孟德尔随机化在老年病因果研究中的应用与挑战
The Application and Challenges of Mendelian Randomization in Causal Research on Geriatric Diseases
摘要: 随着人口老龄化趋势不断加剧,老年病已成为全球公共健康的重大负担。其复杂的病因机制让传统的随机对照试验(RCT)难以进行。而孟德尔随机化(Mendelian Randomization, MR)作为利用遗传变异推断因果关系的工具,在老年病研究中展现出了重要潜力。本文系统梳理了MR在老年病研究中的应用进展,聚焦于表型异质性、工具变量年龄特异性失效、时间依赖性混杂等核心挑战,并探讨了多组学整合、纵向队列分析及扩展MR模型等创新解决方案。同时,文章还评估了MR在老年病临床干预中的指导价值及其伦理社会影响。综合分析表明,MR方法正成为连接基础遗传学与精准老年医学的重要桥梁,有望推动健康老龄化战略的因果证据基础建设。
Abstract: As the trend of population ageing continues to intensify, geriatric diseases have become a major burden on global public health. Their complex etiological mechanisms make traditional randomised controlled trials (RCTs) difficult to conduct. Mendelian randomization (MR), a tool that uses genetic variation to infer causal relationships, has demonstrated significant potential in geriatric disease research. This paper systematically reviews the application of MR in geriatric disease research, focusing on core challenges such as phenotypic heterogeneity, age-specific failure of instrumental variables, and time-dependent confounding. It also explores innovative solutions such as multi-omics integration, longitudinal cohort analysis, and extended MR models. Additionally, the article assesses the guiding value of MR in clinical interventions for geriatric diseases and its ethical and social implications. Comprehensive analysis indicates that MR methods are emerging as a crucial bridge connecting basic genetics with precision geriatric medicine, with the potential to advance the causal evidence foundation for healthy ageing strategies.
文章引用:刘婷, 周瑾, 伍欣妍, 涂传佳, 冯思源, 朱飞, 吴丽艳. 孟德尔随机化在老年病因果研究中的应用与挑战[J]. 生物医学, 2025, 15(5): 929-939. https://doi.org/10.12677/hjbm.2025.155098

1. 引言

随着全球人口老龄化的加速,老年病已然成为公共卫生系统面临的重大挑战。根据世界卫生组织数据,预计到2050年,全球160岁及以上人口将达到20亿,占总人口的22%以上。老年人群常面临多种慢性非传染性疾病(如阿尔茨海默病、心脑血管疾病、帕金森等)的共病负担[1],这些疾病不仅导致患者生活质量(QoL)下降[2],日常生活活动能力(ADL)受限以及社会参与度降低[3],还因疾病慢性化,显著增加了医疗体系的压力。

老年病通常由遗传因素(如基因易感性、表观遗传学改变等)、生理性衰老基础、环境与生活方式、共病与药物联用等长期叠加或协同作用导致,并且其发展通常经过亚临床前期、临床前期、临床症状期、终末期多个阶段,具有多因素、多阶段的病因学特征[4],这使得其病因机制更加复杂。理解老人病的病因机制,尤其是识别可干预的因果风险因素,是实现“健康老龄化”的核心前提[5]。然而,传统的流行病学研究手段在老年病研究中面临诸多挑战。观察性研究因混杂因素和反向因果关系的干扰,难以揭示明确的因果路径[6]。例如,营养状态与认知功能之间是否存在因果关系[7]?或仅是共同衰老过程的表现?尽管随机对照试验(RCT)被认为是因果推断的“黄金标准”[8],但在老年人群中实施RCT存在伦理、经济与可行性等多重障碍,如合并症干扰和干预依从性差等问题[9] [10]

在这一背景下,孟德尔随机化(Mendelian Randomization, MR)作为一种利用遗传变异进行因果推断的方法,为老年病研究带来了突破性的契机。MR基于遗传变异(通常为单核苷酸多态性,SNP)与暴露因素的关联,借助“工具变量”概念模拟随机对照试验的分组机制,天然避免了许多观察性研究中常见的混杂与逆因果问题[11]。这一策略尤其适用于那些不宜通过干预实验研究的问题,如探究潜在可改变的风险因素与阿尔茨海默病的因果关系等[12]

MR方法的最大优势之一在于其“自然随机化”特性[13]:由于基因在出生时已固定,与社会、环境、行为等潜在混杂因素关联较少,使得基于遗传的暴露因素具有高度的工具变量效力。更重要的是,近年来MR技术快速发展,不仅可应用于单一暴露–单一结局的因果探索,还可扩展至多变量MR (MVMR) [14],为老年病这种异质性高、路径复杂的疾病提供更为精细的因果建模手段[15]。尤其在老年病研究中,MR还展现出其独特的优势,如避免因临床异质性和多重共病导致结局受混杂因子影响;可追踪生命早期对晚年健康的因果影响[16];能结合多组数据(如BMI组[17]、代谢组等[18])进行综合因果影响分析等。由此,孟德尔随机化为老年病复杂因果关系的研究提供了强有力的工具,是连接基础遗传学研究与老年精准干预策略之间的重要桥梁。

