肺结核分子诊断技术的研究进展
Research Progress on Molecular Diagnostic Techniques for Pulmonary Tuberculosis
DOI: 10.12677/acm.2025.1592507, PDF, HTML, XML,   
作者: 薛朵朵:延安大学附属医院呼吸内科,陕西 延安;毛雅萌, 李 洋:延安大学附属医院消化内科,陕西 延安;白智远*:延安大学附属医院心脑血管医院老年呼吸内科,陕西 延安
关键词: 肺结核分子诊断Pulmonary Tuberculosis Molecular Diagnosis
摘要: 肺结核(pulmonary tuberculosis, PTB)作为一种通过呼吸道传播且严重威胁健康的疾病,其早期发现、诊断和治疗对疾病控制极为关键。然而,传统的诊断方法常因影响因素多、灵敏度不高、耗时较长而存在局限。如今,新兴的分子诊断技术凭借快速检测、高灵敏度及高特异性等突出优势,正在临床上得到越来越广泛的运用。本文的主要目的,是对当下结核分子诊断技术所取得的进展展开全面综述,进而为我国结核病的诊断与治疗工作提供有价值的参考。
Abstract: Pulmonary tuberculosis, as a disease transmitted through the respiratory tract that poses a serious threat to health, requires early detection, diagnosis and treatment, which are crucial for disease control. However, traditional diagnostic methods are often limited by multiple influencing factors, low sensitivity and lengthy processing times. Nowadays, emerging molecular diagnostic technologies, with their outstanding advantages such as rapid detection, high sensitivity and high specificity are being increasingly widely applied in clinical practice. The primary objective of this paper is to provide a comprehensive review of the current progress in molecular diagnostic technologies for tuberculosis, thereby offering valuable references for the diagnosis and treatment of tuberculosis in China.
文章引用:薛朵朵, 毛雅萌, 李洋, 白智远. 肺结核分子诊断技术的研究进展[J]. 临床医学进展, 2025, 15(9): 419-424. https://doi.org/10.12677/acm.2025.1592507

1. 引言

结核病(tuberculosis,TB)是一种威胁人类健康的传染性疾病,同时也是我国必须重点防控的重大传染病。据2019年世界卫生组织(World Health Organization, WHO)数据显示,全球每年约有1000万新发结核病例,导致约150万人死亡,且最常见的原发病灶部位在肺[1]。世界卫生组织(WHO)所公布的《2024年度全球结核病状况报告》[2]中预估,我国在2023年因结核病导致死亡的人数约为两万五千例。与此同时,我国结核病的发病总数占据了全球发病总数的百分之六点八,在全球结核病高负担国家中位列第三。肺结核的根源在于感染了结核分枝杆菌(Mycobacterium tuberculosis, MTB)。这一病因在1882年被Robert Koch首次确认和提出[3],其主要通过咳嗽、打喷嚏等通过呼吸道途径进行传播,因此快速准确的诊断对于肺结核的防控至关重要,是减少其发病和死亡的关键。传统的诊断方法依靠涂片镜检和结核分枝杆菌培养,存在外界干扰、灵敏度低、特异性差、耗时长等局限性,且大部分结核患者临床表现不典型,病原体标本采集困难并存在误差,使得大部分患者无法通过病原学进行诊断,延误治疗[4]。近几年为快速、高灵敏度、高特异性检出结核分枝杆菌(MTB),从其分子特征入手,目前全球范围内用于检测结核病的分子诊断技术包括:核酸变温扩增技术如实时荧光定量PCR扩增技术(Quantitative Real-Time Polymerase Chain Reaction, qPCR)、线性探针检测(Line Probe Assay, LPA)、高分辨率熔解曲线(High-Resolution Melting, HRM);核酸等温扩增技术如重组酶聚合酶扩增技术(Recombinase Polymerase Amplification, RPA)、环介导等温扩增技术(Loop-Mediated Isothermal Amplification, LAMP)、滚环扩增技术(Rolling Circle Amplification,RCA);测序技术包括:内转录间隔基因测序(Internal Transcribed Spacer, ITS)、靶向测序技术(Targeted Next-Generation Sequencing, tNGS)、全基因组测序技术(Whole Genome Sequencing, WGS)等[5]。本研究旨在梳理肺结核分子检测技术的发展动态,为相关领域的研究工作及临床实践提供借鉴。

