|
[1]
|
Clavel, J. and Morlon, H. (2017) Accelerated Body Size Evolution during Cold Climatic Periods in the Cenozoic. Proceedings of the National Academy of Sciences, 114, 4183-4188. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, X., Jiang, G., Tian, H., Xu, L., Yan, C., Wang, Z., et al. (2014) Human Impact and Climate Cooling Caused Range Contraction of Large Mammals in China over the Past Two Millennia. Ecography, 38, 74-82. [Google Scholar] [CrossRef]
|
|
[3]
|
McCain, C.M. (2009) Vertebrate Range Sizes Indicate That Mountains May Be “Higher” in the Tropics. Ecology Letters, 12, 550-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tattersall, G.J., Sinclair, B.J., Withers, P.C., Fields, P.A., Seebacher, F., Cooper, C.E. and Maloney, S.K. (2012) Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Comprehensive Physiology, 2, 2151-2202.
|
|
[5]
|
White, T.C.R. (1978) The Importance of a Relative Shortage of Food in Animal Ecology. Oecologia, 33, 71-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Visser, M.E. and Both, C. (2005) Shifts in Phenology Due to Global Climate Change: The Need for a Yardstick. Proceedings of the Royal Society B: Biological Sciences, 272, 2561-2569. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Harris, T.R., Chapman, C.A. and Monfort, S.L. (2009) Small Folivorous Primate Groups Exhibit Behavioral and Physiological Effects of Food Scarcity. Behavioral Ecology, 21, 46-56. [Google Scholar] [CrossRef]
|
|
[8]
|
Snaith, T.V. and Chapman, C.A. (2007) Primate Group Size and Interpreting Socioecological Models: Do Folivores Really Play by Different Rules? Evolutionary Anthropology: Issues, News, and Reviews, 16, 94-106. [Google Scholar] [CrossRef]
|
|
[9]
|
Deschner, T., Kratzsch, J. and Hohmann, G. (2008) Urinary C-Peptide as a Method for Monitoring Body Mass Changes in Captive Bonobos (Pan paniscus). Hormones and Behavior, 54, 620-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Enari, H. (2013) Snow Tolerance of Japanese Macaques Inhabiting High-Latitude Mountainous Forests of Japan. In: Grow, N.B., Gursky-Doyen, S. and Krzton, A., Eds., High Altitude Primates, Springer, 133-151. [Google Scholar] [CrossRef]
|
|
[11]
|
Coloma-García, W., Mehaba, N., Such, X., Caja, G. and Salama, A.A.K. (2020) Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats. Animals, 10, Article No. 2383. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xiao, R., Liu, J. and Xu, X.Z.S. (2015) Thermosensation and Longevity. Journal of Comparative Physiology A, 201, 857-867. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ferrandiz-Huertas, C., Mathivanan, S., Wolf, C., Devesa, I. and Ferrer-Montiel, A. (2014) Trafficking of ThermoTRP Channels. Membranes, 4, 525-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pertusa, M., Moldenhauer, H., Brauchi, S., Latorre, R., Madrid, R. and Orio, P. (2012) Mutagenesis and Temperature-Sensitive Little Machines. In: Mishra, R., Ed., Mutagenesis, InTech, 221-246. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhou, W., Yang, S., Li, B., Nie, Y., Luo, A., Huang, G., et al. (2020) Why Wild Giant Pandas Frequently Roll in Horse Manure. Proceedings of the National Academy of Sciences, 117, 32493-32498. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Thomas, D.W., Blondel, J., Perret, P., Lambrechts, M.M. and Speakman, J.R. (2001) Energetic and Fitness Costs of Mismatching Resource Supply and Demand in Seasonally Breeding Birds. Science, 291, 2598-2600. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nedergaard, J., Golozoubova, V., Matthias, A., Asadi, A., Jacobsson, A. and Cannon, B. (2001) UCP1: The Only Protein Able to Mediate Adaptive Non-Shivering Thermogenesis and Metabolic Inefficiency. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1504, 82-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dawkins, M.J.R. and Stevens, J.F. (1966) Fatty Acid Composition of Triglycerides from Adipose Tissue. Nature, 209, 1145-1146. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Prentki, M. and Madiraju, S.R.M. (2008) Glycerolipid Metabolism and Signaling in Health and Disease. Endocrine Reviews, 29, 647-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cardona, A., Pagani, L., Antao, T., Lawson, D.J., Eichstaedt, C.A., Yngvadottir, B., et al. (2014) Genome-Wide Analysis of Cold Adaptation in Indigenous Siberian Populations. PLOS ONE, 9, e98076. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yau, W.W. and Yen, P.M. (2020) Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. International Journal of Molecular Sciences, 21, Article No. 3020. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, H. and Lin, M. (1985) Effects of Insulin on Thermoregulatory Responses and Hypothalamic Neuronal Activity. Pharmacology, 30, 86-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pääkkönen, T. and Leppäluoto, J. (2002) Cold Exposure and Hormonal Secretion: A Review. International Journal of Circumpolar Health, 61, 265-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Brown, J.H. and Lee, A.K. (1969) Bergmann’s Rule and Climatic Adaptation in Woodrats (Neotoma). Evolution, 23, Article No. 329. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hart, J.S. (1956) Seasonal Changes in Insulation of the Fur. Canadian Journal of Zoology, 34, 53-57. [Google Scholar] [CrossRef]
|
|
[26]
|
Scholander, P.F., Hock, R., Walters, V. and Irving, L. (1950) Adaptation to Cold in Arctic and Tropical Mammals and Birds in Relation to Body Temperature, Insulation, and Basal Metabolic Rate. The Biological Bulletin, 99, 259-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Boyer, B.B. and Barnes, B.M. (1999) Molecular and Metabolic Aspects of Mammalian Hibernation. BioScience, 49, 713-724. [Google Scholar] [CrossRef]
|
|
[28]
|
Signer, C., Ruf, T. and Arnold, W. (2011) Hypometabolism and Basking: The Strategies of Alpine Ibex to Endure Harsh Over-Wintering Conditions: Hypometabolism and Basking in Alpine ibex. Functional Ecology, 25, 537-547. [Google Scholar] [CrossRef]
|
|
[29]
|
Hou, R., Chapman, C.A., Jay, O., Guo, S., Li, B. and Raubenheimer, D. (2020) Cold and Hungry: Combined Effects of Low Temperature and Resource Scarcity on an Edge‐of‐Range Temperate Primate, the Golden Snub‐Nose Monkey. Ecography, 43, 1672-1682. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, P., Watanabe, K. and Eishi, T. (2007) Habitual Hot‐Spring Bathing by a Group of Japanese Macaques (Macaca fuscata) in Their Natural Habitat. American Journal of Primatology, 69, 1425-1430. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nakayama, Y., Matsuoka, S. and Watanuki, Y. (1999) Feeding Rates and Energy Deficits of Juvenile and Adult Japanese Monkeys in a Cool Temperate Area with Snow Coverage: Feeding Rates of Japanese Monkeys. Ecological Research, 14, 291-301. [Google Scholar] [CrossRef]
|
|
[32]
|
Tsuji, Y., Kazahari, N., Kitahara, M. and Takatsuki, S. (2007) A More Detailed Seasonal Division of the Energy Balance and the Protein Balance of Japanese Macaques (Macaca fuscata) on Kinkazan Island, Northern Japan. Primates, 49, 157-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Muroyama, Y., Kanamori, H. and Kitahara, E. (2006) Seasonal Variation and Sex Differences in the Nutritional Status in Two Local Populations of Wild Japanese Macaques. Primates, 47, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Agetsuma, N. (2000) Influence of Temperature on Energy Intake and Food Selection by Macaques. International Journal of Primatology, 21, 103-111. [Google Scholar] [CrossRef]
|
|
[35]
|
Grueter, C.C., Li, D., Ren, B., Wei, F., Xiang, Z. and van Schaik, C.P. (2009) Fallback Foods of Temperate‐Living Primates: A Case Study on Snub‐Nosed Monkeys. American Journal of Physical Anthropology, 140, 700-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, X., Stanford, C.B., Yang, J., Yao, H. and Li, Y. (2013) Foods Eaten by the Sichuan Snub‐Nosed Monkey (Rhinopithecus roxellana) in Shennongjia National Nature Reserve, China, in Relation to Nutritional Chemistry: R. roxellana Diet and Nutritional Chemistry. American Journal of Primatology, 75, 860-871. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lynch, V.J., Bedoya-Reina, O.C., Ratan, A., Sulak, M., Drautz-Moses, D.I., Perry, G.H., et al. (2015) Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic. Cell Reports, 12, 217-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, S., Lorenzen, E.D., Fumagalli, M., Li, B., Harris, K., Xiong, Z., et al. (2014) Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears. Cell, 157, 785-794. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lin, Z., Chen, L., Chen, X., Zhong, Y., Yang, Y., Xia, W., et al. (2019) Biological Adaptations in the Arctic Cervid, the Reindeer (Rangifer tarandus). Science, 364, eaav6312. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bai, L., Liu, B., Ji, C., Zhao, S., Liu, S., Wang, R., et al. (2019) Hypoxic and Cold Adaptation Insights from the Himalayan Marmot Genome. iScience, 11, 519-530. [Google Scholar] [CrossRef] [PubMed]
|