那么随着MR方法的不断演进与精细化,其在老年病研究中的应用潜力将持续拓展,有望为延缓衰老相关疾病的进程、提升健康寿命的目标,提供基于因果推断的干预靶点。

2. 病毒的结构与复制

2.1. 老年病表型的异质性与共病干扰

老年病的研究充满复杂性,这种复杂性并不只是学术研究上的挑战,更多地是源于老年人多样且不稳定的健康状态。许多老年患者并非只面对单一疾病,而是处于多疾病交织的复杂情况中,具有典型的多系统病理交叉特点。如糖尿病、心血管疾病和认知衰退常常作为共病出现。这种病理上的重叠,一定程度模糊了暴露因素与结局之间的界限与关联,使得传统单一的因果推断结果稳健性降低。例如,一位患有高血压和轻度认知功能下降的老人,难以明确判断血压变化究竟是主观认知功能下降的临床表征,还是衰老过程中其他生理变化所引起的伴随性结果[19]。在没有精确划定暴露因素和结局边界之前,MR分析极易受到混杂因素干扰。更为棘手的是,很多老年病表型本身缺乏统一、普遍的定义;例如,“虚弱”作为老年综合征的重要指标,至今仍未找到其生物标志物的“金标准”[20]。临床上对虚弱的评估往往依赖量表、临床印象或体能测试,其结果受主观性和异质性影响较大。由于MR研究对表型的稳定性和遗传工具变量的精确性要求较高,这种表型的不确定性将直接影响遗传工具变量的选择,从而降低MR研究的可信度。基于此,我们认为将复杂疾病拆解为临床子类型是解决表型异质性的重要路径。研究者需将临床亚型化理念融入到MR设计中,例如在阿尔茨海默病的研究中,Graff-Radford等人提出将阿尔茨海默病划分为“典型型”“血管型”与“混合型”,并且在GWAS中分别构建各亚型的遗传风险评分(GRS),这有助于在MR研究中选出更特异性的工具变量[21]-[23]。也可尝试利用多模态数据分析,如脑部影像[24]、生化标志物[25]、心脏运动图谱[26]等作为客观表型补充工具,通过模型将主观量表与客观表型综合建模,提高表型的稳定性。在MR层面,建议进一步引入中介MR和双向MR等扩展模型,如在分析虚弱与认知功能之间关系时,使用双向MR检测反向路径,判断两者是否存在双向因果关系(如认知下降亦可导致活动减少诱发虚弱);若怀疑中介机制(如虚弱→炎症→认知退化),就结合中介MR进行分析。从而更清晰地解析在共病和表型异质性背景下,特定暴露对特定结局的独立因果效应,以避免因混杂性或反向因果关系导致误判。

2.2. 工具变量的“年龄特异性”失效

在MR中,工具变量作为关键要素之一,对暴露的影响应在整个生命周期内保持稳定[27]。然而,大量实证研究发现,基因对表型的调控作用常常随年龄发生变化,尤其在老年期更为显著或衰减[28]。大多数作为工具变量的SNP,其与暴露的关联会随年龄发生变化[28]。MR分析要求工具SNP与暴露之间存在足够强的关联(通常要求F 统计量  >  10),而混合效力较弱的SNP会导致F统计量下降,故而会出现工具效应弱化[15] [29]。此外,在研究基因表达与复杂性状之间的因果关系时,传统MR方法还常受多效性和连锁不平衡(LD)的干扰[30]。如在阿尔兹海默症的遗传风险评分(AD-GRS)中,条件为50~59岁人群时,AD-GRS与较低的体重指数(BMI)相关,且这种关联在60~70岁人群中更强且显著[31]。这表明基因–表型关联的方向或强度可能随年龄发生显著变化,在某些情况下可能增强(如本例),在其他疾病或暴露中则可能减弱甚至消失,从而直接破坏MR工具变量的可用性,影响传统MR对实验结果的判定。

为解决此难题,一般可采取两种解决方案,其一,采用年龄分层工具变量策略,即根据不同年龄段构建SNP子集,仅保留在特定年龄层中与暴露显著相关的SNP,以提高工具的时效性和针对性[28]。在全基因组关联研究中,可以利用元回归模型估计年龄相关的遗传效应异质性,并且通过利用算法及大数据,设定SNP的相关参数,生成依赖于年龄、基因型等因素的结局表型以此探究年龄变化对遗传效应的影响。例如,Pagoni等提出将BMI相关的SNP分为青中老三类群体,构建三套工具变量,分别用于青少年肥胖、中年代谢异常等阶段性因果分析[32]。其二,利用eQTL/pQTL整合分析,MR-link方法通过联合建模暴露与处于LD状态的SNP来校正多效性,是实现动态eQTL/pQTL整合分析的关键方法[30]。在研究基因表达与脂质的关系中,利用了多个组织(全血、肝脏、小脑)的eQTL数据与个体层面数据相结合,来评估基因表达变化与低密度脂蛋白胆固醇(LDL-C)的因果关系[30],该方法同样适用于整合不同年龄阶段的基因表达数据。灵活运用以上两种方法,可以有效地校正或适应基因–暴露关联的年龄依赖性变化,提高MR分析在不同年龄段因果效应估计的准确性。

2.3. 时间依赖性混杂与生命历程效应

此外,老年疾病往往并非单一时间点暴露的结果,而是多阶段暴露(如青年期肥胖、中年高血压、老年炎症)累积作用的产物,如现已证实年轻成人期体重增加的累积效应增加了老年高血压的风险[33]。传统MR方法假设暴露在生命历程中效应恒定,难以应对这种时间异质性结构。更复杂的是,生命后期的一些变量(如肾功能下降、药物使用)既可能是混杂因子,也可能是暴露与结局之间的中介,造成识别上的双重挑战[34]

针对不同生命历程,可以采取MVMR方法来估计不同时间段的因果效应。使用与相关时间段暴露相关的SNPs,用与早年暴露相关的SNPs估计早年暴露对结局的总效应(可能包含通过晚年暴露的间接路径);用MVMR同时纳入早年和晚年暴露的遗传工具,来估计早年暴露对结局的直接效应(剥离了通过晚年暴露的路径)以及晚年暴露的效应[35]。以辅助解释结果,降低时间依赖性混杂带来的影响。也可以通过两步MR分析法,通过数据库筛选可能的中介因子,设置一个中介变量,来分解早期暴露对老年病的直接与间接路径[36]。如内脏脂肪通过胰岛素抵抗和β-淀粉样蛋白积累间接增加阿尔茨海默病风险,肝脏脂肪的SNPs作为代谢综合症与阿尔茨海默症的中介因子辅助校正MR分析结果[37]。多阶段分析使得暴露与结局的因果关系更为清晰,分析结果更准确。

