SGLT2抑制剂在心血管疾病的研究进展
Advances in SGLT2 Inhibitors for Cardiovascular Diseases
摘要: 本文综述钠–葡萄糖协同转运蛋白2抑制剂(SGLT2i)在心血管疾病领域的研究进展。通过调节心脏负荷、改善能量代谢及抑制纤维化多靶点作用机制,SGLT2i显著降低心力衰竭患者心血管死亡及住院风险,且在射血分数保留型与降低型心衰中均证实获益。关键临床研究证实其心肾保护作用独立于降糖效应:可降低心衰患者主要复合终点风险18%~26%,延缓慢性肾脏病患者肾功能恶化进展28%~39%。基于循证证据,国际指南已将SGLT2i列为心力衰竭标准治疗的基石。当前临床应用仍面临特殊人群安全性、机制争议及药物可及性等挑战。未来研究应着眼于心血管事件早期干预、联合治疗策略完善及精准医疗实践,以进一步降低残余心血管风险。
Abstract: This review examines advances in sodium-glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular diseases. Through multitarget mechanisms—including cardiac load modulation, energy metabolism optimization, and fibrosis suppression—SGLT2i significantly reduce cardiovascular mortality and hospitalization risks in heart failure (HF) patients, demonstrating consistent benefits in both heart failure with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). Pivotal clinical trials confirm cardiorenal protection independent of glucose-lowering effects: an 18%~26% reduction in primary composite endpoints for HF, and 28%~39% attenuation of renal function deterioration in chronic kidney disease (CKD) patients. Evidence-based guidelines now designate SGLT2i as foundational therapy for HF. Current clinical implementation faces challenges regarding special population safety, mechanistic controversies, and global accessibility. Future research should prioritize early cardiovascular event intervention, refined combination strategies, and precision medicine approaches to further mitigate residual cardiovascular risk.
文章引用:员峰莉, 张玺. SGLT2抑制剂在心血管疾病的研究进展[J]. 临床医学进展, 2025, 15(9): 504-511. https://doi.org/10.12677/acm.2025.1592519

1. 引言

心力衰竭(heart failure, HF)指心脏结构和(或)功能异常导致心室收缩和(或)舒张障碍的临床综合征,其5年生存率约为50%,射血分数保留型心衰(Heart Failure with Preserved Ejection Fraction, HFpEF)占16%~52% [1] [2],相比射血分数降低的心衰(Heart Failure with Reduced Ejection Fraction, HFrEF),HFPEF长期缺乏有效改善预后的药物。约30%的心衰患者合并糖尿病,其心血管死亡风险显著升高。肾素–血管紧张素系统抑制剂和β受体阻滞剂(Beta-adrenergic Receptor Blocker, βB)改善了部分患者预后,但心衰再住院率仍达22%,糖尿病患者的残余心血管风险持续存在[3]。传统心血管药物主要针对单一病理途径,难以应对心–肾–代谢的复杂相互作用。当HFpEF药物研发停滞时,糖尿病心血管结局试验(Cardiovascular Outcomes Trial, CVOT)成为关键转折点。2015年EMPA-REG OUTCOME研究证实钠-葡萄糖协同转运蛋白2抑制剂(Sodium-Glucose Cotransporter-2 Inhibitors, SGLT2i)恩格列净使2型糖尿病合并心血管疾病(Type 2 Diabetes Mellitus with Comorbid Cardiovascular Disease, T2DM-CVD)患者心血管死亡率降低38%,心衰住院风险减少35% [4]。SGLT2i的心肾保护作用独立于降糖效应,其机制涉及促进尿钠排泄降低心脏前负荷、增强酮体利用优化心肌能量代谢、抑制钠氢交换器减轻细胞内钙超载以及拮抗炎症与纤维化[5]。达格列净(DAPA-HF实验)、恩格列净(EMPEROR系列试验)相继在非糖尿病心衰患者中证实了SGLT2i的临床获益[6] [7],并在HFpEF治疗领域取得重要进展。欧洲心脏病学会(European Society of Cardiology, ESC)和美国心脏病学会(American College of Cardiology, ACC)等国际指南将SGLT2i列为心力衰竭的一线治疗药物[8] [9]。本综述将系统阐述SGLT2i的器官保护机制,梳理从糖尿病到心力衰竭、从HFrEF至HFpEF的关键证据,解读指南更新要点及临床意义,探讨当前争议与未来方向。

