一口钟的传统用药、化学成分及药理作用研究进展
Research Progress on Traditional Medication, Chemical Components and Pharmacological Effects of Eucalyptus globulus L. Fruits
DOI: 10.12677/pi.2025.145040, PDF, HTML, XML,   
作者: 晋铭珠:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明
关键词: 一口钟传统用药化学成分药理作用Fruits of Eucalyptus globulus L. Traditional Medicine Chemical Composition Pharmacological Activity
摘要: 蓝桉(Eucalyptus globulus L.)为桃金娘科桉属植物,其果实俗称“一口钟”,具有悠久的传统用药史。一口钟这一天然药材传统用于治疗多种呼吸道疾病、皮肤感染及炎症等。现代研究表明,一口钟富含间苯三酚类、黄酮类和三萜类等多种活性成分,具有抗菌、抗炎及抗氧化等药理活性。本文系统梳理了一口钟的国内外相关研究,总结了其传统用药、化学成分及药理作用,结合现代药理研究,为一口钟资源开发和临床应用提供理论依据,使其传统用药的治疗经验与现代药理研究的结果高度契合。
Abstract: Eucalyptus globulus L. is a plant of the genus Eucalyptus in the family Myrtaceae, and its fruit is commonly known as “Yikouzhong”, which has a long history of traditional medicine use. This natural medicinal material is traditionally used to treat various respiratory diseases, skin infections, inflammation, etc. Modern studies have shown that Yikouzhong is rich in various active ingredients such as phloroglucinols, flavonoids and triterpenoids, revealing significant pharmacological effects such as antibacterial, anti-inflammatory and antioxidant effects. This article systematically organized the relevant domestic and foreign studies, summarized the traditional medicine, chemical components and pharmacological effects of Yikouzhong, and combined the modern pharmacological studies to provide a theoretical basis for the resource development and clinical application of Eucalyptus globulus L. fruits, so that the therapeutic experience of its traditional medicine is highly consistent with the results of modern pharmacological studies.
文章引用:晋铭珠. 一口钟的传统用药、化学成分及药理作用研究进展[J]. 药物资讯, 2025, 14(5): 344-356. https://doi.org/10.12677/pi.2025.145040

1. 引言

蓝桉(Eucalyptus globulus Labill.)系桃金娘科桉属植物,原产澳大利亚,19世纪末引入我国,如今已在云南、四川、广西等西南诸省广泛栽培[1]。蓝桉作为重要传统药用植物,其各个部位都有药用价值,尤以果实在传统医学中的应用最为广泛。其果实(如图1)形似钟状,民间俗称“一口钟”“洋草果”等,是西南地区少数民族常用草药[2]。据《滇南本草》等典籍记载,一口钟性温味微苦,具有祛风除湿、清热解毒、止咳平喘等功效,常用以治疗感冒发热、肠炎痢疾、风湿关节痛、皮肤感染等病症[3]。近年来,随着现代分析技术和药理学研究的不断深入,一口钟的化学成分及药理作用受到广泛关注。研究表明,一口钟含有多种生物活性成分,包括间苯三酚类[4]、黄酮类[5]、三萜类[6]、挥发油[7]等,这些成分赋予其显著的抑菌消炎、防腐止痒、抗肿瘤、抗病毒等药理活性[8]。本文系统综述蓝桉果实的传统用药经验、化学成分及其药理作用的研究进展,为其药用价值的深入开发与临床应用提供科学依据。

Figure 1. Fruits of Eucalyptus globulus Labill (taken by the author in Chuxiong, Yunnan, in March of 2024)

1. 一口钟(2024年3月作者摄于云南楚雄)

2. 传统用药

一口钟在传统医学中的应用源远流长且地域广泛。其作为药用植物的最早记载见于清代《植物名实图考》,称其“性温,味辛、苦,入肺、胃、肝经”,可“祛风邪,止痹痛”[9]。在中国传统医药体系中,蓝桉果实被归类为性辛凉、解表散邪、清热解毒的药材,主要用于治疗风热感冒、咽喉肿痛等症候[10]。如云南彝族和四川羌族等少数民族地区,蓝桉果实常以水煎、泡酒或外用敷贴等方式入药,治疗咳嗽发热等。

跨文化比较研究揭示了蓝桉果实在多国传统医学体系中应用的地域特征。澳大利亚原住民常将蓝桉果实制成浸剂或煎剂治疗咳嗽、感冒和发热等。传统医师认为其具有祛痰、止咳及退热功效,也常与其他草药配伍使用以增强疗效[11]。在印度阿育吠陀医学中,蓝桉果实是重要的药用资源,广泛用于治疗哮喘、支气管炎等。阿育吠陀医师常将其与蜂蜜或姜汁配伍,制成特定制剂应用于临床治疗[12]。地中海地区的传统医学中,常将蓝桉果实外用治疗皮肤感染和伤口,其显著的抗菌与抗炎特性广受认可。非洲某些地区的传统医者则将其用于疟疾及发热疾病的治疗。

在哥伦比亚的传统医学中则广泛用作祛痰剂,促进排汗,且可治疗糖尿病、疟疾、风湿病、哮喘、支气管炎、咳嗽、流感、咽喉炎和鼻窦炎[13]。在秘鲁,据可查的民间传说,其可用于治疗风湿病、支气管炎、感冒、咳嗽、鼻窦炎、哮喘、骨痛和脂肪燃烧[14]

一口钟传统用药方法丰富多样,涵盖煎汤内服、研末外敷、制成酊剂或精油等形式。其“清热解毒”功效与现代研究所揭示的抗菌、抗炎作用高度契合。例如,民间用其治疗咳嗽感冒等呼吸系统疾病以及痢疾,可能源于所含鞣质类成分对病毒及肠道致病菌(如大肠杆菌、痢疾杆菌)的抑制作用[15];而“祛风除湿”的应用则与三萜类成分抗炎、镇痛的药理活性相呼应[16]。此外,外用治疗皮肤感染的功效与挥发油抗菌[17]、促透皮吸收的特性密切相关,彰显了传统用药经验的科学性。这些宝贵经验不仅为现代药理学研究提供了重要线索,更为蓝桉果实的临床应用奠定了坚实的实践基础。