2. 传统肺结核诊断方法

2.1. 病原学诊断

Ziehl-Leelsen染色镜检法是用于初步筛查与诊断肺结核的经典病原学检测技术。因其成本低廉、操作简便且特异性较高,目前仍是临床上的首选方法。然而,该方法的诊断灵敏度波动较大,介于20%~80%之间,且实际诊断阳性率偏低(约为11.6%)。除此之外,这一技术存在着明显的短板,即难以对结核分枝杆菌和非结核分枝杆菌进行有效区分。这些局限性使得该方法在临床上极易导致肺结核患者漏诊,从而可能延误治疗[6] [7],且镜检法容易受到病原体标本采集、病原体数目、所处环境温度、操作人员的专业性等多方面因素的影响,对于结果干扰因素较多。

MTB培养法是诊断肺结核的“金标准”,临床上常采用痰标本液体培养,根据肺结核病程及标本中分枝杆菌的数量,该方法的灵敏度为73%~95%,特异度为95%~98% [8],不过,它最为突出的缺陷是花费时间较长,一般要4~8周方可得到结果,这对疾病的早期诊断与治疗会产生不利影响。

2.2. 影像学诊断

作为一种在临床上广泛应用的肺结核筛查与随访手段,X线摄影检查方便快捷,能够揭示肺部病变。然而,该方法特异性相对较差,这使得它可能将某些非结核病变误诊为结核,进而高估实际的肺结核患病人数[9]。与X线摄影检查相比,CT检查拥有更高的分辨率,能够对微小的病灶以及病灶的内部特征进行检测,常作为治疗过程中疗效评估,但其特异性不高,出现某些良性疾病如炎症、其他原因所致的纤维化等会导致很高的假阳性[10]

2.3. 免疫学诊断

结核菌素皮肤试验(TST)在结核菌感染筛查中较为常用,然而其诊断早期结核病的特异性不足,同时,卡介苗接种情况和受试者免疫力状态等因素都可能影响试验结果,导致假阳性或假阴性[11]。近年来,结核感染T细胞斑点试验(T-SPOT.TB)被用于检测MTB感染,相比于TST相比,其与卡介苗和非结核分枝杆菌不发生交叉反应,具备区分真实结核分枝杆菌感染的能力,其诊断的敏感性和精确性均超越TST。对于存在免疫缺陷的患者,T-SPOT.TB可出现假阴性,因此其阴性结果不能够完全排除肺结核[12] [13]

3. 分子诊断技术

3.1. 核酸变温扩增技术

3.1.1. 实时荧光定量PCR扩增技术(PCR)

PCR技术是较早应用于肺结核诊断的分子手段之一。2010年,美国Cepheid公司研发成功并推出了一款基于核酸扩增的诊断系统,即MTB/RIF耐药实时荧光定量核酸扩增技术(Xpert MTB/RIF)。此系统可在两个小时内完成对结核分枝杆菌以及利福平耐药性的检测,有着快速、灵敏度高、特异度强的明显优势[14]。到了2011年,世界卫生组织(WHO)提出,可采用Xpert MTB/RIF技术对耐多药结核病以及合并获得性免疫缺陷综合征的结核病进行早期检测。而对于那些不属于耐药高风险范畴的人群,还有未合并获得性免疫缺陷综合征的患者来说,Xpert MTB/RIF能够充当涂片检查或者胸部X线检查的一种补充性检测方式[15]。Chang等人[16]所做的Meta分析结果表明,运用Xpert MTB/RIF法诊断肺结核时,其总体敏感度达到90.4%,特异度为98.4%;在对肺外结核进行诊断的过程中,该方法的敏感度与特异度则分别为80.4%和86.1%。此外,该方法在儿童肺结核的诊断方面也展现出较好的应用价值。为使检测敏感度得到进一步增强,新一代的Xpert MTB/RIF Ultra对DNA扩增室进行了扩大,以此提升样本的容纳能力,同时优化了对沉默突变的解读方式,降低了在混合感染以及含菌量较少的样本中,利福平(RIF)耐药检测出现假阳性结果的概率,因此灵敏度提高,其特异性相对下降[17] [18]。2017年3月,世界卫生组织(WHO)建议采用新一代检测技术Xpert MTB/RIF Ultra,以替代原有的Xpert MTB/RIF。一项涵盖16项研究的Meta分析结果显示,Xpert MTB/RIF Ultra诊断结核病的准确度为87.2%,特异度达96.5%;在利福平耐药检测中,其敏感度为95.1%,特异度则是98.9% [19]。同样地,在肺外结核的诊断上,和Xpert MTB/RIF相较,Xpert MTB/RIF Ultra的整体灵敏度更高,不过特异度要低一些[20]。正因如此,当核酸检测结果呈弱阳性时,鉴于检测方法的特异度有所下降,有必要结合临床特征来展开具体分析。