2. 药物机制

SGLT2i通过高选择性抑制肾脏近端小管钠–葡萄糖协同转运蛋白2 (Sodium-Glucose Cotransporter-2, SGLT2)受体,阻断约90%滤过葡萄糖的重吸收,导致尿糖排泄及渗透性利尿[10]。伴随的尿钠排泄增加激活肾小管球反馈机制,降低肾小球高滤过状态,此作用独立于胰岛素信号通路[11] [12]。在心血管保护方面,SGLT2i通过多途径协同作用。SGLT2i持续排钠利尿减少血浆容量约7%~10%,降低心脏前负荷和收缩压1.68 mmHg,同时改善血管顺应性和中心动脉压,且不激活肾素–血管紧张素–醛固酮系统(Renin-Angiotensin-Aldosterone System, RAAS) [13] [14]。其代谢重构作用表现为轻度升高循环酮体,使酮体作为高效能量底物被心肌优先利用,改善缺血或衰竭心肌的ATP生成效率[15] [16]。然而,酮体代谢呈现“双刃剑”效应,生理浓度的酮体(β-羟丁酸0.5~1.0 mmol/L)可改善心功能;但在极端情况下(如围术期胰岛素剂量不足),SGLT2i介导的尿糖排泄促进脂解及酮体生成,可能诱发DKA,血糖正常型DKA因缺乏典型高血糖症状易漏诊[17]。临床实践中建议高危患者(如1型糖尿病、低BMI者)启用前评估DKA风险,并避免极低碳水化合物饮食[18]。”炎症是影响心脏重塑的重要因素。SCLGT2i可激活AMPK通路抑制TGF-β/Smad3磷酸化,下调Galectin-3、IL-11等促纤维化因子表达,减轻心肌胶原沉积与间质纤维化[19]。肾脏保护是SGLT2i心血管获益的关键环节,其通过降低肾小球内压及蛋白尿,延缓估算肾小球滤过率(estimated Glomerular Filtration Rate, eGFR)下降速率,间接改善心功能。

综上所述,SGLT2i通过促进尿钠排泄、优化心肌能量底物(如酮体)、调节离子交换、抑制炎症纤维化以及改善肾小球血流动力学等多途径协同发挥心肾保护作用。值得注意的是,尽管DAPA-HF与EMPEROR-Reduced等试验在非糖尿病人群中证实了SGLT2i的显著获益,支持其保护作用独立于降糖效应,但关于机制是否完全独立于降糖仍存探讨空间[20]。高血糖本身可通过促进氧化应激和内皮损伤间接加剧心力衰竭进展,提示降糖效应可能在特定人群或背景下成为SGLT2i整体心肾保护机制的协同因素之一。此外,前述酮体代谢的“双刃剑”效应(如DKA风险)也部分反映了代谢干预与心血管获益之间的复杂关联[17]

药动学特征上,恩格列净、达格列净和卡格列净的口服生物利用度分别为>60%、78%与65%,血浆半衰期约10~13小时,主要经肾脏排泄(恩格列净 ≈ 50%,达格列净 ≈ 75%,卡格列净 ≈ 30%)。严重肾功能不全时需调整剂量(eGFR < 45 mL/min/1.73m2时恩格列净限用10mg,eGFR < 25 mL/min/1.73m2时达格列净禁用,eGFR < 30 mL/min/1.73m2时卡格列净禁用),高蛋白结合率(>90%)特性使其无需常规血药浓度监测[21]。值得注意的是,严重肾功能不全者(eGFR < 20 mL/min/1.73m2)被排除在EMPA-KIDNEY等关键试验之外,导致该人群的疗效与安全性数据未知,临床决策需权衡潜在心肾获益与电解质紊乱风险[22]

3. 关键临床证据

SGLT2i的心血管获益证据始于T2DM-CVD人群。EMPA-REG OUTCOME试验首次证明恩格列净降低心血管死亡风险38%及心力衰竭住院风险35% [23]。DECLARE-TIMI 58试验在更广泛2型糖尿病(Type 2 Diabetes Mellitus, T2DM)人群中证实达格列净降低心力衰竭住院风险27%,尤其在左心室射血分数(Left Ventricular Ejection Fraction, LVEF) ≤ 40%亚组中获益更显著[24]。CANVAS Program显示卡格列净降低主要心血管不良事件(Major Adverse Cardiovascular Events, MACE)风险14%及心力衰竭住院风险33%,但截肢风险升高提示需个体化用药[25]

