胰腺神经内分泌肿瘤的药物治疗进展
Advances in Drug Therapy for Pancreatic Neuroendocrine Tumor
DOI: 10.12677/jcpm.2025.45452, PDF, HTML, XML,   
作者: 邱 文:延安大学医学院,陕西 延安;黄 新*:延安大学医学院,陕西 延安;西安市中心医院普外一科,陕西 西安
关键词: 胰腺神经内分泌瘤药物治疗进展Pancreatic Neuroendocrine Tumor Drug Therapy Progress
摘要: 胰腺神经内分泌肿瘤(Pancreatic neuroendocrine tumors, PNETs)起病隐匿,生物学行为呈高度异质性,肿瘤可表现为惰性生长,亦可表现为侵袭性生长,甚至早期发生转移,且其生物学特性可能随着疾病的进展而发生变化。近年来,随着各种诊断技术手段的不断发展以及大众健康体检的普及,PNETs的发病率呈现明显的上升趋势,随之各种治疗方法相继出现。然而,PNETs可表现为散发性或遗传相关性,也可因肿瘤的激素分泌功能导致相应的激素相关症状或综合征,且不同分级、分期的PNETs在预后上存在较大差异。因此PNETs诊疗决策的制定需要经过综合全面的考量,制定个性化治疗方案。本文主要对目前PENTs的药物治疗进展作相关性综述。
Abstract: Pancreatic neuroendocrine tumors (PNETs) are characterized by their insidious onset and highly heterogeneous biological behavior. The tumors can exhibit indolent growth, aggressive growth, or even metastasize at an early stage, with their biological characteristics potentially changing as the disease progresses. In recent years, with the continuous development of various diagnostic techniques and the popularization of public health check-ups, the incidence of PNETs has shown a significant upward trend, followed by the emergence of various treatment methods. However, PNETs can present as sporadic or hereditary, and may also cause corresponding hormonal symptoms or syndromes due to the hormonal secretion function of the tumor. There are significant differences in prognosis among PNETs of different grades and stages. Therefore, the formulation of diagnostic and treatment decisions for PNETs requires comprehensive consideration and the development of personalized treatment plans. This article mainly reviews the current progress in drug treatment for PNETs.
文章引用:邱文, 黄新. 胰腺神经内分泌肿瘤的药物治疗进展[J]. 临床个性化医学, 2025, 4(5): 1-8. https://doi.org/10.12677/jcpm.2025.45452

1. 引言

1.1. 研究背景

胰腺神经内分泌肿瘤(Pancreatic neuroendocrine tumors, PNETs)来源于不同的神经内分泌细胞,是临床上罕见的异质性胰腺疾病。相比于其他常见肿瘤,研究发现越来越多的PNETs呈现出肿瘤抑制功能丧失的特征[1]。这些丧失的肿瘤抑制因子主要集中在以下四个途径中:端粒维持(DAXX/ATRX),染色质重塑(ARID 1A, MLL 3, SETD 2),mTOR信号传导(TSC 1/2, PTEN, DEPDC 5)和DNA损伤修复(BRCA 2, CHEK 2, ATM, MUTYH),然而MEN 1基因的失活则会对四种途径均产生影响[2]。并且MEN 1、VHL、TSC 1/TSC 2和NF 1中的种系突变与家族性症状相关,如多发性内分泌瘤样病变1型、Von Hippel Lindau综合征、结节性硬化症、神经纤维瘤病和致瘤性1型,其与PNETs的发生密不可分[3]-[5]。此外,遗传因素、肿瘤微环境、细胞周期与凋亡失调以及环境与代谢因素也与PNETs发生密切相关。

根据患者是否出现因肿瘤分泌激素所导致的相应临床表现,可将PNETs分为功能性和无功能性两类。功能性PNETs患者多因分泌过量的相关激素而出现一系列症状通常较早被发现,部分功能性PNETs亦可同时或先后分泌多种激素,从而导致更加复杂的临床表现[6]。无功能性PNETs起病较为隐匿,无相应激素症状,其中部分肿瘤亦可有激素分泌功能,但尚未达到引起相关临床症状的水平。无功能性PNETs患者初诊时合并症状与否,常取决于肿瘤生物学的行为特点[7]

