[1]
|
De Pace, R., Molinari, S., Mazzoni, E. and Perale, G. (2025) Bone Regeneration: A Review of Current Treatment Strategies. Journal of Clinical Medicine, 14, Article No. 1838. https://doi.org/10.3390/jcm14061838
|
[2]
|
Donos, N., Akcali, A., Padhye, N., Sculean, A. and Calciolari, E. (2023) Bone Regeneration in Implant Dentistry: Which Are the Factors Affecting the Clinical Outcome? Periodontology 2000, 93, 26-55. https://doi.org/10.1111/prd.12518
|
[3]
|
Zhang, J., Zhang, W., Yue, W., Qin, W., Zhao, Y. and Xu, G. (2025) Research Progress of Bone Grafting: A Comprehensive Review. International Journal of Nanomedicine, 20, 4729-4757. https://doi.org/10.2147/ijn.s510524
|
[4]
|
Gajurel, B., Tamang, K.B., Das, D. and Adhikari, R. (2025) Advances in Synthetic Strategies and Applications of Polymeric Hydrogels. Polymer Engineering & Science, 65, 2803-2840. https://doi.org/10.1002/pen.27200
|
[5]
|
Gao, K. and Xu, K. (2025) Advancements and Prospects of pH-Responsive Hydrogels in Biomedicine. Gels, 11, Article No. 293. https://doi.org/10.3390/gels11040293
|
[6]
|
Choi, H., Choi, W. and Jeong, J. (2024) A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels, 10, Article No. 693. https://doi.org/10.3390/gels10110693
|
[7]
|
Wancura, M., Nkansah, A., Chwatko, M., Robinson, A., Fairley, A. and Cosgriff-Hernandez, E. (2023) Interpenetrating Network Design of Bioactive Hydrogel Coatings with Enhanced Damage Resistance. Journal of Materials Chemistry B, 11, 5416-5428. https://doi.org/10.1039/d2tb02825e
|
[8]
|
Nie, L., Muñoz-Camargo, C., Ganguly, S., Bahsis, L., Cruz, J.C., Mohammadinejad, R., et al. (2024) Editorial: Biocompatible Hydrogels: Properties, Synthesis and Applications in Biomedicine. Frontiers in Chemistry, 12, Article ID: 1500836. https://doi.org/10.3389/fchem.2024.1500836
|
[9]
|
Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y. (2003) Double‐Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials, 15, 1155-1158. https://doi.org/10.1002/adma.200304907
|
[10]
|
Gong, J.P. (2010) Why Are Double Network Hydrogels So Tough? Soft Matter, 6, 2583-2590. https://doi.org/10.1039/b924290b
|
[11]
|
Zhu, S., Wang, Y., Wang, Z., Chen, L., Zhu, F., Ye, Y., et al. (2023) Metal-Coordinated Dynamics and Viscoelastic Properties of Double-Network Hydrogels. Gels, 9, Article No. 145. https://doi.org/10.3390/gels9020145
|
[12]
|
李立清, 钟秀敏, 章礼旭, 等. 双网络水凝胶制备及其力学改性[J]. 化学进展, 2023, 35(11): 1674-1685.