SGLT2i的价值进一步体现在其对HF的保护作用。DAPA-HF试验证实在LVEF ≤ 40%患者(45%无糖尿病)中,达格列净降低心血管死亡或心力衰竭恶化的复合终点26%,确立了SGLT2i对非糖尿病HFrEF患者的治疗价值[26]。EMPEROR-Reduced试验进一步验证恩格列净降低相同复合终点25%,并显著延缓eGFR下降速率,突显了其心肾协同保护优势[27]

SGLT2i的突破性进展出现在HFpEF领域。EMPEROR-Preserved试验首次证实在LVEF > 40%患者中,恩格列净可降低心血管死亡或心衰住院的复合终点风险21%,打破HFpEF长期缺乏有效药物治疗的困境[28]。后续DELIVER试验将达格列净获益扩展至全LVEF谱系(包括LVEF > 60%)患者,降低相同复合终点风险18%,确立了SGLT2i作为首类可改善HFpEF患者预后的药物[29]

大型随机对照试验将SGLT2抑制剂的心肾获益扩展至慢性肾脏病(Chronic Kidney Disease, CKD)患者。DAPA-CKD试验在eGFR 25~75 mL/min/1.73m2的CKD患者中,达格列净显著降低eGFR下降 ≥ 50%、终末期肾病肾脏或心血管死亡的肾脏复合终点风险39% [30]。EMPA-KIDNEY试验则纳入了更广泛的CKD人群(含eGFR低至15~20 mL/min/1.73m2及非糖尿病肾病),证明恩格列净可降低肾脏疾病进展或心血管死亡的复合终点28%,有力证实了其独立于糖尿病的肾脏保护作用[31]。2025年CONFIDENCE试验显示,非奈利酮 + 恩格列净联用使糖尿病肾病UACR降低52% (单药仅降20%~23%)。

值得注意的是,不同SGLT2i药物在特定终点和人群中的疗效与安全性存在一定差异。在HFrEF患者中,恩格列净(EMPEROR-Reduced)与达格列净(DAPA-HF)降低心血管死亡或心衰住院复合终点的风险幅度相似(约25%~26%) [26] [27],但恩格列净在延缓eGFR下降速率方面显示出更显著的优势(差异1.73 mL/min/年,P < 0.001),提示可能存在更强的肾小管保护作用。在HFpEF领域,恩格列净(EMPEROR-Preserved)和达格列净(DELIVER)均显著降低主要复合终点风险(21% vs 18%),其中在LVEF > 60%亚组中达格列净的获益似乎更为突出,但该差异可能与研究人群基线特征相关,尚需进一步研究确认[28] [29] [32]。卡格列净(CANVAS Program)虽显示出心衰住院风险降低(33%)和MACE风险适度降低(14%),但其截肢风险升高需引起临床警惕,限制了其在心力衰竭患者中的优先选择[25]

特殊人群的用药证据仍有待补充。对于急性失代偿性心力衰竭(ADHF)患者,目前缺乏随机对照试验指导住院期间启动SGLT2i的最佳时机。观察性研究建议在患者血流动力学稳定后(通常定义为收缩压 > 100 mmHg且停用静脉正性肌力药)早期启用,但仍需警惕糖尿病酮症酸中毒(DKA)风险。在1型糖尿病患者中,达格列净虽能改善血糖控制(DEPICT试验),但其DKA风险显著增加至4.3%(对照组仅为0.4%),且目前缺乏其改善心力衰竭或CKD等硬终点获益的证据[18]。儿童及青少年群体中SGLT2i的应用数据极为有限,目前仅有零星个案报道,安全性和有效性证据严重匮乏。此外,严重肾功能不全患者(eGFR < 20 mL/min/1.73m2)被关键试验(如EMPA-KIDNEY)排除在外,导致该人群的疗效和安全性数据未知[22]。最后,经济学因素显著制约了SGLT2i的全球可及性。高收入国家内部医保覆盖存在显著不均,例如美国Medicare Part D计划下的患者自付额可高达每月100美元,而英国国家医疗服务体系则提供全额报销。在中低收入地区(如印度、撒哈拉以南非洲),SGLT2i的费用可能占到人均月收入的50%以上,且这些地区普遍缺乏基于当地医疗体系的药物经济学评价来指导资源分配决策[33]