3. 化学成分

3.1. 间苯三酚类

间苯三酚类化合物是桉属植物中广泛存在且具有显著活性的一类化合物,且常与单萜及倍半萜结合,形成结构新颖的化合物。Qin [18]等自桉属植物中分离得到Eucalypglobulusals A-J。Sidana [19]等分离出4-O-demethyl miniatone、Jensenone等化合物。Pham [4]等分离得到Eucalyptin C-G等化合物。Yin [20]等分离出Eucalyptal A-C。Hideyuki [21]等分离得到Cypellocarpin A-C。于欢[22]等分离出大黄酚、Eucarobustol e等化合物。王佳[23]等分离出Globulol A-C等。李伟[8]等分离得到Euglobal-Ib等化合物,如表1所示。

Table 1. Phloroglucinol compounds in the fruits of Eucalyptus globulus L.

1. 一口钟中间苯三酚类化合物

名称

分子式

分子量(Da)

文献来源

Eucalypglobulusals A

C28H38O7

486.60

[18]

Eucalypglobulusals B

C28H40O7

488.61

[18]

Eucalypglobulusals C

C27H38O6

458.59

[18]

Eucalypglobulusals D

C27H38O6

458.59

[18]

Eucalypglobulusals E

C28H42O7

490.63

[18]

Eucalypglobulusals F

C28H38O7

486.60

[18]

Eucalypglobulusals G

C28H40O6

472.61

[18]

Eucalypglobulusals H

C28H38O5

454.60

[18]

Eucalypglobulusals I

C24H32O7

432.51

[18]

Eucalypglobulusals J

C22H28O6

388.45

[18]

4-O-demethyl miniatone

C14H20O4

252.31

[19]

Jensenone

C13H14O6

266.25

[19]

Miniatone

C15H22O4

266.33

[19]

Grandinol

C13H16O5

252.26

[19]

Eucalyptin C

C23H30O6

402.48

[4] [22]

Eucalyptin D

C23H30O6

402.48

[4] [22]

Eucalyptin E

C29H42O6

486.64

[4] [22]

Eucalyptin F

C28H40O6

472.61

[4]

Eucalyptin G

C28H40O6

472.61

[4]

Eucalyptin A

C28H40O6

472.61

[4]

Eucalyptin B

C28H40O6

472.61

[4]

Macrocarpal C

C28H38O5

454.60

[4]

Macrocarpal Q

C28H40O6

472.61

[4] [23]

Eucalyptal A

C28H36O6

468.58

[20] [22]

Eucalyptal B

C28H38O7

486.60

[20]

Eucalyptal C

C28H36O6

468.58

[20] [22]

Cypellocarpin A

C23H30O12

498.48

[21]

Cypellocarpin B

C27H36O11

536.57

[21]

Cypellocarpin C

C26H32O11

520.53

[21]

大黄酚

C15H10O4

254.24

[22]

Eucarobustol E

C29H42O6

486.64

[22]

Eucarobustol G

C28H38O5

454.60

[22]

Eucalrobusone A

C28H38O5

454.60

[22]

Eucalrobusone C

C28H38O5

454.60

[22]

Eucalrobusone F

C23H28O5

384.47

[22]

Eucalrobusone U

C28H36O6

468.58

[22]

Eucalyptone

C23H30O5

386.48

[22] [23]

Euglobal-Ia1

C23H30O5

386.48

[22] [23]

Euglobal-Ia2

C23H30O5

386.48

[22] [23]

Globulol A

C28H40O6

472.61

[23]

Globulol B

C28H36O7

484.58

[23]

Globulol C

C36H46O10

638.74

[23]

Macrocarpal P

C28H38O7

486.60

[23]

Euglobal-III

C28H38O5

454.60

[23]

Macrocarpal D

C28H40O6

472.61

[23]

Macrocarpal E

C28H40O6

472.61

[23]

Euglobal-Ib

C23H30O5

386.48

[8]

Euglobal-Ic

C23H30O5

386.48

[8]

Euglobal-IIa

C23H30O5

386.48

[8]

Euglobal-IIb

C23H30O5

386.48

[8]

Euglobal-IIc

C23H30O5

386.48

[8]

Euglobal-VII

C28H38O5

454.60

[8]

Euglobal-V

C28H38O5

454.60

[8]

Euglobal-IVb

C28H38O5

454.60

[8]

Euglobal-Ia1

C23H30O5

386.48

[8]

Euglobal-Ia2

C23H30O5

386.48

[8]

Eucalyptin A

C29H44O6

488.66

[8]

Macrocarpal D

C28H40O6

472.61

[8]

Eucalyptal E

C28H38O7

486.60

[8]

3.2. 黄酮类化合物

作为一口钟中关键的活性成分之一,黄酮类化合物因其独特的苯并γ-苯并吡喃酮骨架而表现出显著的多样性。Yun [24]分离出鼠李秦素、鼠李素、圣草酚等。谈满良[25]分离出8-去甲基桉树素。隋晓丽[26]分离出5-羟基-4',7-二甲氧基-6,8-二甲基黄酮。Santos [27]分离出异鼠李素-7-O-β-d-葡萄糖苷等。Chen [28]分离出槲皮素-3-O-β-d-葡萄糖醛酸。Mohamed [29]分离出4',5,7-三甲氧基山奈酚、柚皮素等。Brezáni [30]分离出8-去甲基桉树素等。Pereira [5]分离出5-羟基-7,4'-二甲氧基-6-甲基黄酮。刘玉明[31]发现山奈酚等。王佳[23]分离出1-(2,6-二羟基-4-甲氧基-3,5-二甲基苯基)-2-甲基丁烷-1-酮,如表2所示。

Table 2. Flavonoids in the fruits of Eucalyptus globulus L.

