[1]
|
何权瀛. 2025版GOLD解读[J]. 中国医药导刊, 2025, 27(1): 58-63.
|
[2]
|
Guo, L., Wu, X. and Wu, X. (2023) Aspergillus Infection in Chronic Obstructive Pulmonary Diseases. The Clinical Respiratory Journal, 17, 129-138. https://doi.org/10.1111/crj.13585
|
[3]
|
中华医学会呼吸病学分会. 慢性阻塞性肺疾病伴肺曲霉病诊治和管理专家共识[J]. 中华结核和呼吸杂志, 2024, 47(7): 604-622.
|
[4]
|
张静. 慢性阻塞性肺疾病患者肺曲霉病诊断和评估中的几个问题[J]. 中华结核和呼吸杂志, 2024, 47(7): 601-603.
|
[5]
|
Bulpa, P., Duplaquet, F., Dimopoulos, G., Vogelaers, D. and Blot, S. (2020) Invasive Pulmonary Aspergillosis in Chronic Obstructive Pulmonary Disease Exacerbations. Seminars in Respiratory and Critical Care Medicine, 41, 851-861. https://doi.org/10.1055/s-0040-1702210
|
[6]
|
Denning, D.W. (2024) Global Incidence and Mortality of Severe Fungal Disease. The Lancet Infectious Diseases, 24, e428-e438. https://doi.org/10.1016/s1473-3099(23)00692-8
|
[7]
|
Niu, S., Liu, D., Yang, Y. and Zhao, L. (2024) Clinical Utility of Metagenomic Next-Generation Sequencing in the Diagnosis of Invasive Pulmonary Aspergillosis in Acute Exacerbation of Chronic Obstructive Pulmonary Disease Patients in the Intensive Care Unit. Frontiers in Cellular and Infection Microbiology, 14, Article ID: 1397733. https://doi.org/10.3389/fcimb.2024.1397733
|
[8]
|
Hammond, E.E., McDonald, C.S., Vestbo, J. and Denning, D.W. (2020) The Global Impact of Aspergillus Infection on COPD. BMC Pulmonary Medicine, 20, Article No. 241. https://doi.org/10.1186/s12890-020-01259-8
|
[9]
|
Ahmed, J., Singh, G., Mohan, A., Agarwal, R., Sachdev, J., Khullar, S., et al. (2022) Invasive Pulmonary Aspergillosis Infection in Severely Ill COPD Patients in Pulmonary Ward and ICU. Indian Journal of Medical Microbiology, 40, 223-227. https://doi.org/10.1016/j.ijmmb.2022.02.006
|
[10]
|
Mir, T., Uddin, M., Khalil, A., Lohia, P., Porter, L., Regmi, N., et al. (2022) Mortality Outcomes Associated with Invasive Aspergillosis among Acute Exacerbation of Chronic Obstructive Pulmonary Disease Patient Population. Respiratory Medicine, 191, Article ID: 106720. https://doi.org/10.1016/j.rmed.2021.106720
|
[11]
|
Otu, A., Ibe, C. and Kosmidis, C. (2024) Spectrum of Pulmonary Aspergillosis in Patients with Chronic Obstructive Pulmonary Disease (COPD). In: Soubani, A.O., Ed., Pulmonary Aspergillosis, Springer, 175-185. https://doi.org/10.1007/978-3-031-76524-7_14
|
[12]
|
章迪. 烟曲霉通过TLR4激活RIPK3/MLKL通路诱导中性粒细胞坏死性凋亡的机制研究[D]: [博士学位论文]. 成都: 四川大学, 2021.