PNETs分为高分化神经内分泌瘤、低分化神经内分泌癌(pNEC)及混合性神经内分泌-非神经内分泌肿瘤[8]。胰腺神经内分泌肿瘤的分级和分类是神经内分泌肿瘤(NETs)治疗决策的基本依据。肿瘤分级是一种用于预测肿瘤生长和扩散速度的系统,而肿瘤分化是预测其行为的关键特征[9]。根据WHO发布的第5版分类和分级标准,根据Ki-67扩散指数和(或)有丝分裂计数将高分化PNETs分为三级,即:1级(低级别)、2级(中等级别)和3级(高级别) [8]

胰腺神经内分泌肿瘤约占神经内分泌肿瘤的4%~8%,其年发病率为0.4~2.0/10万[10]。其在日本的发病率约为1.27/10万人[11]。在中国,PNETs在消化道NETs中的比例最高,40~70岁为其高发年龄段,约达69.6%的病人在初诊时无症状[12] [13]。在2017年,中国神经内分泌肿瘤的年龄标准化发病率(ASR)为1.14/10万;NET在美国的发病率为(6.26/10万) [14]。自1987年至2016年美国SEER数据库中PNETs的发病率呈现每10年稳步上升趋势,从0.27/10万到0.43/10万,再到1.01/10万[15]。2009~2021年期间,德国胰腺NET的发病率亦显著增加[16]。1996年至2015年间中国台湾地区NETs的发病率从1996年的0.244/10万增加到2015年的3.162/10万[17]。虽然各国及地区间PNETs的发病率略有不同,但其发病率的总体趋势呈现出逐步上升态势,越来越多的pNETs患者将被诊断。

1.2. 研究方法

本文将综述近年来发表的关于PNETs药物治疗方面的文献、指南,着重从PNETs的症状控制药物、靶向治疗、免疫治疗、化学治疗、中医治疗方面做以下系统综述。

2. PNETs药物治疗综述

2.1. 症状控制药物

目前,控制pNETs的症状的药物主要包括生长抑素类似物(somatostatin analogs, SSA)和干扰素-α。SSA通过与肿瘤细胞表面的生长抑素受体(SSTR)受体结合,抑制激素分泌和细胞增殖,主要用于控制PNETs的症状,代表药物有:奥曲肽(Octreotide)、兰瑞肽(Lanreotide)。E-INETS、N-INETS和NCCN建议,对于不能手术切除、无症状、分化良好且高肿瘤负荷的PNETs使用SSA。Rinke A [18]及Caplin ME [19]等研究已经证明SSAs可以提高患者的生存率。SSA具有抗肿瘤增殖作用,可以改善部分患者的DFS,且长效SSA在胃肠胰神经内分泌瘤中的效果更为明显[20]。同时,对于G1级及G2级PNETs (Ki-67 < 10%)的PNETs患者,若患者肿瘤负荷低、无症状且进展缓慢及生长抑素受体表达呈阳性,则可将SSA纳入为抗肿瘤增殖的一线药物[20] [21]。中国胰腺神经内分泌肿瘤诊疗指南(2020版)把SSA推荐为功能性PNETs患者的症状控制一线用药,但需预防低血糖风险,尤其是胰岛素瘤患者[22]。此外,奥曲肽LAR的使用也被证明与高疾病控制率和肿瘤进展时间长相关[23],虽然新一代SSA (帕瑞肽LAR)可以同时与更多的SSTR结合,产生更广泛的抗增殖作用,但高达79%的帕瑞肽LAR治疗患者存在高血糖,因此目前不推荐作为首选药物[24]。SSA也是手术前或如果不能进行切除术PNETs中过度增生状态的治疗选择。当SSA对难治性类癌综合征患者疗效不佳时,可替代或联合使用干扰素α-2b [25],其他药物可缓解与特异性功能性PNETs相关的症状:质子剂用于胃泌素瘤胃酸分泌过多,甲吡酮用于ACTH瘤ACTH分泌过多。

干扰素(IFN-α)很早就已经被认为是一种有效的抗病毒和抗肿瘤药物[26] [27]。干扰素-α (IFN-α)通过与胰腺神经内分泌肿瘤细胞表面特定受体结合抑制激素分泌,也可抑制生长因子,从而控制症状和肿瘤增殖[28]。其可作为二线药物用于功能性神经内分泌肿瘤的症状控制,多用在SSA使用效果不满意或生长抑素受体阴性的PNETs患者[28]-[30]

2.2. 靶向治疗

靶向治疗是一种基于肿瘤细胞的分子生物学特征的精准医疗手段,通过特异性作用于癌细胞生长、增殖或存活相关的关键分子靶点(如突变基因、信号通路、受体或酶等),选择性抑制或杀灭癌细胞,同时最大程度减少对正常组织的损伤。PNETs的靶向治疗近年来已不断取得进展,尤其在针对特定分子通路的药物开发和联合治疗策略方面。