3. 创新解决方案与前沿技术融合

3.1. 多组学整合:从基因到表型的全链条解析

肠道微生物失衡和冠状动脉疾病(CAD)是老年人中常见的疾病。肠道微生物衍生的色氨酸代谢物吲哚-3-丙酸(IPA)在CAD患者血清中显著减少,是CAD患者中下调最显著的代谢物[38]。将肠道微生物和代谢物与老年人大脑功能联系在一起,结合多组学法更好地理解微生物对长寿相关的神经系统影响[39]。老年人普遍存在肠道微生物群失衡,运用MR可以探讨肠道微生物群及其代谢物与肌肉减少症之间的因果关系,再进行敏感性分析,增强结果可信度[40]。通过老年病相关代谢物可知,MR分析进一步揭示因果关系,为相关疾病治疗提供新策略。

表观遗传时钟可以分析特定胞嘧啶–磷酸–鸟嘌呤(CpG)位点的DNA甲基化(DNAm)水平与年龄的相关性。DNAm在特定的CpG位点与实际年龄有相关性,表观遗传时钟是基于DNAm的指标,每个时钟通过分析不同CpG位点的DNAm水平来构建[41],展现出各个时钟位点的DNAm水平与年龄正相关[42],同时通过MR分析去展示表观遗传时钟与老年病之间的因果关系[43]。尽管单个DNAm位点可能受多种因素影响,但利用遗传工具进行的MR分析有助于克服混杂,为表观遗传加速与老年病风险之间的因果关系提供更稳健的证据。

MR揭示炎症治疗靶点,确认因果关系。蛋白质组是治疗炎症性肠病(IBD)的靶点主要来源,Chen等人在IBD研究中整合了Olink平台pQTL与IBD GWAS,通过全蛋白质组MR和共定位分析以确定IBD潜在靶点,其中多个为潜在药物靶点,探索了循环蛋白在IBD及其亚型中因果作用[44]。MR分析同时也支持肠道微生物群与炎症之间的因果关系,帮助预防和治疗炎症[45]。子宫内膜异位症与炎症相关,采用MR分析全基因组关联研究(GWAS)数据,有力支持凝血因子ADAMTS13/vWF与子宫内膜异位症风险之间的因果关系[46]。炎症多种多样,MR分析有望为治疗靶点提供新方法,确认因果关系有助于临床预防和治疗。

3.2. 纵向队列与重复测量MR

老年病研究中,传统的MR方法通常基于单一时间点的暴露测量,难以体现暴露因素随时间变化对疾病的影响。利用大型数据库的重复测量数据,可以有效捕捉老年人群暴露因素的动态变化,为精准病因推断提供更全面的信息。例如,纵向研究能够揭示暴露因素的变化趋势,进而对老年病的预测提供更高的准确性,并与疾病严重程度的相关性更高[47]。纵向MR脑成像技术为研究大脑老化、神经退行性疾病(例如阿尔茨海默病)以及治疗效果引起的大脑形态变化提供了深入的视角。脑形态测量学变化的评估受到图像采集准确性和重复性以及后续图像分析工具的影响,在设计能够检测脑组织体积变化的纵向研究时,必须考虑图像的重复性,它决定了特定扫描间隔所需的样本量[48]。在少数先前的研究中,这种样本量计算方法已被应用于阿尔茨海默病的临床试验。

多元时间序列(MTS)预测已被广泛研究,并广泛应用于实际[49],其能够有效分析时间序列数据,挖掘数据中与时间动态相关的信息。而MR已成为研究性状之间因果关系的主要工具,它借助大规模全基因组关联研究的结果,基于遗传变异进行因果推断。将MTS预测与MR相结合,例如利用MTS预测对时间序列数据进行分析,以更精准地定义暴露或结局变量,再运用MR方法进一步探究这些变量之间的因果关系,这种结合有望为复杂性状因果关系的研究提供新的视角和方法,提升研究的准确性和可靠性。再如孟德尔随机化混合模型(MRMix),当因果关系和多效性效应引起的遗传相关性处于同一方向时,只要暴露(X)的全基因组关联研究(GWAS)样本量和相应的仪器数量达到最小阈值(例如,nx > 100 K, K > 100),MRMix通常会产生几乎无偏的因果效应估计[50]。因此,整合高质量的纵向队列数据,并开发能够有效利用重复测量信息或处理时间动态效应的MR方法(如MRMix),对于揭示随时间变化的暴露因素对老年病发生与发展的因果影响至关重要。这一整合方法的实施不仅能够增强数据的时效性,也将大大提升老年病研究中的因果推断能力。

4. 老年病MR的临床应用与伦理考量

4.1. 从因果证据到干预策略

MR通过遗传工具变量揭示了不同生命阶段对老年病风险的差异化贡献。例如,中年期(40~60岁)的高血压、肥胖等代谢异常被证实为心血管疾病和痴呆的核心驱动因素[51] [52]。MR研究显示,收缩压每升高10 mmHg,中年人群的痴呆风险增加17%,而这一效应在老年期显著减弱[53]。与此相对,老年期(>65岁)的慢性低度炎症(inflammaging)成为主导风险[54] [55]。这种时空异质性要求干预策略必须精准匹配生命阶段的关键病理机制。

在中年期(40~60岁)的血管风险管理策略中,血压控制[56]被确立为核心干预目标,旨在通过严格调控血压(目标值 ≤ 130/80 mmHg [57])预防继发性血管损伤及其诱发的脑部病变病理进程[5]。首选药物方案包括血管紧张素转换酶抑制剂(ACEI) [58]或血管紧张素受体拮抗剂(ARB)类[59]药物。

进入老年期(>65岁)后,疾病管理的核心目标转向抑制慢性炎症对神经系统的进行性损伤。针对系统性外周炎症[54],低剂量抗炎药物(如秋水仙碱[54] [60])可有效降低循环炎症介质水平;对于中枢神经炎症[61],选择性环氧化酶-2抑制剂(如塞来昔布)虽能减轻脑内炎性反应[62],但需严格评估其潜在不良反应风险[63]。在此阶段,血压管理目标需适度放宽(≤140/90 mmHg [57]),以规避因过度降压导致的灌注不足及脑缺血事件风险[64]。分阶段策略将老年病预防窗口前移,中年“护血管”减少损伤累积,老年“控炎症”延缓疾病进展,实现全生命周期精准防控。