|
[13]
|
Gu, Y., Ye, X., Wang, Y., Shen, K., Zhong, J., Chen, B., et al. (2021) Clinical Features and Prognostic Analysis of Patients with Aspergillus Isolation during Acute Exacerbation of Chronic Obstructive Pulmonary Disease. BMC Pulmonary Medicine, 21, Article No. 69. https://doi.org/10.1186/s12890-021-01427-4
|
[14]
|
Otu, A., Kosmidis, C., Mathioudakis, A.G., Ibe, C. and Denning, D.W. (2023) The Clinical Spectrum of Aspergillosis in Chronic Obstructive Pulmonary Disease. Infection, 51, 813-829. https://doi.org/10.1007/s15010-022-01960-2
|
[15]
|
Deng, W., Jiang, Y., Qin, J., Chen, G., Lv, Y., Lei, Y., et al. (2023) Metagenomic Next-Generation Sequencing Assists in the Diagnosis of Mediastinal Aspergillus fumigatus Abscess in an Immunocompetent Patient: A Case Report and Literature Review. Infection and Drug Resistance, 16, 1865-1874. https://doi.org/10.2147/idr.s399484
|
[16]
|
Obar, J.J. and Shepardson, K.M. (2023) Coinfections in the Lung: How Viral Infection Creates a Favorable Environment for Bacterial and Fungal Infections. PLOS Pathogens, 19, e1011334. https://doi.org/10.1371/journal.ppat.1011334
|
[17]
|
Schiefermeier-Mach, N., Haller, T., Geley, S. and Perkhofer, S. (2020) Migrating Lung Monocytes Internalize and Inhibit Growth of Aspergillus fumigatus Conidia. Pathogens, 9, Article No. 983. https://doi.org/10.3390/pathogens9120983
|
[18]
|
Wu, S., Feng, P., Chuang, H., Ho, S., Fan Chung, K., Chen, K., et al. (2020) Impaired lnc-IL7R Modulatory Mechanism of Toll‐Like Receptors Is Associated with an Exacerbator Phenotype of Chronic Obstructive Pulmonary Disease. The FASEB Journal, 34, 13317-13332. https://doi.org/10.1096/fj.202000632r
|
[19]
|
Di Stefano, A., Gnemmi, I., Dossena, F., Ricciardolo, F.L., Maniscalco, M., Lo Bello, F., et al. (2022) Pathogenesis of COPD at the Cellular and Molecular Level. Minerva Medica, 113, 405-423. https://doi.org/10.23736/s0026-4806.22.07927-7
|
[20]
|
Domblides, C., Rochefort, J., Riffard, C., Panouillot, M., Lescaille, G., Teillaud, J., et al. (2021) Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Frontiers in Immunology, 12, Article ID: 698604. https://doi.org/10.3389/fimmu.2021.698604
|
[21]
|
Wu, Y., Xu, H., Li, L., Yuan, W., Zhang, D. and Huang, W. (2016) Susceptibility to Aspergillus Infections in Rats with Chronic Obstructive Pulmonary Disease via Deficiency Function of Alveolar Macrophages and Impaired Activation of Tlr2. Inflammation, 39, 1310-1318. https://doi.org/10.1007/s10753-016-0363-x
|
[22]
|
Zhu, Y. and Wang, C. (2024) Serum Pentraxin-3 in Patients with Chronic Obstructive Pulmonary Disease: A Meta-analysis. Biomolecules and Biomedicine, 24, 1535-1545. https://doi.org/10.17305/bb.2024.10875
|
[23]
|
Targońska-Stępniak, B. and Drelich-Zbroja, A. (2024) The Role of Pentraxin 3 in the Assessment of Cardiovascular Risk and Disease Activity in Patients with Rheumatoid Arthritis and Spondyloarthritis. Journal of Inflammation Research, 17, 9905-9916. https://doi.org/10.2147/jir.s497265
|
[24]
|
Garlanda, C., Hirsch, E., Bozza, S., Salustri, A., De Acetis, M., Nota, R., et al. (2002) Non-Redundant Role of the Long Pentraxin PTX3 in Anti-Fungal Innate Immune Response. Nature, 420, 182-186. https://doi.org/10.1038/nature01195
|
[25]
|
Feys, S., Gonçalves, S.M., Khan, M., Choi, S., Boeckx, B., Chatelain, D., et al. (2022) Lung Epithelial and Myeloid Innate Immunity in Influenza-Associated or Covid-19-Associated Pulmonary Aspergillosis: An Observational Study. The Lancet Respiratory Medicine, 10, 1147-1159. https://doi.org/10.1016/s2213-2600(22)00259-4
|
[26]
|
He, Q., Li, H., Rui, Y., Liu, L., He, B., Shi, Y., et al. (2017) Pentraxin 3 Gene Polymorphisms and Pulmonary Aspergillosis in Chronic Obstructive Pulmonary Disease Patients. Clinical Infectious Diseases, 66, 261-267. https://doi.org/10.1093/cid/cix749
|
[27]
|
Lea, S., Gaskell, R., Hall, S., Maschera, B., Hessel, E. and Singh, D. (2021) Assessment of Bacterial Exposure on Phagocytic Capability and Surface Marker Expression of Sputum Macrophages and Neutrophils in COPD Patients. Clinical and Experimental Immunology, 206, 99-109. https://doi.org/10.1111/cei.13638
|
[28]
|