针对于PNETs的靶向治,目前已获批的靶向药物主要包括mTOR抑制剂与酪氨酸激酶抑制剂(TKI)。这两种靶向药物通常被推荐作为肿瘤生长抑素受体(SSTR)阳性表达患者生长抑素类似物(SSAS)治疗后的二线治疗,以及肿瘤SSTR阴性表达患者的一线治疗[31]。mTOR抑制剂通过抑制mTOR通路,调控细胞增殖和血管生产发挥作用,依维莫司是其代表药物。与安慰剂相比,依维莫司可显著延长进展性晚期胰腺神经内分泌肿瘤患者的无进展生存期,并且严重不良事件发生率较低,适用于中、低级别的进展期PNETs病人,在抑制肿瘤生长方面亦具有明确疗效[32]。TKI则是通过阻断肿瘤血管生成达到抑制肿瘤生长的目的,其代表药物有舒尼替尼及索凡替尼等。舒尼替尼适用于分化较好的进展期PNETs患者,其能抑制肿瘤生长并延长病人的无进展生存期[33],索凡替尼同样也适用于分化较好的进展期PNETs病人,其可延长病人的无病生存期,可能成为进展期PNETs病人新的治疗选择方案[34]。此外,其他新兴的靶向治疗研究也取得进展,如肽受体放射性核素治疗(Peptide Receptor Radionuclide Therapy, PRRT)已在部分国家获批,RET抑制剂已处于早期临床试验阶段,KRAS G12C抑制剂存在于少数pNETs中有待验证,表观遗传调控药物HDAC抑制剂等联合靶向药物可能增效。

2.3. 化学治疗

全身化疗是晚期PNETs重要治疗手段之一,临床上主要根据不同的肿瘤分级及病理类型选择合适的化疗方案。常用的方案主要包括以替莫唑胺为基础的联合方案和以铂类为基础的方案,以替莫唑胺为基础的联合化疗(CAPTEM和STEM)方案主要用于G2/G3级晚期PNETs的一线治疗[35]-[38],以及pNEC的二线治疗[39]。并且,以铂类为基础的联合化疗方案(如EP/EC方案)也适用于pNEC病人[40] [41],该方案在Ki-67 ≥ 55%的病人中可能效果更佳[42]。此外,CAPTEM在转移性中高级别pNETs患者中也显示出良好的生存结局,CAPTEM可能是转移性pNETs的有效治疗选择[43]。一项回顾性研究分析了卡培他滨 + 替莫唑胺方案对于PNETs (83%为1/2级肿瘤)的疗效,结果显示ORR为70%,中位PFS为18个月[37]。de Mestier L [44]等评估了替莫唑胺单独或联合卡培他滨治疗晚期胰腺神经内分泌肿瘤总体缓解率(Overall Response Rate, ORR)为51%,联合治疗患者的中位OS为75.2个月。另一随机研究显示与单用替莫唑胺相比,卡培他滨+替莫唑胺联合用药可显著改善晚期胰腺NETs患者的PFS [45]

2.4. 免疫治疗

免疫治疗(Immunotherapy)是一种通过调节机体免疫功能来治疗疾病的方法,其原理在于激活自身的免疫系统,使其能够识别和攻击肿瘤细胞。PNETs免疫治疗的科学依据是肿瘤微环境(TME)在GEP-NETs的生长和进展中起着关键作用[46]。在GEP-NETs中TME的成分包括基质细胞、免疫细胞(T细胞、B细胞、NK细胞、MDSCs)、血管生成因子和细胞外基质(ECM),它们相互作用以促进或抑制肿瘤生长和转移[47]-[49]。免疫细胞亦可以根据其表型和功能状态促进或抑制肿瘤生长和转移,细胞毒性T细胞和NK细胞可以杀死癌症细胞,MDSC通过抑制免疫反应促进肿瘤生长。当前,免疫治疗用于PNETs治疗的药物主要有免疫检查点抑制剂、细胞因子疗法以及过继细胞疗法等[50]。相关研究表明,GEP-NETs表达免疫检查点分子,如程序性死亡配体1 (PD-L1),可以抑制免疫反应并促进肿瘤生长[51] [52],当解除抑制后可恢复T细胞对肿瘤细胞的杀伤作用,代表药物如帕博利珠单抗;细胞因子疗法是通过激活免疫细胞的蛋白质,促进免疫细胞增殖、活化,从而抑制肿瘤生长;而细胞疗法则是通过输注改造过的免疫细胞,特异性攻击肿瘤细胞,以达到治疗的目的。