4. 临床应用指南

基于多项临床试验证据,国际指南重塑了SGLT2i的治疗地位。2023年ESC及2024年中国心衰指南将SGLT2i列为HFrEF一线治疗的“五朵金花”,明确推荐血管紧张素受体–脑啡肽酶抑制剂(Angiotensin Receptor-Neprilysin Inhibitor, ARNI)/血管紧张素转换酶抑制剂(Angiotensin-Converting Enzyme Inhibitor, ACEI)/血管紧张素受体阻滞剂(Angiotensin Receptor Blocker, ARB)、β受体阻滞剂、盐皮质激素受体拮抗剂(Mineralocorticoid Receptor Antagonist, MRA)、钠–葡萄糖协同转运蛋白2抑制剂(Sodium-Glucose Cotransporter-2 Inhibitors, SGLT2i)、可溶性鸟苷酸环化酶刺激剂(Soluble Guanylate Cyclase Stimulator, sGC stimulator),并强调了其在降低全因死亡及心力衰竭住院风险方面的获益[34]。ACC 2022年心衰管理指南也赋予SGLT2i治疗HFrEF最高级别推荐,并将其适应症扩展至射血分数轻度降低心衰(Heart Failure with mildly reduced Ejection Fraction,HFmrEF) [35]。糖尿病管理方面,美国糖尿病协会(American Diabetes Association, ADA)与欧洲糖尿病研究协会(European Association for the Study of Diabetes, EASD) 2023共识指出,合并动脉粥样硬化性心血管疾病(Atherosclerotic Cardiovascular Disease, ASCVD)或高危因素的T2DM患者应将SGLT2i或胰高血糖素样肽-1受体激动剂(Glucagon-Like Peptide-1 Receptor Agonist, GLP-1RA)作为降糖首选,强调心肾获益优先于血糖控制[36]

SGLT2i适用人群主要包括全射血分数谱系心衰(含HFmrEF、HFpEF患者,无论是否合并糖尿病)、T2DM合并ASCVD或CKD患者(eGFR ≥ 20 mL/min/1.73m2)、CKD患者(eGFR ≥ 20 mL/min/1.73m2,含非糖尿病肾病)。启动时机强调早期干预,HFrEF确诊后应立即在标准治疗基础上联合SGLT2i,而非作为传统阶梯治疗中的后续选择。剂量选择需遵循循证证据,恩格列净推荐10~25 mg/日、达格列净10 mg/日,卡格列净因截肢风险需慎用于心力衰竭(Food and Drug Administration, FDA)。安全性监控需重点关注生殖泌尿道感染(发生率约4%~6%)、糖尿病酮症酸中毒(Diabetic Ketoacidosis, DKA) (罕见但致命,警惕手术、极低碳水化合物饮食、胰岛素剂量骤减,需监测血酮及阴离子间隙)、容量不足(尤其老年、联用利尿剂或RAAS抑制剂者,需监测血压、血钠及血容量) [37]

5. 争议与挑战

尽管SGLT2i的循证证据日益充分,但其心肾保护机制是否完全独立于降糖作用仍存争议。DAPA-HF与EMPEROR-Reduced试验在非糖尿病人群中证实了SGLT2i能显著降低心血管死亡或心力衰竭住院风险,然而高血糖可能通过促进氧化应激和内皮损伤间接加剧心力衰竭进展,提示降糖作用或是其心肾保护机制的协同因素之一[20]。在SGLT2i的作用机制中,酮体代谢呈现“双刃剑”效应尤为突出。生理浓度的酮体(β-羟丁酸0.5~1.0 mmol/L)作为高效的心肌能量底物可改善心功能;然而在极端情况下(如围术期胰岛素剂量不足),SGLT2i可能诱发DKA。血糖正常型DKA因缺乏典型高血糖症状易漏诊,其机制涉及SGLT2i介导的尿糖排泄促进脂解及酮体生成[17]。不同SGLT2i药物疗效存在差异。恩格列净与达格列净在HFrEF患者中分别降低心血管死亡或心力衰竭住院风险25%与26%,然而,恩格列净在延缓eGFR下降速率(差异1.73 mL/min/年,P < 0.001)可能反映了更强的肾小管保护作用[26]。在HFpEF患者中,恩格列净(EMPEROR-Preserved)与达格列净(DELIVER)降低主要MACE复合终点风险幅度分别为21%与18%,LVEF > 60%亚组中达格列净获益更显著,这种差异可能与研究人群基线特征相关[32]