3.1.2. 线性探针检测(LPA)

LPA将PCR扩增技术、反向杂交、膜显色技术结合的快速分子诊断技术,相比于Xpert MTB/RIF该技术操作复杂,用时较长,但其能够同时检测利福平、异烟肼的耐药性[21]。根据世界卫生组织的建议,用于痰涂片阳性样本初次耐药性筛查的LPA技术主要有Genotype MTBDR plus版本1.0及2.0、Nipro NTM + MDR-TB试剂,以及Genotype MTBDRsl版本1.0与2.0。比较Genotype MTBDR plus和Nipro NTM + MDR-TB的一项2017年研究[21]表明,LPA检测的灵敏度存在差异:对痰检阳性者可达94%,而对痰检阴性者则低至44%。LPA技术因其快速、精确且高效的特点,能够有效识别痰液检测结果为阳性的患者的耐药情况。不过,针对痰检结果为阴性的病例,则需要结合其他辅助检测手段进行综合判断。

3.1.3. 高分辨率溶解曲线(HRM)

该技术主要通过检测特异性扩增产物与探针形成双链的解链温度,比较突变序列和野生型序列的温度差异从而获取靶基因的序列信息,可以同时检测结核分枝杆菌复合群和一线二线抗结核药物的耐药基因[22]。根据相关研究数据,该检测手段在鉴定利福平耐药性方面的敏感度介于92%至96%之间,其特异性高达99%;而在检测异烟肼耐药性方面,敏感度为90.8%,特异性则为96.4% [23] [24]

3.2. 核酸等温扩增技术

该技术是一类在恒温条件下进行核酸扩增,与PCR技术相比具有操作简单,效率高,报告时间短、经济实惠等优点,不需要高昂的DNA设备,适合在贫困地区和基层实验室使用[25]

环介导等温扩增技术(LAMP)作为一种通过WHO验证并被推荐采用的快速诊断方法,其可在60分钟内完成,经过相关数据验证,该方法在肺结核诊断中的敏感性为76%~80%,特异性为97%~98% [26]。WHO在2016年推荐,对于结核病的诊断,应采用LAMP技术来替代痰涂片镜检[27]

3.3. 测序技术

全基因组测序技术(WGS)借助DNA测序设备来重新构建生物体基因组所有DNA的序列信息,其在处理难以培养的MTB方面展现出显著优势,同时对于肺结核及肺外结核的确诊具备较高的敏感水平[28] [29]。现阶段,全基因组测序技术在MTB的菌种识别、基因分型、耐药性检测和流行病学分析等领域的应用已取得成功案例[30]

4. 分子诊断技术面临的挑战和展望

尽管分子诊断技术在肺结核(PTB)的诊断领域取得了令人瞩目的进展,极大地提升了检测效率和准确性,但其在广泛应用和实践中仍面临着若干严峻的挑战,需要我们正视并寻求解决方案。首先,是成本与可行性问题。许多先进的分子诊断方法,例如基于PCR或测序的技术,往往依赖于昂贵、精密的检测仪器设备,并且需要经过专门培训、具备深厚专业知识的操作人员进行样本处理和结果判读。这种高门槛导致这些技术难以在资源匮乏、医疗基础设施相对薄弱的地区得到普及和应用,从而在地域上限制了分子诊断技术的覆盖面,使得许多最需要这些技术的地区无法受益。其次,样本的处理流程和质量控制对于确保检测结果的准确性至关重要。同时,如何进一步提升检测方法的灵敏度、特异性以及同时检测多种指标的能力,仍是当前需要深入研究的课题。展望未来,随着技术的持续进步和成本的不断下降,分子诊断有望在肺结核的早期诊断、耐药性追踪以及流行病学研究等领域,扮演的角色日益关键且价值凸显。

5. 结论

分子诊断技术为肺结核快速、准确诊治带来了革命性变化,与传统方法相比具有明显的优势,PCR技术、Xpert MTB/RIF系统已经在国内外临床中得到广泛应用,其他暂未得到WHO审批通过的新兴技术展现出良好的应用前景。尽管面临挑战,分子诊断技术将继续推进肺结核诊治的发展,为全球结核病防控做出重要贡献,未来的研究致力于开发出更简便、更经济、更高效、更安全的方法以满足不同地区和人群的需求。