然而,pNETs的免疫治疗仍面临诸多局限与挑战,如单药治疗疗效有限、副作用大等。但是,这些研究为PNETs的治疗提供了新的方法与方向,为未来开发新型的治疗药物与策略奠定了基础,部分已经应用于临床的新药物仍需进一步临床实验来验证其长期疗效及安全性。PNETs患者个体差异大及不同肿瘤亚型影影响免疫反应,从而难以获得一致的疗效,如何精准识别能够可靠预测哪些患者对免疫疗法反应良好的生物标志物也是一个巨大挑战;此外,如何识别不同的免疫治疗药物、药物组合和预测性生物标志物,以确定哪些患者将从免疫治疗中受益最多仍有待于未来更多的研究。

2.5. 中医治疗

中医治疗pNETs以辨病辩证为原则,大多从脾胃及肝论证,辨病辩证为基础,随证増减,临床上多以肝气疲滞及脾胃气虚证多见,可伴有脾胃湿热或阴虚等症状。Ye Tian等研究表明,黄芩素可以促进小鼠体内pNETs的凋亡,降低了MMP-2和MMP-9的表达,表明黄芩素是诱导pNETs凋亡和抑制迁移和侵袭的潜在工具,进而表明黄芩素是一种潜在治疗pNETs的药物[53]。邱旭东等研究表明,对于Ki-67 > 10%的晚期胃肠胰腺神经内分泌肿瘤(Gastroenteropancreatic neuroendocrine neoplasms, GEP-NETs)患者,采用中药(香砂六君子汤加减的中药汤剂)联合生长抑素类似物(注射用醋酸奥曲肽微球20~30 mg,21~28天1次,肌肉注射或注射用醋酸兰瑞肽40 mg,每10~14天1次,肌肉注射)治疗组的无进展生存期(PFS)获益,且与既往同类研究中仅采用SSAs治疗相比,中药联合SSAs可能有助于延长晚期GEP-NETs患者的PFS [54]。此外,对于pNETs根治术后预防复发方面,中医观点认为:pNETs根治术后患者虽处于无瘤状态,但大伤元气,脾胃受损,气血亏虚,机体处于正气亏虚、阴阳失衡、脏腑功能失调的阶段,易瘥后复发或变生它病,甚至出现肿瘤复发的结局[55]。芪贞抑瘤方(黄芪30 g、女贞子15 g、茯苓15 g、炒白术15 g、当归10 g、白芍12 g、白花蛇舌草20 g、莪术10 g、炙甘草10 g等)是谭煌英教授临床应用多年的经验方,适用于pNETs术后患者,以达到扶正抑瘤,减少复发功效[56]。现代药理研究表明,黄芪、女贞子药对中的槲皮素、山奈酚,莪术中的姜黄素,白花蛇舌草中的黄酮类化合物,能作用于EGFR、PI3K/AKT、MAPK等与pNETs相关的靶点,发挥多成分、多靶点协同抗癌的作用,促进肿瘤细胞凋亡,诱导坏死、自噬、参与免疫调节[57] [58]。随着中西医结合医学的不断发展,将越来越多的中药应用于pNETs的治疗。

总之,PNETs的药物治疗选择应基于其分子分型、肿瘤的分级、分期以及功能状态,制定个性化治疗方案。功能性PNETs以SSA治疗为核心,非功能性PNETs则依赖于靶向治疗或化疗,对于转移性的PNETs患者,免疫治疗和局部治疗(SSRT)联合应用是未来趋势。同时,临床实践中应结合MDT动态调整治疗方案,并通过积极监测耐药性,最终改善患者预后。此外,中医治疗也是晚期PENTs的辅助治疗中发挥中药角色。靶向治疗、表观遗传控制药物以及免疫治疗是新兴的治疗策略,优化现有药物治疗治疗组合(如免疫治疗 + 靶向治疗、中药联合生长抑素类似物等)为患者提供新的治疗选择。在未来,随着生物医学及精准医疗的发展进步,以及对PNETs研究的不断深入,个体化的诊疗方案或可实现,PNETs的生存周期及质量将得到进一步提高。