4.2. 伦理挑战与公众沟通

4.2.1. 基因工具变量的社会敏感性

基因歧视风险:特定基因变异可能引发保险拒保或就业歧视,这对老年病MR研究的推广构成现实障碍。因此,需建立基因数据匿名化及反歧视法律框架[65] [66]。以APOE4等位基因为例,其作为阿尔茨海默病(AD)的重要遗传风险因子[67],携带者患AD的风险增加。尽管该信息对于疾病筛查和早期干预具有科学价值,但由于缺乏有效监管,保险公司可能据此上调保费或拒保[68]

工具变量的选择偏差:使用种族相关SNPs可能强化健康不平等,需在研究中纳入多样性样本并验证跨种族适用性。工具变量的选择偏差在老年病研究中是一个关键问题,尤其是在使用种族相关单核苷酸多态性(SNPs)作为工具变量时。种族相关的SNPs通常与特定人群的遗传背景密切相关,例如在欧洲人群中发现的与血压相关的基因位点[69],而在东亚人群中则可能涉及不同的变异[70]。这些SNPs在不同种族群体中的效应方向和强度可能存在差异,甚至在某些情况下与主要人群中的发现相反[71]。因此,如果研究中仅使用单一种族的SNPs作为工具变量,可能会导致选择偏差,从而影响因果推断的准确性。

4.2.2. MR结果在老年健康政策中的可解释性

公众对“遗传决定论”的误解:在老年病研究中,MR常被用来揭示某些基因变异与结局之间的因果关系[72]。然而,这种因果关系并不意味着个体的健康状况完全由基因决定。相反,环境、生活方式、社会经济因素等同样在健康中起着关键作用[73],例如,虽然APOE4携带者患上这种病的概率高,但通过早期干预仍可显著延缓疾病进展[74]。然而,公众往往将MR结果误解为“基因决定一切”,从而忽视了环境和行为干预的重要性。

MR的核心在于利用遗传变异作为工具变量,模拟自然随机化试验,从而减少传统流行病学研究中的混杂偏倚[75]。例如,在研究血压与心血管疾病的关系时,研究者可以利用与血压相关的ACE基因多态性作为工具变量,以评估长期血压升高是否会导致心血管疾病发病率增加[76]。然而,不同基因变异在不同人群中存在多效性与异质性,且个体健康还受到诸多非遗传因素的共同影响[77]。因此,在解释MR结果时,应强调其“工具性”而非“决定性”。

5. 展望

本文深入讨论了MR在老年病因果研究中的特殊挑战和其解决方案。老年病表型具有异质性,还存在共病干扰,这使得暴露因素与结局之间的界限与关联模糊,传统单一的因果推断并不可行。我们认为研究者需将临床亚型化理念融入到MR设计中,同时引入中介MR和双向MR等扩展模型,构建多暴露–多结局的因果链,更精准地分析特定暴露对特定结局的独立因果效应,提升因果推断的可靠性。另外,工具变量的“年龄特异性”失效在老年期中更为显著。基因对表型的调控作用常常随年龄发生变化,传统的MR假设因此不再适用。我们认为研究采用年龄分层工具变量策略,或是通过MR-link方法通过联合建模暴露与处于LD状态的SNP来校正多效性这两种方法,可以有效校正或适应基因–暴露关联的年龄依赖性变化,进而提高MR分析在不同年龄段因果效应估计的准确性。老年病的发生通常是多阶段暴露累积作用的产物,且具有时间依赖性,而传统MR方法难以应对这种时间异质性结构。针对不同生命历程,使用MVMR方法来估计不同时间段的因果效应,或是采用两步MR分析法进行多阶段分析,可以准确地捕捉每个阶段的因果关系,揭示因果效应随时间变化的规律。

在这些方案的基础上,我们提出了关于多组学整合和纵向队列研究的创新方案。通过整合代谢组、表观组、蛋白组等多组学数据[78],MR分析将有望为治疗靶点提供新方法。在纵向队列进行整合后使用能够利用重复测量信息的MR方法,对于揭示随时间变化的暴露因素对老年病发生和发展的因果影响来说至关重要。本文认为,MR在未来关于研究老年病的因果效应上具有重大的发展潜力。目前世界上已有大量的老年病队列研究和多组学数据[79],但这些数据缺乏统一的整合和标准化处理,不能很好地用于研究。而建立一个综合性的老年病数据平台,可以为MR研究老年病因果关系提供更加全面、更高质量的数据支持。在方法工具上,我们认为开发老年病专用的MR工具包可以更好地应对老年病研究中的复杂性(如MR-Base平台) [80]。老年病专用的MR工具包应包括针对老年病特征的统计模型、动态工具变量选择方法以及多暴露–多结局因果网络分析等工具[12],这将有助于更准确地解析老年病的因果关系。同时,MR方法的应用不应仅仅停留在学术研究层面上。在制定老龄健康指南的决策流程中加入MR结果,可以更好地指导老年病的预防和治疗。

