| [1] | Hanson, M.A. and Gluckman, P.D. (2014) Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology? Physiological Reviews, 94, 1027-1076.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Cohen, S., van Dyck, C.H., Gee, M., Doherty, T., Kanekiyo, M., Dhadda, S., et al. (2023) Lecanemab Clarity AD: Quality-of-Life Results from a Randomized, Double-Blind Phase 3 Trial in Early Alzheimer’s Disease. The Journal of Prevention of Alzheimer’s Disease, 10, 771-777.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Jost, S.T., Aloui, S., Evans, J., Ashkan, K., Sauerbier, A., Rizos, A., et al. (2024) Neurostimulation for Advanced Parkinson Disease and Quality of Life at 5 Years: A Non-Randomized Controlled Trial. JAMA Network Open, 7, e2352177.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Dervić, E., Sorger, J., Yang, L., Leutner, M., Kautzky, A., Thurner, S., et al. (2024) Unraveling Cradle-to-Grave Disease Trajectories from Multilayer Comorbidity Networks. NPJ Digital Medicine, 7, Article No. 56.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Michel, J. and Sadana, R. (2017) “Healthy Aging” Concepts and Measures. Journal of the American Medical Directors Association, 18, 460-464.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Hernán, M.A., Wang, W. and Leaf, D.E. (2022) Target Trial Emulation: A Framework for Causal Inference from Observational Data. JAMA, 328, 2446-2447.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Roberts, S.B., Franceschini, M.A., Silver, R.E., Taylor, S.F., de Sa, A.B., Có, R., et al. (2020) Effects of Food Supplementation on Cognitive Function, Cerebral Blood Flow, and Nutritional Status in Young Children at Risk of Undernutrition: Randomized Controlled Trial. BMJ, 370, m2397.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Sobiecki, J.G., Imamura, F., Davis, C.R., Sharp, S.J., Koulman, A., Hodgson, J.M., et al. (2023) A Nutritional Biomarker Score of the Mediterranean Diet and Incident Type 2 Diabetes: Integrated Analysis of Data from the Medley Randomised Controlled Trial and the Epic-Interact Case-Cohort Study. PLOS Medicine, 20, e1004221. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Garcez, M.L., Falchetti, A.C.B., Mina, F. and Budni, J. (2015) Alzheimer’s Disease Associated with Psychiatric Comorbidities. Anais da Academia Brasileira de Ciências, 87, 1461-1473.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Newell, S.A., Bowman, J.A. and Cockburn, J.D. (1999) A Critical Review of Interventions to Increase Compliance with Medication-Taking, Obtaining Medication Refills, and Appointment-Keeping in the Treatment of Cardiovascular Disease. Preventive Medicine, 29, 535-548.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Larsson, S.C., Butterworth, A.S. and Burgess, S. (2023) Mendelian Randomization for Cardiovascular Diseases: Principles and Applications. European Heart Journal, 44, 4913-4924.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Burgess, S. and Thompson, S.G. (2015) Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology, 181, 251-260.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Neeland, I.J. and Kozlitina, J. (2017) Mendelian Randomization: Using Natural Genetic Variation to Assess the Causal Role of Modifiable Risk Factors in Observational Studies. Circulation, 135, 755-758.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Liu, Z., Wang, H., Yang, Z., Lu, Y. and Zou, C. (2023) Causal Associations between Type 1 Diabetes Mellitus and Cardiovascular Diseases: A Mendelian Randomization Study. Cardiovascular Diabetology, 22, Article No. 236.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Sanderson, E., Glymour, M.M., Holmes, M.V., Kang, H., Morrison, J., Munafò, M.R., et al. (2022) Mendelian Randomization. Nature Reviews Methods Primers, 2, Article No. 6.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Dobbie, L.J., Pittam, B., Zhao, S.S., Alam, U., Hydes, T.J., Barber, T.M., et al. (2023) Childhood, Adolescent, and Adulthood Adiposity Are Associated with Risk of PCOS: A Mendelian Randomization Study with Meta-Analysis. Human Reproduction, 38, 1168-1182.