NOTES

*通讯作者。

参考文献

[1] Kidd, M., Modlin, I. and Öberg, K. (2016) Towards a New Classification of Gastroenteropancreatic Neuroendocrine Neoplasms. Nature Reviews Clinical Oncology, 13, 691-705.
https://doi.org/10.1038/nrclinonc.2016.85
[2] Scarpa, A., Chang, D.K., Nones, K., et al. (2017) Whole-Genome Landscape of Pancreatic Neuroendocrine Tumours. Nature, 543, 65-71.
https://doi.org/10.1038/nature21063
[3] Gaztambide, S., Vazquez, F. and Castaño, L. (2013) Diagnosis and Treatment of Multiple Endocrine Neoplasia Type 1 (MEN1). Minerva Endocrinology, 38, 17-28.
[4] Tirosh, A., Sadowski, S.M., Linehan, W.M., Libutti, S.K., Patel, D., Nilubol, N., et al. (2018) Association of VHL Genotype with Pancreatic Neuroendocrine Tumor Phenotype in Patients with Von Hippel-Lindau Disease. JAMA Oncology, 4, 124-126.
https://doi.org/10.1001/jamaoncol.2017.3428
[5] Amarjothi, J., Jesudason, J., Ramasamy, V. and Babu, O.N. (2019) Interesting Pancreatic Tumour in the Background of Tuberous Sclerosis. BMJ Case Reports, 12, e227292.
https://doi.org/10.1136/bcr-2018-227292
[6] Crona, J., Norlén, O., Antonodimitrakis, P., Welin, S., Stålberg, P. and Eriksson, B. (2016) Multiple and Secondary Hormone Secretion in Patients with Metastatic Pancreatic Neuroendocrine Tumours. The Journal of Clinical Endocrinology & Metabolism, 101, 445-452.
https://doi.org/10.1210/jc.2015-2436
[7] Luo, G., Liu, Z., Guo, M., Jin, K., Xiao, Z., Liu, L., et al. (2015) A Comprehensive Comparison of Clinicopathologic and Imaging Features of Incidental/Symptomatic Non-Functioning Pancreatic Neuroendocrine Tumors: A Retrospective Study of a Single Center. Pancreatology, 15, 519-524.
https://doi.org/10.1016/j.pan.2015.08.009
[8] Nagtegaal, I.D., Odze, R.D., Klimstra, D., Paradis, V., Rugge, M., Schirmacher, P., et al. (2019) The 2019 WHO Classification of Tumours of the Digestive System. Histopathology, 76, 182-188.
https://doi.org/10.1111/his.13975
[9] Oronsky, B., Ma, P.C., Morgensztern, D. and Carter, C.A. (2017) Nothing but NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia, 19, 991-1002.
https://doi.org/10.1016/j.neo.2017.09.002
[10] Hauso, O., Gustafsson, B.I., Kidd, M., Waldum, H.L., Drozdov, I., Chan, A.K.C., et al. (2008) Neuroendocrine Tumor Epidemiology. Cancer, 113, 2655-2664.
https://doi.org/10.1002/cncr.23883
[11] Ito, T., Igarashi, H., Nakamura, K., Sasano, H., Okusaka, T., Takano, K., et al. (2015) Epidemiological Trends of Pancreatic and Gastrointestinal Neuroendocrine Tumors in Japan: A Nationwide Survey Analysis. Journal of Gastroenterology, 50, 58-64.
https://doi.org/10.1007/s00535-014-0934-2
[12] Fan, J., Zhang, Y., Shi, S., Chen, Y., Yuan, X., Jiang, L., et al. (2017) A Nation-Wide Retrospective Epidemiological Study of Gastroenteropancreatic Neuroendocrine Neoplasms in China. Oncotarget, 8, 71699-71708.
https://doi.org/10.18632/oncotarget.17599
[13] Wu, W., Jin, G., Li, H., Miao, Y., Wang, C., Liang, T., et al. (2019) The Current Surgical Treatment of Pancreatic Neuroendocrine Neoplasms in China: A National Wide Cross-Sectional Study. Journal of Pancreatology, 2, 35-42.
https://doi.org/10.1097/jp9.0000000000000019
[14] Zheng, R., Zhao, H., An, L., Zhang, S., Chen, R., Wang, S., et al. (2023) Incidence and Survival of Neuroendocrine Neoplasms in China with Comparison to the United States. Chinese Medical Journal, 136, 1216-1224.
https://doi.org/10.1097/cm9.0000000000002643