MR技术的发展旨在揭示老年病的病因机制,推动老年病研究从描述性向精准医学转型,从而为老年人群提供更优质的医疗服务,助力实现健康老龄化。

基金项目

珠海科技学院大学生创新创业项目(S202413684029S)。

珠海科技学院大学生创新创业项目(S202413684001)。

NOTES

*共同一作。

#通讯作者。

参考文献

[1] Hanson, M.A. and Gluckman, P.D. (2014) Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology? Physiological Reviews, 94, 1027-1076.
https://doi.org/10.1152/physrev.00029.2013
[2] Cohen, S., van Dyck, C.H., Gee, M., Doherty, T., Kanekiyo, M., Dhadda, S., et al. (2023) Lecanemab Clarity AD: Quality-of-Life Results from a Randomized, Double-Blind Phase 3 Trial in Early Alzheimer’s Disease. The Journal of Prevention of Alzheimers Disease, 10, 771-777.
https://doi.org/10.14283/jpad.2023.123
[3] Jost, S.T., Aloui, S., Evans, J., Ashkan, K., Sauerbier, A., Rizos, A., et al. (2024) Neurostimulation for Advanced Parkinson Disease and Quality of Life at 5 Years: A Non-Randomized Controlled Trial. JAMA Network Open, 7, e2352177.
https://doi.org/10.1001/jamanetworkopen.2023.52177
[4] Dervić, E., Sorger, J., Yang, L., Leutner, M., Kautzky, A., Thurner, S., et al. (2024) Unraveling Cradle-to-Grave Disease Trajectories from Multilayer Comorbidity Networks. NPJ Digital Medicine, 7, Article No. 56.
https://doi.org/10.1038/s41746-024-01015-w
[5] Michel, J. and Sadana, R. (2017) “Healthy Aging” Concepts and Measures. Journal of the American Medical Directors Association, 18, 460-464.
https://doi.org/10.1016/j.jamda.2017.03.008
[6] Hernán, M.A., Wang, W. and Leaf, D.E. (2022) Target Trial Emulation: A Framework for Causal Inference from Observational Data. JAMA, 328, 2446-2447.
https://doi.org/10.1001/jama.2022.21383
[7] Roberts, S.B., Franceschini, M.A., Silver, R.E., Taylor, S.F., de Sa, A.B., Có, R., et al. (2020) Effects of Food Supplementation on Cognitive Function, Cerebral Blood Flow, and Nutritional Status in Young Children at Risk of Undernutrition: Randomized Controlled Trial. BMJ, 370, m2397.
https://doi.org/10.1136/bmj.m2397
[8] Sobiecki, J.G., Imamura, F., Davis, C.R., Sharp, S.J., Koulman, A., Hodgson, J.M., et al. (2023) A Nutritional Biomarker Score of the Mediterranean Diet and Incident Type 2 Diabetes: Integrated Analysis of Data from the Medley Randomised Controlled Trial and the Epic-Interact Case-Cohort Study. PLOS Medicine, 20, e1004221.
https://doi.org/10.1371/journal.pmed.1004221
[9] Garcez, M.L., Falchetti, A.C.B., Mina, F. and Budni, J. (2015) Alzheimer’s Disease Associated with Psychiatric Comorbidities. Anais da Academia Brasileira de Ciências, 87, 1461-1473.
https://doi.org/10.1590/0001-3765201520140716
[10] Newell, S.A., Bowman, J.A. and Cockburn, J.D. (1999) A Critical Review of Interventions to Increase Compliance with Medication-Taking, Obtaining Medication Refills, and Appointment-Keeping in the Treatment of Cardiovascular Disease. Preventive Medicine, 29, 535-548.
https://doi.org/10.1006/pmed.1999.0579
[11] Larsson, S.C., Butterworth, A.S. and Burgess, S. (2023) Mendelian Randomization for Cardiovascular Diseases: Principles and Applications. European Heart Journal, 44, 4913-4924.
https://doi.org/10.1093/eurheartj/ehad736
[12] Burgess, S. and Thompson, S.G. (2015) Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. American Journal of Epidemiology, 181, 251-260.
https://doi.org/10.1093/aje/kwu283
[13] Neeland, I.J. and Kozlitina, J. (2017) Mendelian Randomization: Using Natural Genetic Variation to Assess the Causal Role of Modifiable Risk Factors in Observational Studies. Circulation, 135, 755-758.
https://doi.org/10.1161/circulationaha.117.026857
[14] Liu, Z., Wang, H., Yang, Z., Lu, Y. and Zou, C. (2023) Causal Associations between Type 1 Diabetes Mellitus and Cardiovascular Diseases: A Mendelian Randomization Study. Cardiovascular Diabetology, 22, Article No. 236.
https://doi.org/10.1186/s12933-023-01974-6
[15] Sanderson, E., Glymour, M.M., Holmes, M.V., Kang, H., Morrison, J., Munafò, M.R., et al. (2022) Mendelian Randomization. Nature Reviews Methods Primers, 2, Article No. 6.
https://doi.org/10.1038/s43586-021-00092-5
[16] Dobbie, L.J., Pittam, B., Zhao, S.S., Alam, U., Hydes, T.J., Barber, T.M., et al. (2023) Childhood, Adolescent, and Adulthood Adiposity Are Associated with Risk of PCOS: A Mendelian Randomization Study with Meta-Analysis. Human Reproduction, 38, 1168-1182.
https://doi.org/10.1093/humrep/dead053
[17] Yuan, S. and Larsson, S.C. (2022) Adiposity, Diabetes, Lifestyle Factors and Risk of Gastroesophageal Reflux Disease: A Mendelian Randomization Study. European Journal of Epidemiology, 37, 747-754.
https://doi.org/10.1007/s10654-022-00842-z
[18] Li, Y., Wang, X., Zhang, Z., Shi, L., Cheng, L. and Zhang, X. (2024) Effect of the Gut Microbiome, Plasma Metabolome, Peripheral Cells, and Inflammatory Cytokines on Obesity: A Bidirectional Two-Sample Mendelian Randomization Study and Mediation Analysis. Frontiers in Immunology, 15, Article ID: 1348347.
https://doi.org/10.3389/fimmu.2024.1348347
[19] Anto, E.J., Siagian, L.O., Siahaan, J.M., Silitonga, H.A. and Nugraha, S.E. (2019) The Relationship between Hypertension and Cognitive Function Impairment in the Elderly. Open Access Macedonian Journal of Medical Sciences, 7, 1440-1445.