2. 一口钟中黄酮类化合物

名称

分子式

分子量(Da)

文献来源

鼠李秦素

C17H14O7

330.29

[24]

鼠李素

C16H12O7

316.26

[24]

圣草酚

C15H12O6

288.25

[24]

槲皮素

C15H10O7

302.24

[24]

花旗松素

C15H12O7

304.25

[24]

黄杞苷

C21H22O10

434.39

[24]

儿茶素

C15H14O6

290.27

[24]

山奈酚

C15H10O6

286.24

[31]

8-去甲基桉树素

C18H16O5

312.32

[25]

5-羟基-4',7-二甲氧基-6,8-二甲基黄酮

C19H18O5

326.34

[26]

异鼠李素-7-O-β-d-葡萄糖苷

C22H22O12

478.40

[27]

Mearnsetin

C16H12O8

332.26

[27]

毛地黄黄酮

C15H10O6

286.24

[27]

杨梅黄酮

C15H10O8

318.24

[27]

异鼠李素

C16H12O7

316.26

[27]

柚皮素

C15H12O5

272.25

[27]

槲皮素-3-O-β-d-葡萄糖醛酸

C22H20O12

476.39

[27]

4',5,7-trimethoxykaempferol

C18H16O6

328.32

[29]

Naringenin

C15H12O5

272.25

[29]

Genistein

C15H10O5

270.24

[29]

Catechin

C15H14O6

290.27

[29]

Epicatechin

C15H14O6

290.27

[29]

8-demethylsideroxylin

C17H14O5

298.29

[30]

Eucalyptin

C19H18O5

326.34

[30]

5-hydroxy-7,4'-dimethoxy-6-methyl-flavone

C18H16O5

312.32

[5]

1-(2,6-dihydroxy-4-methoxy-3,5-dimethylphenyl)-2-methylbutan-1-one

C14H20O4

252.31

[23]

Sideroxyline

C18H16O5

312.32

[30]

3.3. 三萜类化合物

三萜类化合物广泛存在于桉属植物中[32],其中许多具有显著生物活性[33]。蓝桉所含三萜类化合物主要为五环三萜,可分为乌苏烷型、齐墩果烷型及羽扇豆烷型三萜皂苷元;目前已分离得到的化合物中以乌苏烷型居多。Khare [34]分离出Robustanic acid、Ursolic acid等;Ibrahim [35]则成功分离出α-amyrin。Wang [36]分离出白桦脂酸、2-羟基熊果酸等。Sidana [37]等分离得Loxanic acid、Ursolic acid lactone及Ursolic acid lactone acetate;Gabriela [38]则分离出Acetyloleanolic acid与Erythrodiol。陈斌[39] [40]等学者分离出桦木酮酸、2α-羟基白桦脂酸;Freire [41]等成功提取齐墩果酸。王冀[6]分离出Ilelatifol d与山楂酸;王佳[42]则分离得到11α-甲氧基熊果酸,如表3所示。

Table 3. Triterpenoids in the fruits of Eucalyptus globulus L.

3. 一口钟中三萜类化合物

名称

分子式

分子量(Da)

文献来源

Robustanic acid

C31H50O4

486.73

[34]

熊果酸

C30H48O3

456.70

[34] [39] [40]

齐墩果酸

C30H48O3

456.70

[34] [41]

α-amyrin

C30H50O

426.72

[35]

白桦脂酸

C30H48O3

456.48

[36] [39] [40]

2-羟基熊果酸

C30H48O4

472.70

[36]

Asiatic acid

C30H48O5

488.70

[36]

Madasiaticacid

C30H48O6

504.70

[36]

Euscaphic acid

C30H48O5

488.70

[36]

Loxanic acid

C9H10O5

198.17

[37]

Ursolic acid lactone

C31H48O2

452.71

[37]

Ursolic acid lactone acetate

C33H50O3

494.75

[37]

β-amyrin

C30H50O

426.72

[38]

Acetyloleanolic acid

C30H50O4

474.72

[38]

Erythrodiol

C30H50O2

442.72

[38]

Acetylbetulinic acid

C33H52O4

512.76

[38]

白桦脂酸甲酯

C31H50O3

470.73

[38]

Acetylursolic acid

C32H50O4

498.74

[38]

Uvaol

C30H50O2

442.72

[38]

11α-甲氧基乙酰熊果酸甲酯

C34H52O5

540.77

[38]

Ursolic acid methyl ester

C31H50O3

470.73

[38]

桦木酮酸

C30H46O3

454.68

[39] [40]

2α-羟基白桦脂酸

C30H48O4

472.70

[39] [40]

Ilelatifol D

C30H46O2

438.69

[6]

山楂酸

C30H48O4

472.70

[6]

11α-甲氧基熊果酸

C31H50O4

486.73

[42]

3.4. 甾体类化合物

一口钟中的甾体类化合物同样具有重要的活性。Santos [38]分离出豆甾醇。陈斌[40]分离得到β-谷甾醇、胡萝卜苷,如表4所示。

Table 4. Steroids in the fruits of Eucalyptus globulus L.

4. 一口钟中甾体类化合物

名称

分子式

分子量(Da)

文献来源

豆甾醇

C29H48O

412.69

[38]

β-谷甾醇

C29H50O

414.71

[40]

胡萝卜苷

C25H60O6

456.74

[40]

3.5. 鞣质类化合物

一口钟中还存在丰富的鞣质类化合物。Yazaki [43]鉴定出鞣花酸等化合物。Hou [44]分离得到Eucaglobulin和Tellimagrandin I。Hasegawa [45]等首次从蓝桉中分离出两个与没食子酸共轭的新型单萜苷类化合物Globulusin A和Globulusin B。杨秀伟[46]分离获得3-甲氧基鞣花酸-4'-O-2″-O-乙酰基-α-L-吡喃鼠李糖苷及3-甲氧基鞣花酸。Santos [47]等成功分离出4-甲氧基鞣花酸,如表5所示。

Table 5. Tannic compounds in the fruits of Eucalyptus globulus L.