[15] Wang, J., Liu, J., He, C., Sun, T., Yan, Y., Che, G., et al. (2021) Trends in Incidence and Survival of Patients with Pancreatic Neuroendocrine Neoplasm, 1987-2016. Journal of Oncology, 2021, Article ID: 4302675.
https://doi.org/10.1155/2021/4302675
[16] Stang, A., Wellmann, I., Holleczek, B., Kim-Wanner, S., Müller-Nordhorn, J., Sirri, E., et al. (2024) Incidence and Survival of Patients with Malignant Pancreatic Neuroendocrine Neoplasms in Germany, 2009-2021. Cancer Epidemiology, 93, Article 102659.
https://doi.org/10.1016/j.canep.2024.102659
[17] Chang, J.S., Chen, L., Shan, Y., Chu, P., Tsai, C. and Tsai, H. (2021). Scientific Reports, 11, Article No. 7881.
https://doi.org/10.1038/s41598-021-86839-2
[18] Rinke, A., Wittenberg, M., Schade-Brittinger, C., Aminossadati, B., Ronicke, E., Gress, T.M., et al. (2016) Placebo-controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology, 104, 26-32.
https://doi.org/10.1159/000443612
[19] Caplin, M.E., Pavel, M. and Ruszniewski, P. (2014) Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors. The New England Journal of Medicine, 371, 1556-1557.
[20] Caplin, M.E., Pavel, M., Ćwikła, J.B., Phan, A.T., Raderer, M., Sedláčková, E., et al. (2014) Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors. New England Journal of Medicine, 371, 224-233.
https://doi.org/10.1056/nejmoa1316158
[21] Rinke, A., Müller, H., Schade-Brittinger, C., Klose, K., Barth, P., Wied, M., et al. (2009) Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors: A Report from the PROMID Study Group. Journal of Clinical Oncology, 27, 4656-4663.
https://doi.org/10.1200/jco.2009.22.8510
[22] 吴文铭, 陈洁, 白春梅, 等. 中国胰腺神经内分泌肿瘤诊疗指南(2020) [J]. 中华外科杂志, 2021, 59(6): 401-421.
[23] Jann, H., Denecke, T., Koch, M., Pape, U.F., Wiedenmann, B. and Pavel, M. (2013) Impact of Octreotide Long-Acting Release on Tumour Growth Control as a First-Line Treatment in Neuroendocrine Tumours of Pancreatic Origin. Neuroendocrinology, 98, 137-143.
https://doi.org/10.1159/000353785
[24] Wolin, E., Jarzab, B., Eriksson, B., Walter, T., Toumpanakis, C., Morse, M.A., et al. (2015) Phase III Study of Pasireotide Long-Acting Release in Patients with Metastatic Neuroendocrine Tumors and Carcinoid Symptoms Refractory to Available Somatostatin Analogues. Drug Design, Development and Therapy, 9, 5075-5086.
https://doi.org/10.2147/dddt.s84177
[25] Falconi, M., Eriksson, B., Kaltsas, G., Bartsch, D.K., Capdevila, J., Caplin, M., et al. (2016) ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology, 103, 153-171.
https://doi.org/10.1159/000443171
[26] Pestka, S. (1983) The Human Interferons—From Protein Purification and Sequence to Cloning and Expression in Bacteria: Before, between, and Beyond. Archives of Biochemistry and Biophysics, 221, 1-37.
https://doi.org/10.1016/0003-9861(83)90118-2
[27] Fleischmann, W.R., Koren, S. and Fleischmann, C.M. (1992) Orally Administered Interferons Exert Their White Blood Cell Suppressive Effects via a Novel Mechanism. Experimental Biology and Medicine, 201, 200-207.
https://doi.org/10.3181/00379727-201-43499
[28] Motylewska, E., Lawnicka, H., Kowalewicz-Kulbat, M., Sicinska, P., Niedziela, A., Melen-Mucha, G., et al. (2013) Interferon Alpha and Rapamycin Inhibit the Growth of Pheochromocytoma PC12 Line in Vitro. Endokrynologia Polska, 64, 368-374.
https://doi.org/10.5603/ep.2013.0020
[29] Öberg, K. (2000) Interferon in the Management of Neuroendocrine GEP-Tumors. Digestion, 62, 92-97.