特殊人群用药证据亟待补充。目前尚缺乏急性失代偿心衰(Acute Decompensated Heart Failure, ADHF)患者随机对照试验证据指导其住院期间启动SGLT2i的最佳时机,观察性研究建议在血流动力学稳定后(通常定义为收缩压 > 100 mmHg且停用静脉正性肌力药)早期启用,但仍需警惕DKA风险。在1型糖尿病患者中,达格列净虽能改善血糖控制(DEPICT试验),但其DKA风险显著增加至4.3% (对照组0.4%),且缺乏其对心力衰竭或CKD等硬终点获益的证据[18]。儿童及青少年群体中SGLT2i的应用目前仅有个案报道,其安全性和有效性证据匮乏。此外,严重肾功能不全者(eGFR < 20 mL/min/1.73m2)被排除在EMPA-KIDNEY等关键试验之外,导致该人群的疗效与安全性数据未知[22]

经济学因素制约了SGLT2i的全球可及性。高收入国家医保覆盖存在显著不均(如美国Medicare Part D计划下的患者自付额可高达每月100美元,而英国国家医疗服务体系则提供全额报销)。在中低收入地区(如印度、撒哈拉以南非洲),SGLT2i的费用可占人均月收入50%以上,且缺乏基于当地医疗体系的本土化药物经济学评价[33]

6. 未来研究方向

SGLT2i的未来研究将拓展适应症前移、联合策略优化及精准医疗三大方向。新适应症探索聚焦心血管事件早期干预,急性心肌梗死(Acute Myocardial Infarction, AMI)后早期(≤72小时)启动SGLT2i的机制基础在于其抗炎、抑制心肌纤维化及改善能量代谢特性。SOLOIST-WHI试验亚组分析提示索格列净降低AMI合并心衰患者心血管死亡/心衰住院风险33% (HR 0.67, 95% CI 0.52~0.85),但需前瞻性RCT验证[38]。SGLT2i稳定动脉粥样硬化斑块的潜力源于临床前研究,SGLT2i可抑制巨噬细胞NLRP3炎症小体活化并减少基质金属蛋白酶-9分泌,延缓斑块进展,但人类影像学终点证据尚待积累[39]。联合疗法优化旨在实现心肾代谢协同保护。SGLT2i与GLP-1受体激动剂联用(如达格列净 + 司美格鲁肽)可能通过血流动力学调控 + 抗动脉粥样硬化的互补机制进一步降低MACE风险。基线NT-proBNP ≥ 4000 pg/mL的HFpEF患者,SGLT2i联合维立西呱进一步降低心血管事件。SUGAR-DM-HF试验正在评估该策略对糖尿病合并心衰患者的获益,与新型降脂药联用有望协同改善脂质代谢紊乱及内皮功能[40]。精准医疗需突破“一刀切”用药模式,生物标志物指导的个体化治疗成为趋势,动态监测酮体水平(如β-羟丁酸 > 0.6 mmol/L预警DKA风险,0.3~0.5 mmol/L提示心能效优化窗口)可平衡疗效与安全性[41]。下一代抑制剂开发中,SGLT1/2双抑制剂索格列净通过抑制肠道SGLT1减少葡萄糖吸收(餐后血糖降幅↑28%)及肾脏SGLT2促进尿糖排泄,在SCORED试验中降低糖尿病合并CKD患者心血管事件26%,但胃肠道不良反应限制其长期耐受性[42]