5. 一口钟中鞣质类化合物

名称

分子式

分子量(Da)

文献来源

鞣花酸

C14H6O8

344.53

[43]

Eucaglobulin

C23H30O12

498.48

[44]

Tellimagrandin I

C34H26O22

786.56

[44]

Globulusin A

C23H32O11

484.49

[45]

Globulusin B

C23H30O12

498.48

[45]

3-甲氧基鞣花酸-4′-O-2″-O-乙酰基-α-L-吡喃鼠李糖苷

C23H20O13

504.40

[46]

3-甲氧基鞣花酸

C15H8O8

316.22

[46]

4-甲氧基鞣花酸

C15H8O8

316.22

[47]

3.6. 挥发油类化合物

挥发油类是桉属植物中的核心化学成分,其种类丰富、含量较高,具备抗菌消炎、杀虫驱蚊、镇痛消肿等功效。目前从桉属植物中已分离得到Litseagermacrane [30]、Epi-bicyclosesquiphellandrene [48]、Piperitol [49]、Globulol [25]、Pulverulentone B [30]、3-hydroxy-4-methoxybenzaldehyde [50]、1,8-桉叶素[51]等代表性挥发油成分,如表6所示。

Table 6. Volatile oil compounds in the fruits of Eucalyptus globulus L.

6. 一口钟中挥发油类化合物

名称

分子式

分子量(Da)

文献来源

Litseagermacrane

C15H24O2

236.35

[30]

Epi-bicyclosesquiphellandrene

C15H24

204.35

[48]

Piperitol

C25H28O6

424.49

[49]

Globulol

C15H26O

222.37

[25]

Pulverulentone B

C13H18O4

238.28

[30]

3-hydroxy-4-methoxybenzaldehyde

C8H8O3

152.15

[50]

4-ethenylphenol

C10H10O2

162.19

[50]

2-methoxy-4-ethenyl-phenol

C9H10O2

150.17

[50]

1,10-dioxotayloriane

C15H24O2

236.35

[23]

蓝桉醇

C15H26O

222.37

[23]

表蓝桉醇

C15H26O

222.37

[23]

绿花白千层醇

C15H26O

222.37

[23]

吐叶醇

C13H20O3

224.30

[25]

1,8-桉叶素

C10H18O

154.25

[51]

3.7. 其他类化合物

桉属植物中还分离得到油酸衍生物[52] [53]及阿魏酸酯、β-amyrin palmitate、亚油酸、油酸、Blumenol a、二十二烷酸、松脂素、桉叶苷、云杉靴酚、十八烷酸、丁香脂素、原儿茶酸、二没食子酰葡萄糖、橄榄苦苷酸、没食子酸乙酯、Tellimagrandin II、绿原酸、芝麻素、3-O-没食子酰基-4,6-O-[(S)-六羟基联苯甲酰]-d-葡萄糖、Pedunculagin、1,2,3,4,6-五-O-没食子酰-β-d-葡萄糖、没食子酸等成分[18]。此外,刘玉明等[31]研究了一口钟中的氨基酸成分并测定其含量,发现其至少含有17种氨基酸,以天冬氨酸、谷氨酸、甘氨酸等为代表,其中人体必需氨基酸达7种。

4. 药理作用

4.1. 抗菌活性

大量现代药理学研究证实,一口钟提取物及其活性成分具有广泛的药理作用。在抗菌活性方面,一口钟挥发油类对多种革兰氏阳性菌和阴性菌均展现出显著的抑制作用,特别是对肺炎链球菌、金黄色葡萄球菌等呼吸道常见致病菌具有较强的抗菌活性[54]

Tian等[55]通过活性筛选证实Eucalyptone对白色念珠菌具有显著抗真菌活性。Osawa等[56]研究发现蓝桉中的间苯三酚倍半萜衍生物对致龋菌和牙周病原菌具有抑菌活性,其中Macrocarpal a-d对革兰氏阳性菌及革兰氏阴性菌均表现出抗菌作用。陈斌[40]在对一口钟化合物进行抗菌活性筛选时,发现白桦脂酸、熊果酸及2-羟基白桦脂酸等化合物具有较强抗菌活性,其抗乙肝病毒体外筛选实验进一步表明,熊果酸与2-羟基白桦脂酸对HBsAg具有良好抑制作用。Vilela等[57]证实蓝桉精油可有效抑制黄曲霉和寄生曲霉。Tyagi等[58]发现蓝桉提取物的水溶性与脂溶性组分均具有显著抗菌活性,对细菌和真菌的最低抑菌浓度(MIC)范围在2.25~9 mg/mL,对酵母菌的MIC则为1.13~2.25 mg/mL。研究还发现这类间苯三酚衍生物可抑制葡萄糖基转移酶(GTase)合成水不溶性葡聚糖[59]。Brezani等[30]研究表明间苯三酚化合物Grandinol与Pulverulentone B对金黄色葡萄球菌和蜡样芽孢杆菌具有中等抗菌活性,其MIC值为8~32 µg/mL。Tan等[60]通过生物活性研究证实蓝桉醇对真菌具有显著抑制作用。

4.2. 抗病毒活性

Nishizawa [61]等证实蓝桉中分离的Macrocarpal A-E对HIV转录酶具有显著抑制活性。Takasaki [62]等系统评估蓝桉中间苯三酚类化合物及其类似物的抗病毒特性,发现Euglobal-III、Euglobal-Ib和Euglobal-IIa可有效抑制EB病毒活性。Brezani [30]首次报道Cypellocarpin C具有抗HSV-2活性。Tian [52]等研究蓝桉源槲皮素的抗病毒作用,证实该化合物在体外对单纯疱疹病毒1型(HSV-1)表现出轻度但明确的抑制活性。