https://doi.org/10.1159/000051862
[30] Pavel, M.E., Baum, U., Hahn, E.G., Schuppan, D. and Lohmann, T. (2006) Efficacy and Tolerability of Pegylated IFN-Α in Patients with Neuroendocrine Gastroenteropancreatic Carcinomas. Journal of Interferon & Cytokine Research, 26, 8-13.
https://doi.org/10.1089/jir.2006.26.8
[31] Pavel, M., Jann, H., Prasad, V., Drozdov, I., Modlin, I.M. and Kidd, M. (2016) NET Blood Transcript Analysis Defines the Crossing of the Clinical Rubicon: When Stable Disease Becomes Progressive. Neuroendocrinology, 104, 170-182.
https://doi.org/10.1159/000446025
[32] Yao, J.C., Shah, M.H., Ito, T., Bohas, C.L., Wolin, E.M., Van Cutsem, E., et al. (2011) Everolimus for Advanced Pancreatic Neuroendocrine Tumors. New England Journal of Medicine, 364, 514-523.
https://doi.org/10.1056/nejmoa1009290
[33] Raymond, E., Dahan, L., Raoul, J., Bang, Y., Borbath, I., Lombard-Bohas, C., et al. (2011) Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. New England Journal of Medicine, 364, 501-513.
https://doi.org/10.1056/nejmoa1003825
[34] Xu, J., Shen, L., Bai, C., Wang, W., Li, J., Yu, X., et al. (2020) Surufatinib in Advanced Pancreatic Neuroendocrine Tumours (SANET-P): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Oncology, 21, 1489-1499.
https://doi.org/10.1016/s1470-2045(20)30493-9
[35] Shah, M.H., Goldner, W.S., Benson, A.B., et al. (2021) Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 19, 839-868.
[36] Zhao, J., Zhao, H. and Chi, Y. (2018) Safety and Efficacy of the S-1/Temozolomide Regimen in Patients with Metastatic Neuroendocrine Tumors. Neuroendocrinology, 106, 318-323.
https://doi.org/10.1159/000480402
[37] Strosberg, J.R., Fine, R.L., Choi, J., Nasir, A., Coppola, D., Chen, D., et al. (2011) First‐Line Chemotherapy with Capecitabine and Temozolomide in Patients with Metastatic Pancreatic Endocrine Carcinomas. Cancer, 117, 268-275.
https://doi.org/10.1002/cncr.25425
[38] Pavel, M., Öberg, K., Falconi, M., Krenning, E.P., Sundin, A., Perren, A., et al. (2020) Gastroenteropancreatic Neuroendocrine Neoplasms: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 31, 844-860.
https://doi.org/10.1016/j.annonc.2020.03.304
[39] Rogowski, W., Wachuła, E., Gorzelak, A., Lebiedzińska, A., Sulżyc-Bielicka, V., Iżycka-Świeszewska, E., et al. (2019) Capecitabine and Temozolomide Combination for Treatment of High-Grade, Well-Differentiated Neuroendocrine Tumour and Poorly-Differentiated Neuroendocrine Carcinoma—Retrospective Analysis. Endokrynologia Polska, 70, 313-317.
https://doi.org/10.5603/ep.a2019.0010
[40] Mitry, E., Baudin, E., Ducreux, M., Sabourin, J., Rufié, P., Aparicio, T., et al. (1999) Treatment of Poorly Differentiated Neuroendocrine Tumours with Etoposide and Cisplatin. British Journal of Cancer, 81, 1351-1355.
https://doi.org/10.1038/sj.bjc.6690325
[41] Iwasa, S., Morizane, C., Okusaka, T., Ueno, H., Ikeda, M., Kondo, S., et al. (2010) Cisplatin and Etoposide as First-Line Chemotherapy for Poorly Differentiated Neuroendocrine Carcinoma of the Hepatobiliary Tract and Pancreas. Japanese Journal of Clinical Oncology, 40, 313-318.
https://doi.org/10.1093/jjco/hyp173
[42] Sorbye, H., Welin, S., Langer, S.W., Vestermark, L.W., Holt, N., Osterlund, P., et al. (2013) Predictive and Prognostic Factors for Treatment and Survival in 305 Patients with Advanced Gastrointestinal Neuroendocrine Carcinoma (WHO G3): The NORDIC NEC Study. Annals of Oncology, 24, 152-160.