|
[13]
|
Chen, Z., Lv, Z., Zhuang, Y., Saiding, Q., Yang, W., Xiong, W., et al. (2023) Mechanical Signal‐Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. Advanced Materials, 35, Article ID: 2300180. https://doi.org/10.1002/adma.202300180
|
[14]
|
Whitehead, J., Griffin, K.H., Gionet-Gonzales, M., Vorwald, C.E., Cinque, S.E. and Leach, J.K. (2021) Hydrogel Mechanics Are a Key Driver of Bone Formation by Mesenchymal Stromal Cell Spheroids. Biomaterials, 269, Article ID: 120607. https://doi.org/10.1016/j.biomaterials.2020.120607
|
[15]
|
Gomez-Florit, M., Pardo, A., Domingues, R.M.A., Graça, A.L., Babo, P.S., Reis, R.L., et al. (2020) Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 25, Article No. 5858. https://doi.org/10.3390/molecules25245858
|
[16]
|
Gujjar, S., Tyagi, A., Sainger, S., Bharti, P., Nain, V., Sood, P., et al. (2023) Biocompatible Human Placental Extracellular Matrix Derived Hydrogels. Advanced Biology, 8, Article ID: 2300349. https://doi.org/10.1002/adbi.202300349
|
[17]
|
Garimella, A., Ghosh, S.B. and Bandyopadhyay-Ghosh, S. (2024) Biomaterials for Bone Tissue Engineering: Achievements to Date and Future Directions. Biomedical Materials, 20, Article ID: 012001. https://doi.org/10.1088/1748-605x/ad967c
|
[18]
|
Rahman Khan, M.M. and Rumon, M.M.H. (2025) Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels, 11, Article No. 88. https://doi.org/10.3390/gels11020088
|
[19]
|
Lekhavadhani, S., Babu, S., Shanmugavadivu, A. and Selvamurugan, N. (2025) Recent Progress in Alginate-Based Nanocomposites for Bone Tissue Engineering Applications. Colloids and Surfaces B: Biointerfaces, 250, Article ID: 114570. https://doi.org/10.1016/j.colsurfb.2025.114570
|
[20]
|
Mane, S., Sankpal, P., Patil, S., Pathak, R. and Sharma, H. (2025) Unlocking the Potential of Alginate Polymers: A Review of Recent Advances in Physicochemical Modulation for Versatile Biomaterials. Current Drug Discovery Technologies, 22. https://doi.org/10.2174/0115701638372447250515104200
|
[21]
|
Li, W., Wu, Y., Zhang, X., Wu, T., Huang, K., Wang, B., et al. (2023) Self-Healing Hydrogels for Bone Defect Repair. RSC Advances, 13, 16773-16788. https://doi.org/10.1039/d3ra01700a
|
[22]
|
Zhang, G., Wang, X., Meng, G., Xu, T., Shu, J., Zhao, J., et al. (2023) Enzyme-Mineralized PVASA Hydrogels with Combined Toughness and Strength for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 16, 178-189. https://doi.org/10.1021/acsami.3c14006
|
[23]
|
Hassanisaadi, M., Vatankhah, M., Kennedy, J.F., Rabiei, A. and Saberi Riseh, R. (2025) Advancements in Xanthan Gum: A Macromolecule for Encapsulating Plant Probiotic Bacteria with Enhanced Properties. Carbohydrate Polymers, 348, Article ID: 122801. https://doi.org/10.1016/j.carbpol.2024.122801
|
[24]
|
Dzionek, A., Wojcieszyńska, D. and Guzik, U. (2022) Use of Xanthan Gum for Whole Cell Immobilization and Its Impact in Bioremediation—A Review. Bioresource Technology, 351, Article ID: 126918. https://doi.org/10.1016/j.biortech.2022.126918
|
[25]
|
Li, T., Wei, H., Zhang, Y., Wan, T., Cui, D., Zhao, S., et al. (2023) Sodium Alginate Reinforced Polyacrylamide/Xanthan Gum Double Network Ionic Hydrogels for Stress Sensing and Self-Powered Wearable Device Applications. Carbohydrate Polymers, 309, Article ID: 120678. https://doi.org/10.1016/j.carbpol.2023.120678