4.3. 抗肿瘤活性

一口钟的抗肿瘤活性研究主要集中于间苯三酚类和三萜类化合物。Pham [4]等研究发现Eucalyptin b具有显著的抗肿瘤活性,尤其对A549肿瘤细胞作用突出。Yin [20]等研究证实Eucalyptals A-C对HL-60 (人白血病)和A-549 (人肺腺癌)细胞株表现出选择性细胞毒抑制作用。陈斌[40]通过体外筛选发现,白桦脂酸、熊果酸、2-羟基白桦脂酸及β-谷甾醇具有抑制肝癌细胞活性。刘玉明[31]针对一口钟中的化合物进行抗肿瘤活性筛选,结果表明Macrocarpal B对Huh-7、AGS、Eca-109、786-0、A549及CS-174-7细胞系表现出强效抑制活性,而对κB、K56细胞系的抑制率相对较低。王冀[6]等研究揭示Eucalyptal D、E对Huh-7、Jurkat、BGC-823及KE-97细胞株均具有显著细胞毒活性。Hua等[63]从一口钟中分离出Eucalyptal a并验证其可以在体外抑制GBM细胞的增殖、生长和侵袭且在荷瘤小鼠体内具有与体外相同的抗GBM活性,进一步的机制研究表明,Eucalyptal A下调SRSF1表达并纠正SRSF1引导的MYO1B mRNA异常选择性剪接,从而通过PDK1/AKT/c-Myc和PAK/Cofilin轴产生抗GBM活性,代表了神经胶质瘤治疗的新方向。

4.4. 抗炎活性

一口钟的抗炎作用是其另一关键药理特性。实验研究表明,一口钟提取物可显著抑制多种炎症模型中炎症介质的产生。Qabaha [64]等研究桉树提取物对脂多糖(LPS)诱导白细胞介素-6 (IL-6)和肿瘤坏死因子-α (TNF-α)的体外抑制作用,发现该提取物能显著降低IL-6和TNF-α水平。焦淑萍[65]等证实一口钟乙醇浸膏可显著减轻小鼠耳廓肿胀、提高毛细血管通透性,并明显抑制大鼠棉球肉芽肿,具有显著抗炎镇痛作用。Wang [66]等探究蓝桉精油(EO)对大鼠脂多糖(LPS)和肺炎克雷伯菌诱导的慢性阻塞性肺病(COPD)的影响,发现其对促炎细胞因子TNF-α、IL-β等有抑制作用,表明蓝桉对COPD大鼠肺部破坏和炎症有保护作用。

4.5. 其他作用

值得注意的是,近年研究发现一口钟提取物可能具有抗糖尿病和神经保护等新药理作用[67],这为其在慢性病治疗领域的潜在应用开辟了全新路径。然而,目前关于一口钟药理作用机制的研究尚未充分阐明,特别是其多成分–多靶点协同作用机制亟待深入探索。

Pham [4]等研究发现Eucalyptin A-D具有中等强度的免疫抑制作用。

一口钟富含丰富的黄酮及酚酸类物质,展现出显著的抗氧化活性。Yun等[24]针对蓝桉中分离出的这两类化合物展开抗氧化活性研究,结果表明该类化合物具备突出的抗氧化能力。

Ikawati [68]等研究了蓝桉叶和果实提取物抑制组胺释放的活性,结果表明在0.5 mg/mL时,提取物能够很好地抑制组胺的释放。

陈昭[69]等研究了一口钟提取液对心肌缺血的保护作用及耐缺氧能力的影响,结果表明该提取液可显著提升小鼠耐缺氧能力,有效预防垂体后叶素诱发的急性心肌缺血性心电图改变,证实其对实验性心肌缺血及耐缺氧具有显著保护作用。

5. 小结与展望

一口钟在民间作为中草药用于疾病治疗,具有抗菌、抗病毒、抗真菌、抗炎和驱虫等特性。一口钟含有具生物活性价值的化合物,还能产生多种次级代谢产物,如间苯三酚、类黄酮、单萜、脂肪酸、甾体内酯以及特别丰富的三萜酸等。除医药应用外,一口钟还用于香水、肥皂和洗涤剂等领域。其化学成分丰富,药理作用广泛,但尚未见其药物代谢方面的研究。因此,深入探究一口钟活性成分的吸收、分布、代谢和排泄过程至关重要,这将有助于提升药物的有效性和安全性,为一口钟更合理的临床应用提供依据。此外,此举也有助于充分利用一口钟资源,明晰其活性成分的代谢途径,为新药研发提供方向,提升资源的综合利用价值。

综上所述,一口钟作为传统药用资源,不仅富含多样的活性成分,更展现出广泛的药理作用。现代研究不仅为其传统应用提供了坚实的科学支撑,还发掘了新的潜在应用前景。未来研究应聚焦于深入阐明其药效物质基础与作用机制,建立科学完善的质量控制体系,从而促进这一传统药用资源的现代化开发与合理利用。借助多学科交叉研究,蓝桉果实有望为新药研发提供关键线索,同时为传统医药的传承与创新提供宝贵范本。