NOTES

*通讯作者。

参考文献

[1] World Health Organization (2019) Global Tuberculosis Report 2019.
https://www.who.int/tb/publications/global_report/en/
[2] World Health Organization (2024) Global Tuberculosis Report 2024. World Health Organization.
[3] Sakula, A. (1982) Robert Koch: Centenary of the Discovery of the Tubercle Bacillus, 1882. Thorax, 37, 246-251.
https://doi.org/10.1136/thx.37.4.246
[4] Lange, C., Abubakar, I., Alffenaar, J.C., Bothamley, G., Caminero, J.A., Carvalho, A.C.C., et al. (2014) Management of Patients with Multidrug-Resistant/Extensively Drug-Resistant Tuberculosis in Europe: A TBNET Consensus Statement. European Respiratory Journal, 44, 23-63.
https://doi.org/10.1183/09031936.00188313
[5] Acharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Parajuli, N., et al. (2020) Advances in Diagnosis of Tuberculosis: An Update into Molecular Diagnosis of Mycobacterium tuberculosis. Molecular Biology Reports, 47, 4065-4075.
https://doi.org/10.1007/s11033-020-05413-7
[6] Lewinsohn, D.M., Leonard, M.K., LoBue, P.A., Cohn, D.L., Daley, C.L., Desmond, E., et al. (2017) Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clinical Infectious Diseases, 64, 111-115.
https://doi.org/10.1093/cid/ciw778
[7] Steingart, K.R., Ramsay, A. and Pai, M. (2007) Optimizing Sputum Smear Microscopy for the Diagnosis of Pulmonary Tuberculosis. Expert Review of Anti-infective Therapy, 5, 327-331.
https://doi.org/10.1586/14787210.5.3.327
[8] Cuevas, L.E., Browning, R., Bossuyt, P., Casenghi, M., Cotton, M.F., Cruz, A.T., et al. (2012) Evaluation of Tuberculosis Diagnostics in Children: 2. Methodological Issues for Conducting and Reporting Research Evaluations of Tuberculosis Diagnostics for Intrathoracic Tuberculosis in Children. Consensus from an Expert Panela. The Journal of Infectious Diseases, 205, S209-S215.
https://doi.org/10.1093/infdis/jir879
[9] Oh, C., Roh, Y., Lim, D., Kong, H., Cho, H., Hwangbo, B., et al. (2020) Pulmonary Tuberculosis Is Associated with Elevated Risk of Lung Cancer in Korea: The Nationwide Cohort Study. Journal of Cancer, 11, 1899-1906.
https://doi.org/10.7150/jca.37022
[10] Henschke, C.I., Yankelevitz, D.F., Miettinen, O.S. and International Early Lung Cancer Action Program Investigators (2006) Computed Tomographic Screening for Lung Cancer: The Relationship of Disease Stage to Tumor Size. Archives of Internal Medicine, 166, 321-325.
[11] 杨帆, 胡良安. 肺结核分子诊断方法研究进展[J]. 现代医药卫生, 2020, 36(22): 3593-3597.
[12] Diel, R., Goletti, D., Ferrara, G., Bothamley, G., Cirillo, D., Kampmann, B., et al. (2011) Interferon-γ Release Assays for the Diagnosis of Latent Mycobacterium tuberculosis Infection: A Systematic Review and Meta-Analysis. European Respiratory Journal, 37, 88-99.
[13] Lee, Y., Kim, S., Park, S.J., Park, K., Lee, S., Choi, S., et al. (2013) Indeterminate T-SPOT.TB Test Results in Patients with Suspected Extrapulmonary Tuberculosis in Routine Clinical Practice. Infection & Chemotherapy, 45, 44-50.
https://doi.org/10.3947/ic.2013.45.1.44
[14] Blakemore, R., Story, E., Helb, D., Kop, J., Banada, P., Owens, M.R., et al. (2010) Evaluation of the Analytical Performance of the Xpert MTB/RIF Assay. Journal of Clinical Microbiology, 48, 2495-2501.
https://doi.org/10.1128/jcm.00128-10
[15] World Health Organization (2011) (978-92-4-150633-5). Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberciuosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update.