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Yuan, S. and Larsson, S.C. (2022) Adiposity, Diabetes, Lifestyle Factors and Risk of Gastroesophageal Reflux Disease: A Mendelian Randomization Study. European Journal of Epidemiology, 37, 747-754.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Li, Y., Wang, X., Zhang, Z., Shi, L., Cheng, L. and Zhang, X. (2024) Effect of the Gut Microbiome, Plasma Metabolome, Peripheral Cells, and Inflammatory Cytokines on Obesity: A Bidirectional Two-Sample Mendelian Randomization Study and Mediation Analysis. Frontiers in Immunology, 15, Article ID: 1348347.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Anto, E.J., Siagian, L.O., Siahaan, J.M., Silitonga, H.A. and Nugraha, S.E. (2019) The Relationship between Hypertension and Cognitive Function Impairment in the Elderly. Open Access Macedonian Journal of Medical Sciences, 7, 1440-1445.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Inouye, S.K., Studenski, S., Tinetti, M.E. and Kuchel, G.A. (2007) Geriatric Syndromes: Clinical, Research, and Policy Implications of a Core Geriatric Concept. Journal of the American Geriatrics Society, 55, 780-791. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Ferrari, C. and Sorbi, S. (2021) The Complexity of Alzheimer’s Disease: An Evolving Puzzle. Physiological Reviews, 101, 1047-1081.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Graff-Radford, J., Yong, K.X.X., Apostolova, L.G., Bouwman, F.H., Carrillo, M., Dickerson, B.C., et al. (2021) New Insights into Atypical Alzheimer’s Disease in the Era of Biomarkers. The Lancet Neurology, 20, 222-234.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Wagner, J., Degenhardt, K., Veit, M., Louros, N., Konstantoulea, K., Skodras, A., et al. (2022) Medin Co-Aggregates with Vascular Amyloid-Β in Alzheimer’s Disease. Nature, 612, 123-131.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Li, L., Yu, X., Sheng, C., Jiang, X., Zhang, Q., Han, Y., et al. (2022) A Review of Brain Imaging Biomarker Genomics in Alzheimer’s Disease: Implementation and Perspectives. Translational Neurodegeneration, 11, Article No. 42.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Bay-Jensen, A., Thudium, C.S., Gualillo, O. and Mobasheri, A. (2018) Biochemical Marker Discovery, Testing and Evaluation for Facilitating OA Drug Discovery and Development. Drug Discovery Today, 23, 349-358.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Puyol-Antón, E., Sinclair, M., Gerber, B., Amzulescu, M.S., Langet, H., Craene, M.D., et al. (2017) A Multimodal Spatiotemporal Cardiac Motion Atlas from MR and Ultrasound Data. Medical Image Analysis, 40, 96-110.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Labrecque, J.A. and Swanson, S.A. (2018) Interpretation and Potential Biases of Mendelian Randomization Estimates with Time-Varying Exposures. American Journal of Epidemiology, 188, 231-238.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Labrecque, J. and Swanson, S. (2021) Age-Varying Genetic Associations and Implications for Bias in Mendelian Randomization. | 
                     
                                
                                    
                                        | [29] | Zheng, J., Baird, D., Borges, M., Bowden, J., Hemani, G., Haycock, P., et al. (2017) Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports, 4, 330-345.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | van der Graaf, A., Claringbould, A., Rimbert, A., Heijmans, B.T., Hoen, P.A.C.’., van Meurs, J.B.J., et al. (2020) Mendelian Randomization While Jointly Modeling Cis Genetics Identifies Causal Relationships between Gene Expression and Lipids. Nature Communications, 11, Article No. 4930.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Brenowitz, W.D., Zimmerman, S.C., Filshtein, T.J., Yaffe, K., Walter, S., Hoffmann, T.J., et al. (2021) Extension of Mendelian Randomization to Identify Earliest Manifestations of Alzheimer Disease: Association of Genetic Risk Score for Alzheimer Disease with Lower Body Mass Index by Age 50 Years. American Journal of Epidemiology, 190, 2163-2171.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Pagoni, P., Higgins, J.P.T., Lawlor, D.A., Stergiakouli, E., Warrington, N.M., Morris, T.T., et al. (2024) Meta-Regression of Genome-Wide Association Studies to Estimate Age-Varying Genetic Effects. European Journal of Epidemiology, 39, 257-270.