, A. and Mohd Amin, M.C.I. (2021) Clinical Insights into Topically Applied Multipronged Nanoparticles in Subjects with Atopic Dermatitis. Journal of Drug Delivery Science and Technology, 65, Article ID: 102744. https://doi.org/10.1016/j.jddst.2021.102744
|
[57]
|
Siddique, M.I., Katas, H., Amin, M.C.I.M., Ng, S., Zulfakar, M.H., Buang, F., et al. (2015) Minimization of Local and Systemic Adverse Effects of Topical Glucocorticoids by Nanoencapsulation: In Vivo Safety of Hydrocortisone-Hydroxytyrosol Loaded Chitosan Nanoparticles. Journal of Pharmaceutical Sciences, 104, 4276-4286. https://doi.org/10.1002/jps.24666
|
[58]
|
Katas, H., Hussain, Z., Mohd Amin, M.C.I., Kumolosasi, E. and Sahudin, S. (2014) Downregulation of Immunological Mediators in 2, 4-Dinitrofluorobenzene-Induced Atopic Dermatitis-Like Skin Lesions by Hydrocortisone-Loaded Chitosan Nanoparticles. International Journal of Nanomedicine, 9, 5143-5156. https://doi.org/10.2147/ijn.s71543
|
[59]
|
Dhayanandamoorthy, Y., Antoniraj, M.G., Kandregula, C.A.B. and Kandasamy, R. (2020) Aerosolized Hyaluronic Acid Decorated, Ferulic Acid Loaded Chitosan Nanoparticle: A Promising Asthma Control Strategy. International Journal of Pharmaceutics, 591, Article ID: 119958. https://doi.org/10.1016/j.ijpharm.2020.119958
|
[60]
|
Zhang, H., Han, M., Tian, Y., Zhang, J., Li, S., Yang, D., et al. (2015) Development of Oral Dispersible Tablets Containing Prednisolone Nanoparticles for the Management of Pediatric Asthma. Drug Design, Development and Therapy, 9, 5815-5825. https://doi.org/10.2147/dddt.s86075
|
[61]
|
Ullah, F., Shah, K.U., Shah, S.U., Nawaz, A., Nawaz, T., Khan, K.A., et al. (2022) Synthesis, Characterization and in Vitro Evaluation of Chitosan Nanoparticles Physically Admixed with Lactose Microspheres for Pulmonary Delivery of Montelukast. Polymers, 14, Article 3564. https://doi.org/10.3390/polym14173564
|
[62]
|
Lv, Y., Zhang, J. and Wang, C. (2021) Self-Assembled Chitosan Nanoparticles for Intranasal Delivery of Recombinant Protein Interleukin-17 Receptor C (IL-17RC): Preparation and Evaluation in Asthma Mice. Bioengineered, 12, 3029-3039. https://doi.org/10.1080/21655979.2021.1940622
|
[63]
|
Yang, W., Dong, Z., Li, Y., Zhang, Y., Fu, H. and Xie, Y. (2021) Therapeutic Efficacy of Chitosan Nanoparticles Loaded with BCG-Polysaccharide Nucleic Acid and Ovalbumin on Airway Inflammation in Asthmatic Mice. European Journal of Clinical Microbiology & Infectious Diseases, 40, 1623-1631. https://doi.org/10.1007/s10096-021-04183-9
|
[64]
|
Yu, H.Q., Liu, Z.G., Guo, H., et al. (2011) [Therapeutic Effect on Murine Asthma with Sublingual Use of Dermatophagoides Farinae/Chitosan Nanoparticle Vaccine]. Chinese Journal of Parasitology & Parasitic Diseases, 29, 4-9.
|
[65]
|
Oyarzun‐Ampuero, F.A., Brea, J., Loza, M.I., Alonso, M.J. and Torres, D. (2011) A Potential Nanomedicine Consisting of Heparin‐Loaded Polysaccharide Nanocarriers for the Treatment of Asthma. Macromolecular Bioscience, 12, 176-183. https://doi.org/10.1002/mabi.201100102
|
[66]
|
Oyarzun-Ampuero, F.A., Brea, J., Loza, M.I., Torres, D. and Alonso, M.J. (2009) Chitosan-Hyaluronic Acid Nanoparticles Loaded with Heparin for the Treatment of Asthma. International Journal of Pharmaceutics, 381, 122-129. https://doi.org/10.1016/j.ijpharm.2009.04.009
|
[67]
|
Kandasamy, R., Park, S.J., Boyapalle, S., Mohapatra, S., Hellermann, G.R., Lockey, R.F., et al. (2010) Isatin Down-Regulates Expression of Atrial Natriuretic Peptide Receptor A and Inhibits Airway Inflammation in a Mouse Model of Allergic Asthma. International Immunopharmacology, 10, 218-225. https://doi.org/10.1016/j.intimp.2009.11.003
|
[68]
|
陈娜, 谢铁民, 张一凡等. pH敏感壳聚糖与地塞米松磷酸钠纳米载药体系制备及炎症抑制作用[J]. 中国组织工程研究, 2018, 22(22): 3550-3556.
|
[69]
|
Abruzzo, A., Cerchiara, T., Bigucci, F., Zuccheri, G., Cavallari, C., Saladini, B., et al. (2019) Cromolyn-Crosslinked Chitosan Nanoparticles for the Treatment of Allergic Rhinitis. European Journal of Pharmaceutical Sciences, 131, 136-145. https://doi.org/10.1016/j.ejps.2019.02.015
|
[70]
|
Shi, W.D., Cao, W., Liu, Y., et al. (2013) [Construction of Recombinant House Dust Mite Group 1 Allergen Vaccine and Study on Immune Response Induced by Nasal Immunization]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 48, 26-31.
|
[71]
|
Su, Y., Sun, B., Gao, X., Liu, S., Hao, R. and Han, B. (2020) Chitosan Hydrogel Doped with PEG-PLA Nanoparticles for the Local Delivery of miRNA-146a to Treat Allergic Rhinitis. Pharmaceutics, 12, Article 907. https://doi.org/10.3390/pharmaceutics12100907
|
[72]
|
Feng, H., Xiong, X., Xu, Q., Zhang, Z., Feng, J. and Wu, Y. (2020) Study on the Immunomodulatory Effect of Quercetin Nanoparticles Loaded with Chitosan on a Mouse Model of Ovalbumin-Induced Food Allergy. Nanoscience and Nanotechnology Letters, 12, 915-920. https://doi.org/10.1166/nnl.2020.3197
|