[16] Chang, K., Lu, W., Wang, J., Zhang, K., Jia, S., Li, F., et al. (2012) Rapid and Effective Diagnosis of Tuberculosis and Rifampicin Resistance with Xpert MTB/RIF Assay: A Meta-analysis. Journal of Infection, 64, 580-588.
https://doi.org/10.1016/j.jinf.2012.02.012
[17] Kay, A.W., Ness, T., Verkuijl, S.E., Viney, K., Brands, A., Masini, T., et al. (2022) Xpert MTB/RIF Ultra Assay for Tuberculosis Disease and Rifampicin Resistance in Children. Cochrane Database of Systematic Reviews, 9, CD013359.
https://doi.org/10.1002/14651858.cd013359.pub3
[18] Bisognin, F., Lombardi, G., Lombardo, D., Re, M.C. and Dal Monte, P. (2018) Improvement of Mycobacterium tuberculosis Detection by Xpert MTB/RIF Ultra: A Head-to-Head Comparison on Xpert-Negative Samples. PLOS ONE, 13, e0201934.
https://doi.org/10.1371/journal.pone.0201934
[19] Zhang, M., Xue, M. and He, J. (2020) Diagnostic Accuracy of the New Xpert MTB/RIF Ultra for Tuberculosis Disease: A Preliminary Systematic Review and Meta-Analysis. International Journal of Infectious Diseases, 90, 35-45.
https://doi.org/10.1016/j.ijid.2019.09.016
[20] Wu, X., Tan, G., Gao, R., Yao, L., Bi, D., Guo, Y., et al. (2019) Assessment of the Xpert MTB/RIF Ultra Assay on Rapid Diagnosis of Extrapulmonary Tuberculosis. International Journal of Infectious Diseases, 81, 91-96.
https://doi.org/10.1016/j.ijid.2019.01.050
[21] Aricha, S.A., Kingwara, L., Mwirigi, N.W., Chaba, L., Kiptai, T., Wahogo, J., et al. (2019) Comparison of Genexpert and Line Probe Assay for Detection of Mycobacterium tuberculosis and Rifampicin-Mono Resistance at the National Tuberculosis Reference Laboratory, Kenya. BMC Infectious Diseases, 19, Article No. 852.
https://doi.org/10.1186/s12879-019-4470-9
[22] Pang, Y., Dong, H., Tan, Y., Deng, Y., Cai, X., Jing, H., et al. (2016) Rapid Diagnosis of MDR and XDR Tuberculosis with the Meltpro TB Assay in China. Scientific Reports, 6, Article No. 25330.
https://doi.org/10.1038/srep25330
[23] Arefzadeh, S., Azimi, T., Nasiri, M.J., Nikpor, Z., Dabiri, H., Doustdar, F., et al. (2020) High-Resolution Melt Curve Analysis for Rapid Detection of Rifampicin Resistance in Mycobacterium tuberculosis: A Single-Centre Study in Iran. New Microbes and New Infections, 35, Article ID: 100665.
https://doi.org/10.1016/j.nmni.2020.100665
[24] Hu, S., Li, G., Li, H., Liu, X., Niu, J., Quan, S., et al. (2014) Rapid Detection of Isoniazid Resistance in Mycobacterium tuberculosis Isolates by Use of Real-Time-PCR-Based Melting Curve Analysis. Journal of Clinical Microbiology, 52, 1644-1652.
https://doi.org/10.1128/jcm.03395-13
[25] Notomi, T. (2000) Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Research, 28, e63.
https://doi.org/10.1093/nar/28.12.e63
[26] World Health Organization (2016) The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance. World Health organization.
[27] World Health Organization (2016) (978-92-4-151118-6). The Use of Loop-Mediated Isothermal Amplification (TB-Lamp) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance. World Health Organization.
[28] Shi, C., Han, P., Tang, P., Chen, M., Ye, Z., Wu, M., et al. (2020) Clinical Metagenomic Sequencing for Diagnosis of Pulmonary Tuberculosis. Journal of Infection, 81, 567-574.
https://doi.org/10.1016/j.jinf.2020.08.004
[29] Zhou, X., Wu, H., Ruan, Q., Jiang, N., Chen, X., Shen, Y., et al. (2019) Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Frontiers in Cellular and Infection Microbiology, 9, Article 351.
https://doi.org/10.3389/fcimb.2019.00351
[30] 陈昕昶, 张文宏. 全基因组测序在结核病研究中的应用进展[J]. 中国防痨杂志, 2018, 40(2): 149-152.