Zhu, Y. and Chang, D. (2023) Interactions between the Lung Microbiome and Host Immunity in Chronic Obstructive Pulmonary Disease. Chronic Diseases and Translational Medicine, 9, 104-121. https://doi.org/10.1002/cdt3.66
|
[29]
|
Palmieri, F., Koutsokera, A., Bernasconi, E., Junier, P., von Garnier, C. and Ubags, N. (2022) Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies with a Focus on Aspergillus Spp. Frontiers in Medicine, 9, Article ID: 832510. https://doi.org/10.3389/fmed.2022.832510
|
[30]
|
Andelid, K., Öst, K., Andersson, A., Mohamed, E., Jevnikar, Z., Vanfleteren, L.E.G.W., et al. (2021) Lung Macrophages Drive Mucus Production and Steroid-Resistant Inflammation in Chronic Bronchitis. Respiratory Research, 22, Article No. 172. https://doi.org/10.1186/s12931-021-01762-4
|
[31]
|
Boada-Romero, E., Martinez, J., Heckmann, B.L. and Green, D.R. (2020) The Clearance of Dead Cells by Efferocytosis. Nature Reviews Molecular Cell Biology, 21, 398-414. https://doi.org/10.1038/s41580-020-0232-1
|
[32]
|
Liu, M., Zhang, X., Luan, H., Zhang, Y., Xu, W., Feng, W., et al. (2024) Bioenzymatic Detoxification of Mycotoxins. Frontiers in Microbiology, 15, Article ID: 1434987. https://doi.org/10.3389/fmicb.2024.1434987
|
[33]
|
Lian, X., Scott-Thomas, A., Lewis, J.G., Bhatia, M., MacPherson, S.A., Zeng, Y., et al. (2022) Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. International Journal of Molecular Sciences, 23, Article No. 5563. https://doi.org/10.3390/ijms23105563
|
[34]
|
Kraševec, N. (2022) The Multifaceted Role of Mating Type of the Fungus and Sex of the Host in Studies of Fungal Infections in Humans. Journal of Fungi, 8, Article No. 461. https://doi.org/10.3390/jof8050461
|
[35]
|
Liu, F., Zhang, X., Du, W., Du, J., Chi, Y., Sun, B., et al. (2021) Diagnosis Values of IL-6 and IL-8 Levels in Serum and Bronchoalveolar Lavage Fluid for Invasive Pulmonary Aspergillosis in Chronic Obstructive Pulmonary Disease. Journal of Investigative Medicine, 69, 1344-1349. https://doi.org/10.1136/jim-2021-001857
|
[36]
|
Zhang, P., Xin, X., Fang, L., Jiang, H., Xu, X., Su, X., et al. (2017) HMGB1 Mediates Aspergillus fumigatus-Induced Inflammatory Response in Alveolar Macrophages of COPD Mice via Activating MyD88/NF-κB and syk/PI3K Signalings. International Immunopharmacology, 53, 125-132. https://doi.org/10.1016/j.intimp.2017.10.007
|
[37]
|
Deng, L., Jian, Z., Xu, T., Li, F., Deng, H., Zhou, Y., et al. (2023) Macrophage Polarization: An Important Candidate Regulator for Lung Diseases. Molecules, 28, Article No. 2379. https://doi.org/10.3390/molecules28052379
|
[38]
|
Geng, W., He, H., Zhang, Q. and Tong, Z. (2020) Th17 Cells Are Involved in Mouse Chronic Obstructive Pulmonary Disease Complicated with Invasive Pulmonary Aspergillosis. Chinese Medical Journal, 134, 555-563. https://doi.org/10.1097/cm9.0000000000001183
|
[39]
|
Yang, R., Wu, X., Gounni, A.S. and Xie, J. (2023) Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease: From Molecular Mechanisms to Treatment. Journal of Translational Internal Medicine, 11, 312-315. https://doi.org/10.2478/jtim-2023-0094
|
[40]
|
Bertuzzi, M., Howell, G.J., Thomson, D.D., Fortune-Grant, R., Möslinger, A., Dancer, P., et al. (2024) Epithelial Uptake Leads to Fungal Killing in Vivo and Is Aberrant in COPD-Derived Epithelial Cells. iScience, 27, Article ID: 109939. https://doi.org/10.1016/j.isci.2024.109939
|
[41]
|
Shen, K., Zhang, M., Zhao, R., Li, Y., Li, C., Hou, X., et al. (2023) Eosinophil Extracellular Traps in Asthma: Implications for Pathogenesis and Therapy. Respiratory Research, 24, Article No. 231. https://doi.org/10.1186/s12931-023-02504-4
|
[42]
|
Gonçalves, S.M., Pereira, I., Feys, S., Cunha, C., Chamilos, G., Hoenigl, M., et al. (2024) Integrating Genetic and Immune Factors to Uncover Pathogenetic Mechanisms of Viral-Associated Pulmonary Aspergillosis. mBio, 15, e01982-23. https://doi.org/10.1128/mbio.01982-23
|
[43]
|
Sulaiman, I., Wu, B.G., Chung, M., Isaacs, B., Tsay, J.J., Holub, M., et al. (2023) Lower Airway Dysbiosis Augments Lung Inflammatory Injury in Mild-to-Moderate Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 208, 1101-1114. https://doi.org/10.1164/rccm.202210-1865oc
|
[44]
|
张小红, 周宸, 罗远明, 等. 慢性阻塞性肺疾病急性加重患者合并侵袭性肺曲霉菌病的临床特征及相关因素分析[J]. 中华医学杂志, 2023, 103(22): 1692-1699.