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Shihab, H.M., Meoni, L.A., Chu, A.Y., Wang, N., Ford, D.E., Liang, K., et al. (2012) Body Mass Index and Risk of Incident Hypertension over the Life Course. Circulation, 126, 2983-2989.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Cao, Y., Rajan, S.S. and Wei, P. (2016) Mendelian Randomization Analysis of a Time‐Varying Exposure for Binary Disease Outcomes Using Functional Data Analysis Methods. Genetic Epidemiology, 40, 744-755.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Sanderson, E., Richardson, T.G., Morris, T.T., Tilling, K. and Davey Smith, G. (2022) Estimation of Causal Effects of a Time-Varying Exposure at Multiple Time Points through Multivariable Mendelian Randomization. PLOS Genetics, 18, e1010290.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Chen, Z., Wang, X., Teng, Z., Huang, J., Mo, J., Qu, C., et al. (2024) A Comprehensive Assessment of the Association between Common Drugs and Psychiatric Disorders Using Mendelian Randomization and Real-World Pharmacovigilance Database. eBioMedicine, 107, Article ID: 105314.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Zhu, Y., Lan, Y., Lv, J., Sun, D., Li, L., Zhang, D., et al. (2024) Association between Dietary Fat Intake and the Risk of Alzheimer’s Disease: Mendelian Randomisation Study. The British Journal of Psychiatry, 226, 24-30.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Xue, H., Chen, X., Yu, C., Deng, Y., Zhang, Y., Chen, S., et al. (2022) Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circulation Research, 131, 404-420.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Jiao, B., Ouyang, Z., Liu, Q., Xu, T., Wan, M., Ma, G., et al. (2024) Integrated Analysis of Gut Metabolome, Microbiome, and Brain Function Reveal the Role of Gut-Brain Axis in Longevity. Gut Microbes, 16, Article ID: 2331434.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Zhang, X., Yang, G., Jiang, S., Ji, B., Xie, W., Li, H., et al. (2024) Causal Relationship between Gut Microbiota, Metabolites, and Sarcopenia: A Mendelian Randomization Study. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 79, glae173.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Morales Berstein, F., McCartney, D.L., Lu, A.T., Tsilidis, K.K., Bouras, E., Haycock, P., et al. (2022) Assessing the Causal Role of Epigenetic Clocks in the Development of Multiple Cancers: A Mendelian Randomization Study. eLife, 11, e75374.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Higham, J., Kerr, L., Zhang, Q., Walker, R.M., Harris, S.E., Howard, D.M., et al. (2022) Local CpG Density Affects the Trajectory and Variance of Age-Associated DNA Methylation Changes. Genome Biology, 23, Article No. 216.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Pan, W., Huang, Q., Zhou, L., Lin, J., Du, X., Qian, X., et al. (2024) Epigenetic Age Acceleration and Risk of Aortic Valve Stenosis: A Bidirectional Mendelian Randomization Study. Clinical Epigenetics, 16, Article No. 41.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Chen, J., Xu, F., Ruan, X., Sun, J., Zhang, Y., Zhang, H., et al. (2023) Therapeutic Targets for Inflammatory Bowel Disease: Proteome-Wide Mendelian Randomization and Colocalization Analyses. eBioMedicine, 89, Article ID: 104494.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Mao, R., Yu, Q. and Li, J. (2023) The Causal Relationship between Gut Microbiota and Inflammatory Dermatoses: A Mendelian Randomization Study. Frontiers in Immunology, 14, Article ID: 1231848.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Li, Y., Liu, H., Ye, S., Zhang, B., Li, X., Yuan, J., et al. (2023) The Effects of Coagulation Factors on the Risk of Endometriosis: A Mendelian Randomization Study. BMC Medicine, 21, Article No. 195.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Walsh, A.J., Blevins, G., Lebel, R.M., Seres, P., Emery, D.J. and Wilman, A.H. (2014) Longitudinal MR Imaging of Iron in Multiple Sclerosis: An Imaging Marker of Disease. Radiology, 270, 186-196.