参考文献

[1] 中国科学院中国植物志编辑委员会. 中国植物志第53(1)卷[M]. 北京: 科学出版社, 1984.
[2] 谢宗万. 全国中草药汇编(上册) [M]. 第2版. 北京: 人民卫生出版社, 1996: 897.
[3] 中国科学院昆明植物研究所. 云南植物学第7卷[M]. 北京: 科学出版社, 1997: 99.
[4] Pham, T., Hu, X., Huang, X., Ma, M., Feng, J., Li, J., et al. (2019) Phloroglucinols with Immunosuppressive Activities from the Fruits of eucalyptus Globulus. Journal of Natural Products, 82, 859-869.
https://doi.org/10.1021/acs.jnatprod.8b00920
[5] Pereira, S.I., Freire, C.S.R., Neto, C.P., Silvestre, A.J.D. and Silva, A.M.S. (2005) Chemical Composition of the Epicuticular Wax from the Fruits of Eucalyptus globulus. Phytochemical Analysis, 16, 364-369.
https://doi.org/10.1002/pca.859
[6] 王冀. 中药蓝桉果实(一口盅)化学成分及其生物活性研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2012.
[7] 汤洪波, 周欣, 雷培海, 等. 黔产蓝桉果实挥发油化学成分的GC-MS分析[J]. 分析测试学报, 2005, 24(增刊): 97.
[8] 唐云, 李伟. 蓝桉的化成成分及其药理活性研究进展[J]. 中草药, 2015, 46(6): 923-931.
[9] 中国医学科学院药用植物资源开发研究所, 等, 编. 中药志[M]. 北京: 人民卫生出版社, 1994.
[10] Lee, S., Xiao, C. and Pei, S. (2008) Ethnobotanical Survey of Medicinal Plants at Periodic Markets of Honghe Prefecture in Yunnan Province, SW China. Journal of Ethnopharmacology, 117, 362-377.
https://doi.org/10.1016/j.jep.2008.02.001
[11] Mani, J.S., Johnson, J.B., Hosking, H., Ashwath, N., Walsh, K.B., Neilsen, P.M., et al. (2021) Antioxidative and Therapeutic Potential of Selected Australian Plants: A Review. Journal of Ethnopharmacology, 268, Article ID: 113580.
https://doi.org/10.1016/j.jep.2020.113580
[12] Sivasankari, B., Anandharaj, M. and Gunasekaran, P. (2014) An Ethnobotanical Study of Indigenous Knowledge on Medicinal Plants Used by the Village Peoples of Thoppampatti, Dindigul District, Tamilnadu, India. Journal of Ethnopharmacology, 153, 408-423.
https://doi.org/10.1016/j.jep.2014.02.040
[13] Bussmann, R.W., Paniagua Zambrana, N.Y., Romero, C. and Hart, R.E. (2018) Astonishing Diversity—The Medicinal Plant Markets of Bogotá, Colombia. Journal of Ethnobiology and Ethnomedicine, 14, Article No. 43.
https://doi.org/10.1186/s13002-018-0241-8
[14] Bussmann, R.W., Sharon, D. and Lopez, A. (2007) Blending Traditional and Western Medicine: Medicinal Plant Use among Patients at Clinica Anticona in El Porvenir, Peru. Ethnobotany Research and Applications, 5, 185-199.
https://doi.org/10.17348/era.5.0.185-199
[15] Gowrishankar, S., Muthumanickam, S., Kamaladevi, A., Karthika, C., Jothi, R., Boomi, P., et al. (2021) Promising Phytochemicals of Traditional Indian Herbal Steam Inhalation Therapy to Combat COVID-19—An in Silico Study. Food and Chemical Toxicology, 148, Article ID: 111966.
https://doi.org/10.1016/j.fct.2020.111966
[16] Arooj, B., Asghar, S., Saleem, M., Khalid, S.H., Asif, M., Chohan, T., et al. (2023) Anti-Inflammatory Mechanisms of Eucalyptol Rich Eucalyptus globulus Essential Oil Alone and in Combination with Flurbiprofen. Inflammopharmacology, 31, 1849-1862.
https://doi.org/10.1007/s10787-023-01237-6
[17] Assaggaf, H.M., Naceiri Mrabti, H., Rajab, B.S., Attar, A.A., Hamed, M., Sheikh, R.A., et al. (2022) Singular and Combined Effects of Essential Oil and Honey of Eucalyptus globulus on Anti-Inflammatory, Antioxidant, Dermatoprotective, and Antimicrobial Properties: In Vitro and in Vivo Findings. Molecules (Basel, Switzerland), 27, Article No. 5121.
https://doi.org/10.3390/molecules27165121
[18] Qin, X., Jin, L., Yu, Q., Liu, H., Khan, A., Yan, H., et al. (2018) Eucalypglobulusals A-J, Formyl-Phloroglucinol-Terpene Meroterpenoids from Eucalyptus globulus Fruits. Journal of Natural Products, 81, 2638-2646.
https://doi.org/10.1021/acs.jnatprod.8b00430
[19] Sidana, J., Foley, W.J. and Singh, I.P. (2012) Isolation and Quantitation of Ecologically Important Phloroglucinols and Other Compounds from Eucalyptus jensenii. Phytochemical Analysis, 23, 483-491.
https://doi.org/10.1002/pca.2345
[20] Yin, S., Xue, J., Fan, C., Miao, Z., Ding, J. and Yue, J. (2007) Eucalyptals A-C with a New Skeleton Isolated from Eucalyptus globulus. Organic Letters, 9, 5549-5552.
https://doi.org/10.1021/ol7025075
[21] Ito, H., Koreishi, M., Tokuda, H., Nishino, H. and Yoshida, T. (2000) Cypellocarpins A-C, Phenol Glycosides Esterified with Oleuropeic Acid, from Eucalyptus cypellocarpa. Journal of Natural Products, 63, 1253-1257.
https://doi.org/10.1021/np0001981
[22] 于欢, 李敏, 张旭, 等. 蓝桉果实的酚性成分研究[J]. 中草药, 2021, 52(18): 5489-5495.
[23] 王佳. 中药一口钟的抗炎活性成分研究[D]: [硕士学位论文]. 天津: 天津医科大学, 2017.
[24] Yun, B.S., Lee, I.K., Kim, J.P., Chung, S.H., Shim, G.S. and Yoo, I.D. (2000) Lipid Peroxidation Inhibitory Activity of Some Constituents Isolated from the Stem Bark of Eucalyptus globulus. Archives of Pharmacal Research, 23, 147-150.
https://doi.org/10.1007/bf02975503