https://doi.org/10.3889/oamjms.2019.300
[20] Inouye, S.K., Studenski, S., Tinetti, M.E. and Kuchel, G.A. (2007) Geriatric Syndromes: Clinical, Research, and Policy Implications of a Core Geriatric Concept. Journal of the American Geriatrics Society, 55, 780-791.
https://doi.org/10.1111/j.1532-5415.2007.01156.x
[21] Ferrari, C. and Sorbi, S. (2021) The Complexity of Alzheimer’s Disease: An Evolving Puzzle. Physiological Reviews, 101, 1047-1081.
https://doi.org/10.1152/physrev.00015.2020
[22] Graff-Radford, J., Yong, K.X.X., Apostolova, L.G., Bouwman, F.H., Carrillo, M., Dickerson, B.C., et al. (2021) New Insights into Atypical Alzheimer’s Disease in the Era of Biomarkers. The Lancet Neurology, 20, 222-234.
https://doi.org/10.1016/s1474-4422(20)30440-3
[23] Wagner, J., Degenhardt, K., Veit, M., Louros, N., Konstantoulea, K., Skodras, A., et al. (2022) Medin Co-Aggregates with Vascular Amyloid-Β in Alzheimer’s Disease. Nature, 612, 123-131.
https://doi.org/10.1038/s41586-022-05440-3
[24] Li, L., Yu, X., Sheng, C., Jiang, X., Zhang, Q., Han, Y., et al. (2022) A Review of Brain Imaging Biomarker Genomics in Alzheimer’s Disease: Implementation and Perspectives. Translational Neurodegeneration, 11, Article No. 42.
https://doi.org/10.1186/s40035-022-00315-z
[25] Bay-Jensen, A., Thudium, C.S., Gualillo, O. and Mobasheri, A. (2018) Biochemical Marker Discovery, Testing and Evaluation for Facilitating OA Drug Discovery and Development. Drug Discovery Today, 23, 349-358.
https://doi.org/10.1016/j.drudis.2017.10.008
[26] Puyol-Antón, E., Sinclair, M., Gerber, B., Amzulescu, M.S., Langet, H., Craene, M.D., et al. (2017) A Multimodal Spatiotemporal Cardiac Motion Atlas from MR and Ultrasound Data. Medical Image Analysis, 40, 96-110.
https://doi.org/10.1016/j.media.2017.06.002
[27] Labrecque, J.A. and Swanson, S.A. (2018) Interpretation and Potential Biases of Mendelian Randomization Estimates with Time-Varying Exposures. American Journal of Epidemiology, 188, 231-238.
https://doi.org/10.1093/aje/kwy204
[28] Labrecque, J. and Swanson, S. (2021) Age-Varying Genetic Associations and Implications for Bias in Mendelian Randomization.
[29] Zheng, J., Baird, D., Borges, M., Bowden, J., Hemani, G., Haycock, P., et al. (2017) Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports, 4, 330-345.
https://doi.org/10.1007/s40471-017-0128-6
[30] van der Graaf, A., Claringbould, A., Rimbert, A., Heijmans, B.T., Hoen, P.A.C.’., van Meurs, J.B.J., et al. (2020) Mendelian Randomization While Jointly Modeling Cis Genetics Identifies Causal Relationships between Gene Expression and Lipids. Nature Communications, 11, Article No. 4930.
https://doi.org/10.1038/s41467-020-18716-x
[31] Brenowitz, W.D., Zimmerman, S.C., Filshtein, T.J., Yaffe, K., Walter, S., Hoffmann, T.J., et al. (2021) Extension of Mendelian Randomization to Identify Earliest Manifestations of Alzheimer Disease: Association of Genetic Risk Score for Alzheimer Disease with Lower Body Mass Index by Age 50 Years. American Journal of Epidemiology, 190, 2163-2171.
https://doi.org/10.1093/aje/kwab103
[32] Pagoni, P., Higgins, J.P.T., Lawlor, D.A., Stergiakouli, E., Warrington, N.M., Morris, T.T., et al. (2024) Meta-Regression of Genome-Wide Association Studies to Estimate Age-Varying Genetic Effects. European Journal of Epidemiology, 39, 257-270.
https://doi.org/10.1007/s10654-023-01086-1
[33] Shihab, H.M., Meoni, L.A., Chu, A.Y., Wang, N., Ford, D.E., Liang, K., et al. (2012) Body Mass Index and Risk of Incident Hypertension over the Life Course. Circulation, 126, 2983-2989.
https://doi.org/10.1161/circulationaha.112.117333
[34] Cao, Y., Rajan, S.S. and Wei, P. (2016) Mendelian Randomization Analysis of a Time‐Varying Exposure for Binary Disease Outcomes Using Functional Data Analysis Methods. Genetic Epidemiology, 40, 744-755.
https://doi.org/10.1002/gepi.22013
[35] Sanderson, E., Richardson, T.G., Morris, T.T., Tilling, K. and Davey Smith, G. (2022) Estimation of Causal Effects of a Time-Varying Exposure at Multiple Time Points through Multivariable Mendelian Randomization. PLOS Genetics, 18, e1010290.
https://doi.org/10.1371/journal.pgen.1010290
[36] Chen, Z., Wang, X., Teng, Z., Huang, J., Mo, J., Qu, C., et al. (2024) A Comprehensive Assessment of the Association between Common Drugs and Psychiatric Disorders Using Mendelian Randomization and Real-World Pharmacovigilance Database. eBioMedicine, 107, Article ID: 105314.
https://doi.org/10.1016/j.ebiom.2024.105314
[37] Zhu, Y., Lan, Y., Lv, J., Sun, D., Li, L., Zhang, D., et al. (2024) Association between Dietary Fat Intake and the Risk of Alzheimer’s Disease: Mendelian Randomisation Study. The British Journal of Psychiatry, 226, 24-30.
https://doi.org/10.1192/bjp.2024.163
[38] Xue, H., Chen, X., Yu, C., Deng, Y., Zhang, Y., Chen, S., et al. (2022) Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circulation Research, 131, 404-420.
https://doi.org/10.1161/circresaha.122.321253