7. 结论

SGLT2i的核心价值是改变单一疾病治疗模式,通过多靶点干预心–肾–代谢系统之间的相互作用,为心力衰竭、慢性肾脏病及T2DM共病患者提供一种综合治疗方案,其降低心血管死亡或心衰住院风险21%~26%及肾脏复合终点风险28%~39%表明器官保护治疗模式的根本性转变[26]。这一进展使SGLT2i从糖尿病降糖药物转型为心血管疾病基础治疗药物,要求心内科、内分泌科及肾科构建多学科协作路径。心脏内科负责HFrEF或HFpEF患者的早期用药,确诊后立即启动“五朵金花”治疗,内分泌科负责糖尿病患者的代谢风险管理(平衡DKA预防与心肾获益),肾脏内科监测eGFR动态变化并调整剂量(eGFR ≥ 15 mL/min/1.73m2维持治疗),三方合作最大化治疗获益[8]。最终目标是以患者为中心,结合药物干预与非药物策略,在SGLT2i基础上联合心脏康复运动(提升峰值摄氧量 ≥ 15%)、限钠饮食(<3 g/日)及远程心衰管理(降低30天再住院率),通过三级预防体系覆盖ASCVD全程,从控制肥胖、高血压等高危因素到保护终末器官,最终实现心血管残余风险的持续减少[43]