[25] 谈满良, 汪冶, 周立刚, 等. 蓝桉果实中的脂溶性成分[J]. 西北植物学报, 2006, 26(10): 2146-2149.
[26] 隋晓丽. 蓝桉果实化学成分的研究[D]: [博士学位论文]. 济南: 山东大学, 2011.
[27] Santos, S.A.O., Villaverde, J.J., Silva, C.M., Neto, C.P. and Silvestre, A.J.D. (2012) Supercritical Fluid Extraction of Phenolic Compounds from Eucalyptus globulus Labill Bark. The Journal of Supercritical Fluids, 71, 71-79.
https://doi.org/10.1016/j.supflu.2012.07.004
[28] Chen, Y.J., Wang, J.J., Ou, Y.W., Chen, H.Z., Xiao, S.Y., Liu, G., et al. (2014) Cellular Antioxidant Activities of Polyphenols Isolated from Eucalyptus Leaves (Eucalyptus grandis × Eucalyptus urophylla Gl9). Journal of Functional Foods, 7, 737-745.
https://doi.org/10.1016/j.jff.2013.12.003
[29] Mohamed, G.A. and Ibrahim, S.R.M. (2007) Eucalyptone G, a New Phloroglucinol Derivative and Other Constituents from Eucalyptus globulus Labill. Arkivoc, 2007, 281-291.
https://doi.org/10.3998/ark.5550190.0008.f27
[30] Brezáni, V., Leláková, V., Hassan, S.T.S., Berchová-Bímová, K., Nový, P., Klouček, P., et al. (2018) Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses, 10, Article No. 360.
https://doi.org/10.3390/v10070360
[31] 刘玉明. 蓝按果实化学成分及质量控制研究[D]: [博士学位论文]. 上海: 第二军医大学, 2004.
[32] 付文卫, 赵春杰, 裴玉萍, 等. 桉属植物的化学成分与生物活性[J]. 国外医药(植物药分册), 2003(2): 51-58.
[33] 黄丽平, 周中流, 伍影瑶, 等. 桉属植物非挥发性化学成分和药理活性研究进展[J]. 广西植物, 2022, 42(4): 531-542.
[34] Khare, M., Srivastava, S.K. and Singh, A.K. (2002) Cheminform Abstract: A New Triterpenic Acid from Eucalyptus robusta. ChemInform, 33.
https://doi.org/10.1002/chin.200221140
[35] Ibrahim, M., Ambreen, S., Hussain, A., Hussain, N., Imran, M., Ali, B., et al. (2014) Phytochemical Investigation on Eucalyptus globulus Labill. Asian Journal of Chemistry, 26, 1011-1014.
https://doi.org/10.14233/ajchem.2014.15765
[36] Wang, C., Yang, J., Zhao, P., Zhou, Q., Mei, Z., Yang, G., et al. (2014) Chemical Constituents from Eucalyptus citriodora Hook Leaves and Their Glucose Transporter 4 Translocation Activities. Bioorganic & Medicinal Chemistry Letters, 24, 3096-3099.
https://doi.org/10.1016/j.bmcl.2014.05.014
[37] Siddiqui, B.S., Sultana, I. and Begum, S. (2000) Triterpenoidal Constituents from Eucalyptus camaldulensis var. obtusa Leaves. Phytochemistry, 54, 861-865.
https://doi.org/10.1016/s0031-9422(00)00058-3
[38] Santos, G.G., Alves, J.C.N., Rodilla, J.M.L., Duarte, A.P., Lithgow, A.M. and Urones, J.G. (1997) Terpenoids and Other Constituents of Eucalyptus globulus. Phytochemistry, 44, 1309-1312.
https://doi.org/10.1016/s0031-9422(96)00680-2
[39] 陈斌, 朱梅, 邢旺兴, 等. 蓝桉果实化学成分的研究[J]. 中国中药杂志, 2002, 27(8): 596-597.
[40] 陈斌. 蓝桉果实活性成分的研究[D]: [博士学位论文]. 上海: 第二军医大学, 2002.
[41] Freire, C.S.R., Silvestre, A.J.D., Neto, C.P. and Cavaleiro, J.A.S. (2002) Lipophilic Extractives of the Inner and Outer Barks of Eucalyptus globulus. Holzforschung, 56, 372-379.
https://doi.org/10.1515/hf.2002.059
[42] 王佳, 许娇娇, 乔卫, 等. 蓝桉果实一口钟化学成分研究[J]. 中草药, 2016, 47(24): 4336-4339.
[43] Yazaki, Y. and Hillis, W.E. (1976) Polyphenols of Eucalyptus globulus, E. regnans and E. deglupta. Phytochemistry, 15, 1180-1182.
https://doi.org/10.1016/0031-9422(76)85129-1
[44] Hou, A.J., Liu, Y.Z., Yang, H., Lin, Z.W. and Sun, H.D. (2000) Hydrolyzable Tannins and Related Polyphenols from Eucalyptus globulus. Journal of Asian Natural Products Research, 2, 205-212.
https://doi.org/10.1080/10286020008039912
[45] Hasegawa, T., Takano, F., Takata, T., Niiyama, M. and Ohta, T. (2008) Bioactive Monoterpene Glycosides Conjugated with Gallic Acid from the Leaves of Eucalyptus globulus. Phytochemistry, 69, 747-753.
https://doi.org/10.1016/j.phytochem.2007.08.030
[46] 杨秀伟, 郭庆梅. 蓝桉果实化学成分的研究[J]. 中国中药杂志, 2007, 32(6): 496-500.
[47] Santos, S.A.O., Freire, C.S.R., Domingues, M.R.M., Silvestre, A.J.D. and Neto, C.P. (2011) Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Journal of Agricultural and Food Chemistry, 59, 9386-9393.
https://doi.org/10.1021/jf201801q
[48] Meccia, G., Rosquete, C., Rojas, L.B. and Feliciano, A.S. (2006) New Labdane Derivative from the Essential Oil of Acalypha plicata Müll.arg. Flavour and Fragrance Journal, 21, 559-561.
https://doi.org/10.1002/ffj.1679
[49] Lassak, E.V. and Southwell, I.A. (1982) The Steam Volatile Leaf Oils of Some Species of Eucalyptus Subseries Strictinae. Phytochemistry, 21, 2257-2261.
https://doi.org/10.1016/0031-9422(82)85188-1
[50] Fouad, R., Bousta, D., Lalami, A.E.O., Chahdi, F.O., Amri, I., Jamoussi, B., et al. (2015) Chemical Composition and Herbicidal Effects of Essential Oils of Cymbopogon citratus (dc) Stapf, Eucalyptus cladocalyx, Origanum vulgare L. and Artemisia absinthium L. Cultivated in Morocco. Journal of Essential Oil Bearing Plants, 18, 112-123.
https://doi.org/10.1080/0972060x.2014.901631