[39] Jiao, B., Ouyang, Z., Liu, Q., Xu, T., Wan, M., Ma, G., et al. (2024) Integrated Analysis of Gut Metabolome, Microbiome, and Brain Function Reveal the Role of Gut-Brain Axis in Longevity. Gut Microbes, 16, Article ID: 2331434.
https://doi.org/10.1080/19490976.2024.2331434
[40] Zhang, X., Yang, G., Jiang, S., Ji, B., Xie, W., Li, H., et al. (2024) Causal Relationship between Gut Microbiota, Metabolites, and Sarcopenia: A Mendelian Randomization Study. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 79, glae173.
https://doi.org/10.1093/gerona/glae173
[41] Morales Berstein, F., McCartney, D.L., Lu, A.T., Tsilidis, K.K., Bouras, E., Haycock, P., et al. (2022) Assessing the Causal Role of Epigenetic Clocks in the Development of Multiple Cancers: A Mendelian Randomization Study. eLife, 11, e75374.
https://doi.org/10.7554/elife.75374
[42] Higham, J., Kerr, L., Zhang, Q., Walker, R.M., Harris, S.E., Howard, D.M., et al. (2022) Local CpG Density Affects the Trajectory and Variance of Age-Associated DNA Methylation Changes. Genome Biology, 23, Article No. 216.
https://doi.org/10.1186/s13059-022-02787-8
[43] Pan, W., Huang, Q., Zhou, L., Lin, J., Du, X., Qian, X., et al. (2024) Epigenetic Age Acceleration and Risk of Aortic Valve Stenosis: A Bidirectional Mendelian Randomization Study. Clinical Epigenetics, 16, Article No. 41.
https://doi.org/10.1186/s13148-024-01647-5
[44] Chen, J., Xu, F., Ruan, X., Sun, J., Zhang, Y., Zhang, H., et al. (2023) Therapeutic Targets for Inflammatory Bowel Disease: Proteome-Wide Mendelian Randomization and Colocalization Analyses. eBioMedicine, 89, Article ID: 104494.
https://doi.org/10.1016/j.ebiom.2023.104494
[45] Mao, R., Yu, Q. and Li, J. (2023) The Causal Relationship between Gut Microbiota and Inflammatory Dermatoses: A Mendelian Randomization Study. Frontiers in Immunology, 14, Article ID: 1231848.
https://doi.org/10.3389/fimmu.2023.1231848
[46] Li, Y., Liu, H., Ye, S., Zhang, B., Li, X., Yuan, J., et al. (2023) The Effects of Coagulation Factors on the Risk of Endometriosis: A Mendelian Randomization Study. BMC Medicine, 21, Article No. 195.
https://doi.org/10.1186/s12916-023-02881-z
[47] Walsh, A.J., Blevins, G., Lebel, R.M., Seres, P., Emery, D.J. and Wilman, A.H. (2014) Longitudinal MR Imaging of Iron in Multiple Sclerosis: An Imaging Marker of Disease. Radiology, 270, 186-196.
https://doi.org/10.1148/radiol.13130474
[48] de Boer, R., Vrooman, H.A., Ikram, M.A., Vernooij, M.W., Breteler, M.M.B., van der Lugt, A., et al. (2010) Accuracy and Reproducibility Study of Automatic MRI Brain Tissue Segmentation Methods. NeuroImage, 51, 1047-1056.
https://doi.org/10.1016/j.neuroimage.2010.03.012
[49] Davey Smith, G. and Hemani, G. (2014) Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Human Molecular Genetics, 23, R89-R98.
https://doi.org/10.1093/hmg/ddu328
[50] Qi, G. and Chatterjee, N. (2019) Mendelian Randomization Analysis Using Mixture Models for Robust and Efficient Estimation of Causal Effects. Nature Communications, 10, Article No. 1941.
https://doi.org/10.1038/s41467-019-09432-2
[51] Whitmer, R.A., Gunderson, E.P., Barrett-Connor, E., Quesenberry, C.P. and Yaffe, K. (2005) Obesity in Middle Age and Future Risk of Dementia: A 27 Year Longitudinal Population Based Study. BMJ, 330, Article No. 1360.
https://doi.org/10.1136/bmj.38446.466238.e0
[52] Fitzpatrick, A.L., Kuller, L.H., Lopez, O.L., Diehr, P., O’Meara, E.S., Longstreth, W.T., et al. (2009) Midlife and Late-Life Obesity and the Risk of Dementia: Cardiovascular Health Study. Archives of Neurology, 66, 336-342.
https://doi.org/10.1001/archneurol.2008.582
[53] Abell, J.G., Kivimäki, M., Dugravot, A., Tabak, A.G., Fayosse, A., Shipley, M., et al. (2018) Association between Systolic Blood Pressure and Dementia in the Whitehall II Cohort Study: Role of Age, Duration, and Threshold Used to Define Hypertension. European Heart Journal, 39, 3119-3125.
https://doi.org/10.1093/eurheartj/ehy288
[54] Xie, J., Van Hoecke, L. and Vandenbroucke, R.E. (2022) The Impact of Systemic Inflammation on Alzheimer’s Disease Pathology. Frontiers in Immunology, 12, Article ID: 796867.
https://doi.org/10.3389/fimmu.2021.796867
[55] Metti, A.L. and Cauley, J.A. (2012) How Predictive of Dementia Are Peripheral Inflammatory Markers in the Elderly? Neurodegenerative Disease Management, 2, 609-622.
https://doi.org/10.2217/nmt.12.68
[56] Petrie, J.R., Guzik, T.J. and Touyz, R.M. (2018) Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology, 34, 575-584.
https://doi.org/10.1016/j.cjca.2017.12.005
[57] Chrysant, S.G. (2022) The Debate over the Optimal Blood Pressure Treatment Target of Less than 130/80 mmHg. Postgraduate Medicine, 135, 208-213.
https://doi.org/10.1080/00325481.2022.2052516
[58] Navis, G., Faber, H.J., de Zeeuw, D. and de Jong, P.E. (1996) ACE Inhibitors and the Kidney: A Risk-Benefit Assessment. Drug Safety, 15, 200-211.
https://doi.org/10.2165/00002018-199615030-00005
[59] Investigators, O., Yusuf, S., Teo, K.K., Pogue, J., Dyal, L., Copland, I., Schumacher, H., Dagenais, G., Sleight, P. and Anderson, C. (2008) Telmisartan, Ramipril, or both in Patients at High Risk for Vascular Events. The New England Journal of Medicine, 358, 1547-1559.