|
[45]
|
Sandhu, K.K., Scott, A., Tatler, A.L., Belchamber, K.B.R. and Cox, M.J. (2024) Macrophages and the Microbiome in Chronic Obstructive Pulmonary Disease. European Respiratory Review, 33, Article ID: 240053. https://doi.org/10.1183/16000617.0053-2024
|
[46]
|
Sin, D.D. (2023) Chronic Obstructive Pulmonary Disease and the Airway Microbiome: What Respirologists Need to Know. Tuberculosis and Respiratory Diseases, 86, 166-175. https://doi.org/10.4046/trd.2023.0015
|
[47]
|
Debourgogne, A., Monpierre, L., Sy, K.A., Valsecchi, I., Decousser, J. and Botterel, F. (2023) Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions. Journal of Fungi, 9, Article No. 900. https://doi.org/10.3390/jof9090900
|
[48]
|
Im, G. and Choi, D. (2021) AIP1, Encoding the Small Subunit of Acetolactate Synthase, Is Partially Responsible for Resistance to Hypoxic Stress in Arabidopsis Thaliana. Plants, 10, Article No. 2251. https://doi.org/10.3390/plants10112251
|
[49]
|
任之栋, 张巧, 张玉江, 等. 慢性阻塞性肺疾病合并慢性肺曲霉菌病的高危因素及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(1): 11-16.
|
[50]
|
de Castro, P.A., Colabardini, A.C., Moraes, M., Horta, M.A.C., Knowles, S.L., Raja, H.A., et al. (2022) Regulation of Gliotoxin Biosynthesis and Protection in Aspergillus Species. PLOS Genetics, 18, e1009965. https://doi.org/10.1371/journal.pgen.1009965
|
[51]
|
Yosief, R.H.S., Lone, I.M., Nachshon, A., Himmelbauer, H., Gat‐Viks, I. and Iraqi, F.A. (2024) Identifying Genetic Susceptibility to Aspergillus fumigatus Infection Using Collaborative Cross Mice and RNA‐seq Approach. Animal Models and Experimental Medicine, 7, 36-47. https://doi.org/10.1002/ame2.12386
|
[52]
|
Kashyap, V.H., Mishra, A., Bordoloi, S., Varma, A. and Joshi, N.C. (2023) Exploring the Intersection of Aspergillus fumigatus Biofilms, Infections, Immune Response and Antifungal Resistance. Mycoses, 66, 737-754. https://doi.org/10.1111/myc.13619
|
[53]
|
肖云露. 慢性阻塞性肺病合并侵袭性肺曲霉病危险因素及预后分析[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022.
|
[54]
|
Molina, M., Javed, N., Penikilapate, S. and Alao, O. (2025) Aspergillus fumigatus Bloodstream Infection in the Absence of Classic Risk Factors: Expanding the Spectrum of Invasive Aspergillosis. Cureus, 17, e80576. https://doi.org/10.7759/cureus.80576
|
[55]
|
Goli, S.H., Lim, J., Basaran-Akgul, N. and Templeton, S.P. (2025) Adiponectin Pathway Activation Dampens Inflammation and Enhances Alveolar Macrophage Fungal Killing via Lc3-Associated Phagocytosis. PLOS Pathogens, 21, e1012363. https://doi.org/10.1371/journal.ppat.1012363
|
[56]
|
Xu, H., Wu, Y., Li, L., Yuan, W., Zhang, D., Yan, Q., et al. (2017) MiR-344b-1-3p Targets TLR2 and Negatively Regulates TLR2 Signaling Pathway. International Journal of Chronic Obstructive Pulmonary Disease, 12, 627-638. https://doi.org/10.2147/copd.s120415
|
[57]
|
Pan, X., Hao, L., Yang, C., Lin, H., Wu, D., Chen, X., et al. (2023) SWD1 Epigenetically Chords Fungal Morphogenesis, Aflatoxin Biosynthesis, Metabolism, and Virulence of Aspergillus Flavus. Journal of Hazardous Materials, 455, Article ID: 131542. https://doi.org/10.1016/j.jhazmat.2023.131542
|