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | de Boer, R., Vrooman, H.A., Ikram, M.A., Vernooij, M.W., Breteler, M.M.B., van der Lugt, A., et al. (2010) Accuracy and Reproducibility Study of Automatic MRI Brain Tissue Segmentation Methods. NeuroImage, 51, 1047-1056.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Davey Smith, G. and Hemani, G. (2014) Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Human Molecular Genetics, 23, R89-R98.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [50] | Qi, G. and Chatterjee, N. (2019) Mendelian Randomization Analysis Using Mixture Models for Robust and Efficient Estimation of Causal Effects. Nature Communications, 10, Article No. 1941.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [51] | Whitmer, R.A., Gunderson, E.P., Barrett-Connor, E., Quesenberry, C.P. and Yaffe, K. (2005) Obesity in Middle Age and Future Risk of Dementia: A 27 Year Longitudinal Population Based Study. BMJ, 330, Article No. 1360.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Fitzpatrick, A.L., Kuller, L.H., Lopez, O.L., Diehr, P., O’Meara, E.S., Longstreth, W.T., et al. (2009) Midlife and Late-Life Obesity and the Risk of Dementia: Cardiovascular Health Study. Archives of Neurology, 66, 336-342.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Abell, J.G., Kivimäki, M., Dugravot, A., Tabak, A.G., Fayosse, A., Shipley, M., et al. (2018) Association between Systolic Blood Pressure and Dementia in the Whitehall II Cohort Study: Role of Age, Duration, and Threshold Used to Define Hypertension. European Heart Journal, 39, 3119-3125.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | Xie, J., Van Hoecke, L. and Vandenbroucke, R.E. (2022) The Impact of Systemic Inflammation on Alzheimer’s Disease Pathology. Frontiers in Immunology, 12, Article ID: 796867.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [55] | Metti, A.L. and Cauley, J.A. (2012) How Predictive of Dementia Are Peripheral Inflammatory Markers in the Elderly? Neurodegenerative Disease Management, 2, 609-622.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [56] | Petrie, J.R., Guzik, T.J. and Touyz, R.M. (2018) Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology, 34, 575-584.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [57] | Chrysant, S.G. (2022) The Debate over the Optimal Blood Pressure Treatment Target of Less than 130/80 mmHg. Postgraduate Medicine, 135, 208-213.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [58] | Navis, G., Faber, H.J., de Zeeuw, D. and de Jong, P.E. (1996) ACE Inhibitors and the Kidney: A Risk-Benefit Assessment. Drug Safety, 15, 200-211.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [59] | Investigators, O., Yusuf, S., Teo, K.K., Pogue, J., Dyal, L., Copland, I., Schumacher, H., Dagenais, G., Sleight, P. and Anderson, C. (2008) Telmisartan, Ramipril, or both in Patients at High Risk for Vascular Events. The New England Journal of Medicine, 358, 1547-1559. | 
                     
                                
                                    
                                        | [60] | Buckley, L.F. and Libby, P. (2024) Colchicine’s Role in Cardiovascular Disease Management. Arteriosclerosis, Thrombosis, and Vascular Biology, 44, 1031-1041.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [61] | Yang, Q. and Zhou, J. (2018) Neuroinflammation in the Central Nervous System: Symphony of Glial Cells. Glia, 67, 1017-1035.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [62] | Lee, S., Park, H., Ryu, W., Lee, J., Bae, H., Han, M., et al. (2013) Effects of Celecoxib on Hematoma and Edema Volumes in Primary Intracerebral Hemorrhage: A Multicenter Randomized Controlled Trial. European Journal of Neurology, 20, 1161-1169.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [63] | Nurmohamed, M.T. (2017) Cardiovascular Safety of Celecoxib, Naproxen and Ibuprofen. Nature Reviews Rheumatology, 13, 136-138.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [64] | Sveinsson, Ó., Kjartansson, Ó. and Valdimarsson, E.M. (2014) Cerebral Ischemia/Infarction—Diagnosis and Treatment. Læknablaðið, 2014, 393-401.