|
[26]
|
Busch, A., Jäger, M., Mayer, C. and Sowislok, A. (2021) Functionalization of Synthetic Bone Substitutes. International Journal of Molecular Sciences, 22, Article No. 4412. https://doi.org/10.3390/ijms22094412
|
[27]
|
Liu, J., Yang, S., Tan, Y., Liu, X., Tian, Y., Liang, L., et al. (2022) Simultaneously Stimulated Osteogenesis and Anti-Bacteria of Physically Cross-Linked Double-Network Hydrogel Loaded with MgO-Ag2O Nanocomposites. Biomaterials Advances, 141, Article ID: 213123. https://doi.org/10.1016/j.bioadv.2022.213123
|
[28]
|
Yadav, A., Ghosh, S., Samanta, A., Pal, J. and Srivastava, R.K. (2022) Emulsion Templated Scaffolds of Poly(ε-Caprolactone)—A Review. Chemical Communications, 58, 1468-1480. https://doi.org/10.1039/d1cc04941k
|
[29]
|
Adamu, M.A., Sumaila, M., Dauda, M. and Ause, T. (2023) A Novel Polycaprolactone/Rice Husk Ash/Hydroxyapatite Biopolymer Composite for Bone Implant: Physico-Mechanical and Biodegradable Analysis. Iranian Polymer Journal, 33, 395-404. https://doi.org/10.1007/s13726-023-01248-8
|
[30]
|
Ghosh, R., Gupta, S., Mehrotra, S. and Kumar, A. (2024) Surface-Modified Diopside-Reinforced PCL Biopolymer Composites with Enhanced Interfacial Strength and Mechanical Properties for Orthopedic Applications. ACS Applied Materials & Interfaces, 16, 7670-7685. https://doi.org/10.1021/acsami.3c15637
|
[31]
|
Wu, M., Liu, H., Zhu, Y., Wu, P., Chen, Y., Deng, Z., et al. (2024) Bioinspired Soft-Hard Combined System with Mild Photothermal Therapeutic Activity Promotes Diabetic Bone Defect Healing via Synergetic Effects of Immune Activation and Angiogenesis. Theranostics, 14, 4014-4057. https://doi.org/10.7150/thno.97335
|
[32]
|
Yin, Y., Gu, Q., Liu, X., Liu, F. and McClements, D.J. (2023) Double Network Hydrogels: Design, Fabrication, and Application in Biomedicines and Foods. Advances in Colloid and Interface Science, 320, Article ID: 102999. https://doi.org/10.1016/j.cis.2023.102999
|
[33]
|
Patel, D.K., Jung, E., Priya, S., Won, S. and Han, S.S. (2024) Recent Advances in Biopolymer-Based Hydrogels and Their Potential Biomedical Applications. Carbohydrate Polymers, 323, Article ID: 121408. https://doi.org/10.1016/j.carbpol.2023.121408
|
[34]
|
黎贵凤, 梁家玲, 郭世锐, 等. 双网络水凝胶的构筑及其在生物医药领域的应用[J]. 工程塑料应用, 2024, 52(12): 165-170.
|
[35]
|
Xu, X., Jerca, V.V. and Hoogenboom, R. (2021) Bioinspired Double Network Hydrogels: From Covalent Double Network Hydrogels via Hybrid Double Network Hydrogels to Physical Double Network Hydrogels. Materials Horizons, 8, 1173-1188. https://doi.org/10.1039/d0mh01514h
|
[36]
|
Liu, X., Ren, Z., Liu, F., Zhao, L., Ling, Q. and Gu, H. (2021) Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS Applied Materials & Interfaces, 13, 14612-14622. https://doi.org/10.1021/acsami.1c03213
|
[37]
|
Guo, B., Liang, Y. and Dong, R. (2023) Physical Dynamic Double-Network Hydrogels as Dressings to Facilitate Tissue Repair. Nature Protocols, 18, 3322-3354. https://doi.org/10.1038/s41596-023-00878-9
|
[38]
|
Zankowski, S.P. and Vereecken, P.M. (2018) Combining High Porosity with High Surface Area in Flexible Interconnected Nanowire Meshes for Hydrogen Generation and Beyond. ACS Applied Materials & Interfaces, 10, 44634-44644. https://doi.org/10.1021/acsami.8b15888