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024 [J]. 中华心血管病杂志, 2024, 52(3): 235-275.
[2] Savarese, G., Becher, P.M., Lund, L.H., Seferovic, P., Rosano, G.M.C. and Coats, A.J.S. (2022) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287.
https://doi.org/10.1093/cvr/cvac013
[3] Greene, S.J., Ayodele, I., Pierce, J.B., Khan, M.S., Lewsey, S.C., Yancy, C.W., et al. (2024) Eligibility and Projected Benefits of Rapid Initiation of Quadruple Therapy for Newly Diagnosed Heart Failure. JACC: Heart Failure, 12, 1365-1377.
https://doi.org/10.1016/j.jchf.2024.03.001
[4] Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128.
https://doi.org/10.1056/nejmoa1504720
[5] Cinti, F., Laborante, R., Cappannoli, L., Morciano, C., Gugliandolo, S., Pontecorvi, A., et al. (2025) The Effects of SGLT2i on Cardiac Metabolism in Patients with Hfpef: Fact or Fiction? Cardiovascular Diabetology, 24, Article No. 208.
https://doi.org/10.1186/s12933-025-02767-9
[6] Salerno, N., Ielapi, J., Cersosimo, A., Leo, I., Di Costanzo, A., Armentaro, G., et al. (2025) Early Hemodynamic Impact of SGLT2 Inhibitors in Overweight Cardiometabolic Heart Failure: Beyond Fluid Offloading to Vascular Adaptation—A Preliminary Report. Cardiovascular Diabetology, 24, Article No. 141.
https://doi.org/10.1186/s12933-025-02699-4
[7] Raposeiras-Roubin, S., Amat-Santos, I.J., Rossello, X., González Ferreiro, R., González Bermúdez, I., Lopez Otero, D., et al. (2025) Dapagliflozin in Patients Undergoing Transcatheter Aortic-Valve Implantation. New England Journal of Medicine, 392, 1396-1405.
https://doi.org/10.1056/nejmoa2500366
[8] McDonagh, T.A., Metra, M., Adamo, M., et al. (2024) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Giornale Italiano di Cardiologia (Rome), 25, 202-213.
[9] Heidenreich, P.A., Bozkurt, B., Aguilar, D., Allen, L.A., Byun, J.J., Colvin, M.M., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 79, 1757-1780.
https://doi.org/10.1016/j.jacc.2021.12.011
[10] Tahrani, A.A., Barnett, A.H. and Bailey, C.J. (2016) Pharmacology and Therapeutic Implications of Current Drugs for Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 12, 566-592.
https://doi.org/10.1038/nrendo.2016.86
[11] Abdul-Ghani, M.A., Norton, L. and DeFronzo, R.A. (2015) Renal Sodium-Glucose Cotransporter Inhibition in the Management of Type 2 Diabetes Mellitus. American Journal of Physiology-Renal Physiology, 309, F889-F900.
https://doi.org/10.1152/ajprenal.00267.2015
[12] Cherney, D.Z.I., Perkins, B.A., Soleymanlou, N., Maione, M., Lai, V., Lee, A., et al. (2014) Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients with Type 1 Diabetes Mellitus. Circulation, 129, 587-597.
https://doi.org/10.1161/circulationaha.113.005081
[13] Pfeifer, M., Townsend, R.R., Davies, M.J., Vijapurkar, U. and Ren, J. (2017) Effects of Canagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, on Blood Pressure and Markers of Arterial Stiffness in Patients with Type 2 Diabetes Mellitus: A Post Hoc Analysis. Cardiovascular Diabetology, 16, Article No. 29.
https://doi.org/10.1186/s12933-017-0511-0
[14] Colombo, G., Casella, R., Cazzaniga, A. and Casiraghi, C. (2020) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. Internal and Emergency Medicine, 15, 515-517.
https://doi.org/10.1007/s11739-020-02297-0
[15] Fan, G. and Guo, D. (2023) The Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Structure Remodeling and Function: A Meta-Analysis of Randomized Controlled Trials. European Journal of Internal Medicine, 114, 49-57.
https://doi.org/10.1016/j.ejim.2023.04.002
[16] Aziz, F., Tripolt, N.J., Pferschy, P.N., Scharnagl, H., Abdellatif, M., Oulhaj, A., et al. (2024) Ketone Body Levels and Its Associations with Cardiac Markers Following an Acute Myocardial Infarction: A Post Hoc Analysis of the EMMY Trial. Cardiovascular Diabetology, 23, Article No. 145.
https://doi.org/10.1186/s12933-024-02221-2
[17] Taylor, S.I., Blau, J.E., Rother, K.I. and Beitelshees, A.L. (2019) SGLT2 Inhibitors as Adjunctive Therapy for Type 1 Diabetes: Balancing Benefits and Risks. The Lancet Diabetes & Endocrinology, 7, 949-958.
https://doi.org/10.1016/s2213-8587(19)30154-8
[18] Dandona, P., Mathieu, C., Phillip, M., Hansen, L., Tschöpe, D., Thorén, F., et al. (2018) Efficacy and Safety of Dapagliflozin in Patients with Inadequately Controlled Type 1 Diabetes: The DEPICT-1 52-Week Study. Diabetes Care, 41, 2552-2559.
https://doi.org/10.2337/dc18-1087
[19] Feng, B., Yu, P., Yu, H., Qian, B., Li, Y., Sun, K., et al. (2023) Therapeutic Effects on the Development of Heart Failure with Preserved Ejection Fraction by the Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin in Type 2 Diabetes. Diabetology & Metabolic Syndrome, 15, Article No. 141.
https://doi.org/10.1186/s13098-023-01116-8
[20] Packer, M. (2020) Are the Benefits of SGLT2 Inhibitors in Heart Failure and a Reduced Ejection Fraction Influenced by Background Therapy? Expectations and Realities of a New Standard of Care. European Heart Journal, 41, 2393-2396.
https://doi.org/10.1093/eurheartj/ehaa344