[51] Merghni, A., Noumi, E., Hadded, O., Dridi, N., Panwar, H., Ceylan, O., et al. (2018) Assessment of the Antibiofilm and Antiquorum Sensing Activities of Eucalyptus globulus Essential Oil and Its Main Component 1,8-Cineole against Methicillin-Resistant Staphylococcus aureus Strains. Microbial Pathogenesis, 118, 74-80.
https://doi.org/10.1016/j.micpath.2018.03.006
[52] Tian, L.W., Zhang, Y.J., Wang, Y.F., Lai, C.C. and Yang, C.R. (2009) Eucalmaidins A-E, (+)-Oleuropeic Acid Derivatives from the Fresh Leaves of Eucalyptus maideni. Journal of Natural Products, 72, 1608-1611.
https://doi.org/10.1021/np900290s
[53] Tian, L.W., Xu, M., Li, Y., Li, X.Y., Wang, D., et al. (2012) Phenolic Compounds from the Branches of Eucalyptus maideni. Chemistry & Biodiversity, 9, 123-130.
https://doi.org/10.1002/cbdv.201100021
[54] Elangovan, S. and Mudgil, P. (2023) Antibacterial Properties of Eucalyptus globulus Essential Oil against MRSA: A Systematic Review. Antibiotics (Basel, Switzerland), 12, Article No. 474.
https://doi.org/10.3390/antibiotics12030474
[55] Tian, L.-W., Xu, M., Li, X.-C., Yang, C., Zhu, H. and Zhang, Y. (2014) Eucalmaidials A and B, Phloroglucinol-Coupled Sesquiterpenoids from the Juvenile Leaves of Eucalyptus maidenii. RSC Advances, 4, 21373-21378.
https://doi.org/10.1039/c4ra01078g
[56] Osawa, K., Yasuda, H., Morita, H., Takeya, K. and Itokawa, H. (1997) Configurational and Conformational Analysis of Macrocarpals H, I, and J from Eucalyptus globulus. Chemical and Pharmaceutical Bulletin, 45, 1216-1217.
https://doi.org/10.1248/cpb.45.1216
[57] Vilela, G.R., de Almeida, G.S., D'Arce, M.A.B.R., Moraes, M.H.D., Brito, J.O., da Silva, M.F.d.G.F., et al. (2009) Activity of Essential Oil and Its Major Compound, 1,8-Cineole, from Eucalyptus globulus Labill., against the Storage Fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. Journal of Stored Products Research, 45, 108-111.
https://doi.org/10.1016/j.jspr.2008.10.006
[58] Tyagi, A.K. and Malik, A. (2011) Antimicrobial Potential and Chemical Composition of Eucalyptus globulus Oil in Liquid and Vapour Phase against Food Spoilage Microorganisms. Food Chemistry, 126, 228-235.
https://doi.org/10.1016/j.foodchem.2010.11.002
[59] 付莹莹. 蓝桉果实化学成分及生物活性研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2022.
[60] Tan, M., Zhou, L., Huang, Y., Wang, Y., Hao, X. and Wang, J. (2008) Antimicrobial Activity of Globulol Isolated from the Fruits of Eucalyptus globulus Labill. Natural Product Research, 22, 569-575.
https://doi.org/10.1080/14786410701592745
[61] Nishizawa, M., Emura, M., Kan, Y., Yamada, H., Ogawa, K. and Hamanaka, N. (1992) Macrocarpals: HIV-RTase Inhibitors of Eucalyptus globulus. Tetrahedron Letters, 33, 2983-2986.
[62] Takasaki, M., Konoshima, T., Fujitani, K., Yoshida, S., Nishimura, H., Tokuda, H., et al. (1990) Inhibitors of Skin-Tumor Promotion. VIII. Inhibitory Effects of Euglobals and Their Related Compounds on Epstein-Barr Virus Activation. Chemical and Pharmaceutical Bulletin, 38, 2737-2739.
https://doi.org/10.1248/cpb.38.2737
[63] Hua, D., Zhao, Q., Yu, Y., Yu, H., Yu, L., Zhou, X., et al. (2021) Eucalyptal a Inhibits Glioma by Rectifying Oncogenic Splicing of MYO1B mRNA via Suppressing SRSF1 Expression. European Journal of Pharmacology, 890, Article ID: 173669.
https://doi.org/10.1016/j.ejphar.2020.173669
[64] Qabaha, K., Ras, S.A., Abbadi, J. and Al-Rimawi, F. (2016) Anti-Inflammatory Activity of Eucalyptus SPP. and Pistacia lentiscus Leaf Extracts. African Journal of Traditional, Complementary and Alternative Medicines, 13, 1-6.
https://doi.org/10.21010/ajtcam.v13i5.1
[65] 焦淑萍, 陈彪. 蓝桉的抗炎镇痛作用研究[J]. 中草药, 1996, 27(4): 223-226.
[66] Wang, L., Sun, J., Li, W., Lv, Y., Shi, S., Wang, G. and Zhao, C. (2017) Protective Effect of Eucalyptus Oil on Pulmonary Destruction and Inflammation in Chronic Obstructive Pulmonary Disease (COPD) in Rats. Journal of Medicinal Plants Research, 11, 129-136.
https://doi.org/10.5897/jmpr2015.5910
[67] Akinmoladun, A.C., Bello, M. and Ibukun, E.O. (2021) Upregulation of PCSK9, Rho Kinase and Cardiac Troponin by Eucalyptus globulus Leaf Extract Improves Fructose-Streptozotocin-Induced Diabetic Cardiac Dysfunction in Rats. Archives of Physiology and Biochemistry, 129, 1219-1228.
https://doi.org/10.1080/13813455.2021.1931340
[68] Ikawati, Z., Wahyuono, S. and Maeyama, K. (2001) Screening of Several Indonesian Medicinal Plants for Their Inhibitory Effect on Histamine Release from RBL-2H3 Cells. Journal of Ethnopharmacology, 75, 249-256.
https://doi.org/10.1016/s0378-8741(01)00201-x
[69] 陈昭, 徐勇, 张新刚, 等. 一口钟液保护实验性心肌缺血及耐缺氧作用的研究[J]. 北华大学学报: 自然科学版, 2005, 6(4): 317-318.