|
[39]
|
Ma, C., Dou, Y., Li, R., Zhang, L., Zhou, Z., Guo, S., et al. (2024) Carboxymethyl Chitosan/Polyacrylamide Double Network Hydrogels Based on Hydrogen Bond Cross-Linking as Potential Wound Dressings for Skin Repair. International Journal of Biological Macromolecules, 280, Article ID: 135735. https://doi.org/10.1016/j.ijbiomac.2024.135735
|
[40]
|
Jagadale, S., Damle, M. and Joshi, M.G. (2025) Bone Tissue Engineering: From Biomaterials to Clinical Trials. In: Turksen, K., Ed., Cell Biology and Translational Medicine, Volume 24: Regeneration in Normal and Cancerous Tissues, Springer, 73-115. https://doi.org/10.1007/5584_2024_841
|
[41]
|
Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi‐Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, Article ID: 2202766. https://doi.org/10.1002/adhm.202202766
|
[42]
|
El-Nablaway, M., Rashed, F., Taher, E.S., Atia, G.A., Foda, T., Mohammed, N.A., et al. (2024) Bioactive Injectable Mucoadhesive Thermosensitive Natural Polymeric Hydrogels for Oral Bone and Periodontal Regeneration. Frontiers in Bioengineering and Biotechnology, 12, Article ID: 1384326. https://doi.org/10.3389/fbioe.2024.1384326
|
[43]
|
Liu, B., Wu, J., Sun, X., Meng, Q. and Zhang, J. (2023) Sustained Delivery of Osteogenic Growth Peptide through Injectable Photoinitiated Composite Hydrogel for Osteogenesis. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1228250. https://doi.org/10.3389/fbioe.2023.1228250
|
[44]
|
Zhan, Y., Yang, K., Zhao, J., Wang, K., Li, Z., Liu, J., et al. (2024) Injectable and in Situ Formed Dual-Network Hydrogel Reinforced by Mesoporous Silica Nanoparticles and Loaded with BMP-4 for the Closure and Repair of Skull Defects. ACS Biomaterials Science & Engineering, 10, 2414-2425. https://doi.org/10.1021/acsbiomaterials.3c01685
|
[45]
|
Chen, Z., Lv, Z., Zhuang, Y., Saiding, Q., Yang, W., Xiong, W., et al. (2023) Mechanical Signal‐Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. Advanced Materials, 35, e2300180. https://doi.org/10.1002/adma.202300180
|
[46]
|
Whitehead, J., Griffin, K.H., Gionet-Gonzales, M., Vorwald, C.E., Cinque, S.E. and Leach, J.K. (2021) Hydrogel Mechanics Are a Key Driver of Bone Formation by Mesenchymal Stromal Cell Spheroids. Biomaterials, 269, Article ID: 120607. https://doi.org/10.1016/j.biomaterials.2020.120607
|
[47]
|
Li, G., Gao, F., Yang, D., Lin, L., Yu, W., Tang, J., et al. (2024) ECM-Mimicking Composite Hydrogel for Accelerated Vascularized Bone Regeneration. Bioactive Materials, 42, 241-256. https://doi.org/10.1016/j.bioactmat.2024.08.035
|
[48]
|
Wu, S., Gai, T., Chen, J., Chen, X. and Chen, W. (2024) Smart Responsive in Situ Hydrogel Systems Applied in Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 12, Article ID: 1389733. https://doi.org/10.3389/fbioe.2024.1389733
|
[49]
|
徐青雨, 张保健, 李红日, 等. 智能响应型水凝胶在关节软骨损伤修复中的应用与进展[J]. 中国修复重建外科杂志, 2025, 39(2): 250-256.
|
[50]
|
Li, D., Chen, K., Tang, H., Hu, S., Xin, L., Jing, X., et al. (2022) A Logic‐Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. Advanced Materials, 34, Article ID: 2108430. https://doi.org/10.1002/adma.202108430
|