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [65] | Molist-Brunet, N., Sevilla-Sánchez, D., Puigoriol-Juvanteny, E., Bajo-Peñas, L., Cantizano-Baldo, I., Cabanas-Collell, L., et al. (2022) Individualized Medication Review in Older People with Multimorbidity: A Comparative Analysis between Patients Living at Home and in a Nursing Home. International Journal of Environmental Research and Public Health, 19, Article No. 3423.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [66] | Akyüz, K., Goisauf, M., Chassang, G., Kozera, Ł., Mežinska, S., Tzortzatou-Nanopoulou, O., et al. (2023) Post-Identifiability in Changing Sociotechnological Genomic Data Environments. BioSocieties, 19, 204-231.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [67] | Pires, M. and Rego, A.C. (2023) ApoE4 and Alzheimer’s Disease Pathogenesis—Mitochondrial Deregulation and Targeted Therapeutic Strategies. International Journal of Molecular Sciences, 24, Article No. 778.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [68] | Largent, E.A., Stites, S.D., Harkins, K. and Karlawish, J. (2021) “That Would Be Dreadful”: The Ethical, Legal, and Social Challenges of Sharing Your Alzheimer’s Disease Biomarker and Genetic Testing Results with Others. Journal of Law and the Biosciences, 8, lsab004.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [69] | Kato, N. (2012) Ethnic Differences in Genetic Predisposition to Hypertension. Hypertension Research, 35, 574-581.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [70] | Taylor, J.Y., Sun, Y.V., Barcelona de Mendoza, V., Ifatunji, M., Rafferty, J., Fox, E.R., et al. (2017) The Combined Effects of Genetic Risk and Perceived Discrimination on Blood Pressure among African Americans in the Jackson Heart Study. Medicine, 96, e8369.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [71] | Kayima, J., Liang, J., Natanzon, Y., Nankabirwa, J., Ssinabulya, I., Nakibuuka, J., et al. (2017) Association of Genetic Variation with Blood Pressure Traits among East Africans. Clinical Genetics, 92, 487-494.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [72] | Liu, Y., Xiao, X., Yang, Y., Yao, R., Yang, Q., Zhu, Y., et al. (2024) The Risk of Alzheimer’s Disease and Cognitive Impairment Characteristics in Eight Mental Disorders: A UK Biobank Observational Study and Mendelian Randomization Analysis. Alzheimer’s & Dementia, 20, 4841-4853.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [73] | Robinson, G.E., Bliss, R. and Hudson, M.E. (2024) The Genomic Case against Genetic Determinism. PLOS Biology, 22, e3002510.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [74] | Korologou-Linden, R., Xu, B., Coulthard, E., Walton, E., Wearn, A., Hemani, G., et al. (2024) Genetics Impact Risk of Alzheimer’s Disease through Mechanisms Modulating Structural Brain Morphology in Late Life. Journal of Neurology, Neurosurgery & Psychiatry, 96, 350-360.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [75] | Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [76] | Zhang, Z., Liu, N., Pan, X., Zhang, C., Yang, Y., Li, X., et al. (2023) Assessing Causal Associations between Neurodegenerative Diseases and Neurological Tumors with Biological Aging: A Bidirectional Mendelian Randomization Study. Frontiers in Neuroscience, 17, Article ID: 1321246.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [77] | Lawlor, D.A., Tilling, K. and Davey Smith, G. (2017) Triangulation in Aetiological Epidemiology. International Journal of Epidemiology, 45, 1866-1886.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [78] | Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., et al. (2018) Causal Associations between Risk Factors and Common Diseases Inferred from GWAS Summary Data. Nature Communications, 9, Article No. 224.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [79] | Sturm, G., Monzel, A.S., Karan, K.R., Michelson, J., Ware, S.A., Cardenas, A., et al. (2022) A Multi-Omics Longitudinal Aging Dataset in Primary Human Fibroblasts with Mitochondrial Perturbations. Scientific Data, 9, Article No. 751.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [80] | Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., et al. (2018) The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife, 7, e34408.  [Google Scholar] [CrossRef] [PubMed] |