https://doi.org/10.1093/annonc/mds276
[43] Douangprachanh, S., Joo, H.J., Park, H.M., Han, N., Jang, H.Y., Koh, Y.H., et al. (2022) Capecitabine and Temozolomide for Metastatic Intermediate to High-Grade Pancreatic Neuroendocrine Neoplasm: A Single Center Experience. The Korean Journal of Internal Medicine, 37, 1216-1222.
https://doi.org/10.3904/kjim.2022.100
[44] de Mestier, L., Walter, T., Evrard, C., de Boissieu, P., Hentic, O., Cros, J., et al. (2020) Temozolomide Alone or Combined with Capecitabine for the Treatment of Advanced Pancreatic Neuroendocrine Tumor. Neuroendocrinology, 110, 83-91.
https://doi.org/10.1159/000500862
[45] Kunz, P.L., Graham, N.T., Catalano, P.J., Nimeiri, H.S., Fisher, G.A., Longacre, T.A., et al. (2023) Randomized Study of Temozolomide or Temozolomide and Capecitabine in Patients with Advanced Pancreatic Neuroendocrine Tumors (ECOG-ACRIN E2211). Journal of Clinical Oncology, 41, 1359-1369.
https://doi.org/10.1200/jco.22.01013
[46] Binnewies, M., Roberts, E.W., Kersten, K., Chan, V., Fearon, D.F., Merad, M., et al. (2018) Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nature Medicine, 24, 541-550.
https://doi.org/10.1038/s41591-018-0014-x
[47] Cives, M., Pelle’, E., Quaresmini, D., Rizzo, F.M., Tucci, M. and Silvestris, F. (2019) The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology, 109, 83-99.
https://doi.org/10.1159/000497355
[48] Katz, S.C., Donkor, C., Glasgow, K., Pillarisetty, V.G., Gönen, M., Espat, N.J., et al. (2010) T Cell Infiltrate and Outcome Following Resection of Intermediate-Grade Primary Neuroendocrine Tumours and Liver Metastases. HPB, 12, 674-683.
https://doi.org/10.1111/j.1477-2574.2010.00231.x
[49] Lamarca, A., Nonaka, D., Breitwieser, W., Ashton, G., Barriuso, J., McNamara, M.G., et al. (2018) PD-L1 Expression and Presence of Tils in Small Intestinal Neuroendocrine Tumours. Oncotarget, 9, 14922-14938.
https://doi.org/10.18632/oncotarget.24464
[50] Strosberg, J., Mizuno, N., Doi, T., Grande, E., Delord, J., Shapira-Frommer, R., et al. (2020) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results from the Phase II KEYNOTE-158 Study. Clinical Cancer Research, 26, 2124-2130.
https://doi.org/10.1158/1078-0432.ccr-19-3014
[51] Roberts, J.A., Gonzalez, R.S., Das, S., Berlin, J. and Shi, C. (2017) Expression of PD-1 and PD-L1 in Poorly Differentiated Neuroendocrine Carcinomas of the Digestive System: A Potential Target for Anti-PD-1/PD-L1 Therapy. Human Pathology, 70, 49-54.
https://doi.org/10.1016/j.humpath.2017.10.003
[52] Wang, H., Li, Z., Dong, B., Sun, W., Yang, X., Liu, R., et al. (2018) Prognostic Significance of PD-L1 Expression and CD8+ T Cell Infiltration in Pulmonary Neuroendocrine Tumors. Diagnostic Pathology, 13, Article No. 30.
https://doi.org/10.1186/s13000-018-0712-1
[53] Tian, Y., Zhen, L., Bai, J., Mei, Y., Li, Z., Lin, A., et al. (2017) Anticancer Effects of Baicalein in Pancreatic Neuroendocrine Tumors in Vitro and in Vivo. Pancreas, 46, 1076-1081.
https://doi.org/10.1097/mpa.0000000000000895
[54] 邱旭东. 中药联合生长抑素类似物治疗晚期胃肠胰神经内分泌肿瘤的相关研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2019.
[55] 张稚淳, 贾梦冉, 田劭丹, 等. 李佩文教授治疗胰腺癌经验探讨[J]. 天津中医药, 2019, 36(12): 1160-1162.
[56] 余芙欢, 李远良, 苏菲, 等. 芪贞抑瘤方预防胰腺神经内分泌肿瘤术后复发的回顾研究[J]. 中日友好医院学报, 2023, 37(1): 21-24.
[57] 陈天君, Asmit Thakar, 陈明伟. GP 化疗联合贞芪扶正胶囊治疗NSCLC的临床观察[J]. 时珍国医国药, 2012, 23(9): 2264-2265.
[58] 景明, 李沛清, 刘俊田, 等. 贞芪扶正分散片对肿瘤化疗的增效和减毒作用研究[J]. 时珍国医国药, 2010, 21(3): 604-605.