[21] Garcia-Ropero, A., Badimon, J.J. and Santos-Gallego, C.G. (2018) The Pharmacokinetics and Pharmacodynamics of SGLT2 Inhibitors for Type 2 Diabetes Mellitus: The Latest Developments. Expert Opinion on Drug Metabolism & Toxicology, 14, 1287-1302.
https://doi.org/10.1080/17425255.2018.1551877
[22] Zhou, J., Williams, C., Staplin, N., et al. (2025) Effects of Empagliflozin on Quality of Life and Healthcare Use and Costs in Chronic Kidney Disease: A Health Economic Analysis of the EMPA-KIDNEY Trial. EClinicalMedicine, 85, Article ID: 103338.
[23] Zinman, B., Lachin, J.M. and Inzucchi, S.E. (2016) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine, 374, 1094.
[24] Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357.
https://doi.org/10.1056/nejmoa1812389
[25] Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657.
https://doi.org/10.1056/nejmoa1611925
[26] McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Martinez, F.A., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008.
https://doi.org/10.1056/nejmoa1911303
[27] Packer, M., Anker, S.D., Butler, J., Filippatos, G., Pocock, S.J., Carson, P., et al. (2020) Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 383, 1413-1424.
https://doi.org/10.1056/nejmoa2022190
[28] Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461.
https://doi.org/10.1056/nejmoa2107038
[29] Solomon, S.D., de Boer, R.A., DeMets, D., Hernandez, A.F., Inzucchi, S.E., Kosiborod, M.N., et al. (2021) Dapagliflozin in Heart Failure with Preserved and Mildly Reduced Ejection Fraction: Rationale and Design of the DELIVER Trial. European Journal of Heart Failure, 23, 1217-1225.
https://doi.org/10.1002/ejhf.2249
[30] Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/nejmoa2024816
[31] Herrington, W.G., Staplin, N., Agrawal, N., et al. (2025) Long-Term Effects of Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 392, 777-787.
https://doi.org/10.1056/nejmoa2409183
[32] Solomon, S.D., Vaduganathan, M., Claggett, B.L., de Boer, R.A., DeMets, D., Hernandez, A.F., et al. (2022) Baseline Characteristics of Patients with HF with Mildly Reduced and Preserved Ejection Fraction: DELIVER Trial. JACC: Heart Failure, 10, 184-197.
https://doi.org/10.1016/j.jchf.2021.11.006
[33] Olfson, M., Mauro, C., Wall, M.M., Barry, C.L., Choi, C.J. and Mojtabai, R. (2023) Medicaid Expansion and Racial-Ethnic Health Care Coverage Disparities among Low-Income Adults with Substance Use Disorders. Psychiatric Services, 74, 604-613.
https://doi.org/10.1176/appi.ps.20220155
[34] McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2023) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 44, 3627-3639.
https://doi.org/10.1093/eurheartj/ehad195
[35] Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 79, e263-e421.
https://doi.org/10.1161/cir.0000000000001063
[36] Davies, M.J., Aroda, V.R., Collins, B.S., Gabbay, R.A., Green, J., Maruthur, N.M., et al. (2022) Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 45, 2753-2786.
https://doi.org/10.2337/dci22-0034
[37] Raval, N.Y., Valika, A., Adamson, P.B., Williams, C., Brett, M. and Costanzo, M.R. (2023) Pulmonary Artery Pressure-Guided Heart Failure Management Reduces Hospitalizations in Patients with Chronic Kidney Disease. Circulation: Heart Failure, 16, e9721.
https://doi.org/10.1161/circheartfailure.122.009721
[38] Bhatt, D.L., Szarek, M., Pitt, B., Cannon, C.P., Leiter, L.A., McGuire, D.K., et al. (2021) Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. New England Journal of Medicine, 384, 129-139.
https://doi.org/10.1056/nejmoa2030186
[39] Hopkins, S., Baqai, F., Gajagowni, S. and Hickey, G. (2025) Direct Cardiac Mechanisms of the Sodium Glucose Co-Transporter 2 Inhibitor Class. Journal of Cardiovascular Pharmacology and Therapeutics, 30, Article ID: 2050085852.
https://doi.org/10.1177/10742484251323428
[40] Hernandez, A.F., Udell, J.A., Jones, W.S., Anker, S.D., Petrie, M.C., Harrington, J., et al. (2024) Effect of Empagliflozin on Heart Failure Outcomes after Acute Myocardial Infarction: Insights from the EMPACT-MI Trial. Circulation, 149, 1627-1638.
https://doi.org/10.1161/circulationaha.124.069217
[41] Abraham, W.T., Lindenfeld, J., Ponikowski, P., Agostoni, P., Butler, J., Desai, A.S., et al. (2020) Effect of Empagliflozin on Exercise Ability and Symptoms in Heart Failure Patients with Reduced and Preserved Ejection Fraction, with and without Type 2 Diabetes. European Heart Journal, 42, 700-710.
https://doi.org/10.1093/eurheartj/ehaa943
[42] Cherney, D.Z.I., Charbonnel, B., Cosentino, F., Dagogo-Jack, S., McGuire, D.K., Pratley, R., et al. (2021) Effects of Ertugliflozin on Kidney Composite Outcomes, Renal Function and Albuminuria in Patients with Type 2 Diabetes Mellitus: An Analysis from the Randomised VERTIS CV Trial. Diabetologia, 64, 1256-1267.
https://doi.org/10.1007/s00125-021-05407-5
[43] Visseren, F.L.J., Mach, F., Smulders, Y.M., Carballo, D., Koskinas, K.C., Bäck, M., et al. (2021) 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. European Journal of Preventive Cardiology, 29, 5-115.
https://doi.org/10.1093/eurjpc/zwab154