[60] Buckley, L.F. and Libby, P. (2024) Colchicine’s Role in Cardiovascular Disease Management. Arteriosclerosis, Thrombosis, and Vascular Biology, 44, 1031-1041.
https://doi.org/10.1161/atvbaha.124.319851
[61] Yang, Q. and Zhou, J. (2018) Neuroinflammation in the Central Nervous System: Symphony of Glial Cells. Glia, 67, 1017-1035.
https://doi.org/10.1002/glia.23571
[62] Lee, S., Park, H., Ryu, W., Lee, J., Bae, H., Han, M., et al. (2013) Effects of Celecoxib on Hematoma and Edema Volumes in Primary Intracerebral Hemorrhage: A Multicenter Randomized Controlled Trial. European Journal of Neurology, 20, 1161-1169.
https://doi.org/10.1111/ene.12140
[63] Nurmohamed, M.T. (2017) Cardiovascular Safety of Celecoxib, Naproxen and Ibuprofen. Nature Reviews Rheumatology, 13, 136-138.
https://doi.org/10.1038/nrrheum.2017.4
[64] Sveinsson, Ó., Kjartansson, Ó. and Valdimarsson, E.M. (2014) Cerebral Ischemia/Infarction—Diagnosis and Treatment. Læknablaðið, 2014, 393-401.
https://doi.org/10.17992/lbl.2014.0708.553
[65] Molist-Brunet, N., Sevilla-Sánchez, D., Puigoriol-Juvanteny, E., Bajo-Peñas, L., Cantizano-Baldo, I., Cabanas-Collell, L., et al. (2022) Individualized Medication Review in Older People with Multimorbidity: A Comparative Analysis between Patients Living at Home and in a Nursing Home. International Journal of Environmental Research and Public Health, 19, Article No. 3423.
https://doi.org/10.3390/ijerph19063423
[66] Akyüz, K., Goisauf, M., Chassang, G., Kozera, Ł., Mežinska, S., Tzortzatou-Nanopoulou, O., et al. (2023) Post-Identifiability in Changing Sociotechnological Genomic Data Environments. BioSocieties, 19, 204-231.
https://doi.org/10.1057/s41292-023-00299-7
[67] Pires, M. and Rego, A.C. (2023) ApoE4 and Alzheimer’s Disease Pathogenesis—Mitochondrial Deregulation and Targeted Therapeutic Strategies. International Journal of Molecular Sciences, 24, Article No. 778.
https://doi.org/10.3390/ijms24010778
[68] Largent, E.A., Stites, S.D., Harkins, K. and Karlawish, J. (2021) “That Would Be Dreadful”: The Ethical, Legal, and Social Challenges of Sharing Your Alzheimer’s Disease Biomarker and Genetic Testing Results with Others. Journal of Law and the Biosciences, 8, lsab004.
https://doi.org/10.1093/jlb/lsab004
[69] Kato, N. (2012) Ethnic Differences in Genetic Predisposition to Hypertension. Hypertension Research, 35, 574-581.
https://doi.org/10.1038/hr.2012.44
[70] Taylor, J.Y., Sun, Y.V., Barcelona de Mendoza, V., Ifatunji, M., Rafferty, J., Fox, E.R., et al. (2017) The Combined Effects of Genetic Risk and Perceived Discrimination on Blood Pressure among African Americans in the Jackson Heart Study. Medicine, 96, e8369.
https://doi.org/10.1097/md.0000000000008369
[71] Kayima, J., Liang, J., Natanzon, Y., Nankabirwa, J., Ssinabulya, I., Nakibuuka, J., et al. (2017) Association of Genetic Variation with Blood Pressure Traits among East Africans. Clinical Genetics, 92, 487-494.
https://doi.org/10.1111/cge.12974
[72] Liu, Y., Xiao, X., Yang, Y., Yao, R., Yang, Q., Zhu, Y., et al. (2024) The Risk of Alzheimer’s Disease and Cognitive Impairment Characteristics in Eight Mental Disorders: A UK Biobank Observational Study and Mendelian Randomization Analysis. Alzheimers & Dementia, 20, 4841-4853.
https://doi.org/10.1002/alz.14049
[73] Robinson, G.E., Bliss, R. and Hudson, M.E. (2024) The Genomic Case against Genetic Determinism. PLOS Biology, 22, e3002510.
https://doi.org/10.1371/journal.pbio.3002510
[74] Korologou-Linden, R., Xu, B., Coulthard, E., Walton, E., Wearn, A., Hemani, G., et al. (2024) Genetics Impact Risk of Alzheimer’s Disease through Mechanisms Modulating Structural Brain Morphology in Late Life. Journal of Neurology, Neurosurgery & Psychiatry, 96, 350-360.
https://doi.org/10.1136/jnnp-2023-332969
[75] Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[76] Zhang, Z., Liu, N., Pan, X., Zhang, C., Yang, Y., Li, X., et al. (2023) Assessing Causal Associations between Neurodegenerative Diseases and Neurological Tumors with Biological Aging: A Bidirectional Mendelian Randomization Study. Frontiers in Neuroscience, 17, Article ID: 1321246.
https://doi.org/10.3389/fnins.2023.1321246
[77] Lawlor, D.A., Tilling, K. and Davey Smith, G. (2017) Triangulation in Aetiological Epidemiology. International Journal of Epidemiology, 45, 1866-1886.
https://doi.org/10.1093/ije/dyw314
[78] Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., et al. (2018) Causal Associations between Risk Factors and Common Diseases Inferred from GWAS Summary Data. Nature Communications, 9, Article No. 224.
https://doi.org/10.1038/s41467-017-02317-2
[79] Sturm, G., Monzel, A.S., Karan, K.R., Michelson, J., Ware, S.A., Cardenas, A., et al. (2022) A Multi-Omics Longitudinal Aging Dataset in Primary Human Fibroblasts with Mitochondrial Perturbations. Scientific Data, 9, Article No. 751.
https://doi.org/10.1038/s41597-022-01852-y
[80] Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., et al. (2018) The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife, 7, e34408.
https://doi.org/10.7554/elife.34408