双网络水凝胶在骨组织再生中的应用及研究进展
Application and Research Progress of Double Network Hydrogels in Bone Regeneration
DOI: 10.12677/acm.2025.1592528, PDF, HTML, XML,   
作者: 李林洁, 付 钢*:重庆医科大学附属口腔医院修复科,重庆;口腔疾病研究重庆市重点实验室,重庆
关键词: 双网络水凝胶力学性能骨组织再生药物递送智能响应Double Network Hydrogels Mechanical Properties Bone Regeneration Drug Delivery Intelligent Response
摘要: 双网络水凝胶是由刚性的第一网络和柔韧的第二网络协同构成的高分子聚合物。与传统单网络水凝胶相比,其机械强度有了大幅提升的同时,仍保持较好的生物相容性和刺激响应性,在组织工程与再生医学领域展现出广阔应用前景。本文综述了目前双网络水凝胶的构筑方法,总结了其在递送生物活性物质、构建力学适配微环境及智能响应修复三方面的应用进展。
Abstract: Double network hydrogels are composed of a rigid first network and a flexible second network. Compared with traditional single network hydrogels, their mechanical strength has been substantially improved while still maintaining better biocompatibility and stimulus responsiveness, showing broad application prospects in the field of tissue engineering and regenerative medicine. In this review, we conclude the current construction methods of double network hydrogels and summarize the progress of their application in bone defect repair as delivery of bioactive substances, construction of mechanically compatible microenvironments, and intelligent response repair.
文章引用:李林洁, 付钢. 双网络水凝胶在骨组织再生中的应用及研究进展[J]. 临床医学进展, 2025, 15(9): 572-579. https://doi.org/10.12677/acm.2025.1592528

1. 引言

创伤、炎症、肿瘤切除、遗传及全身系统性疾病等是造成骨缺损的主要原因,临床上常用自体骨、异体骨和合成骨等替代材料来修复缺损部位[1]。然而,这些传统材料在应对复杂骨缺损时,仍存在成骨性能不足、供源有限或免疫排斥等缺陷[2] [3]。因此研发兼具良好生物相容性、成骨诱导性和可控降解性的新型骨修复材料,成为当下的重要研究方向。

水凝胶是由三维网络组成的亲水性聚合物,由于其良好的生物相容性和模拟细胞外基质(extracellular matrix, ECM)的能力,在组织工程、药物递送和再生医学等领域引起了广泛关注[4] [5]。但是单一网络结构的水凝胶机械性能与人体组织之间差异较大,在承受较大应力时容易断裂,难以满足骨组织工程对支架强度和稳定性的要求[6]。研究人员近年尝试通过增加交联密度、降低凝胶溶胀度、引入纤维增强剂及制备互穿网络等方法,来提升水凝胶的强度[7] [8]。其中,双网络体系的水凝胶设计对提升水凝胶性能具有重要意义。典型的双网络水凝胶包含两种独立网络:高度交联的聚电解质网络提供刚性支撑;低交联或不交联的中性高分子网络则柔软坚韧,能有效吸收外界应力[9] [10]。这种协同结构不仅改善了材料的力学性能,使其更贴近天然骨组织的力学微环境,同时保留了良好的生物相容性,为构建功能性骨修复材料提供了新的思路[11]

本文旨在阐述双网络水凝胶构筑原理,分析现有用于骨组织再生的双网络水凝胶的特点,探讨双网络水凝胶在骨组织工程领域未来发展的方向。

2. 双网络水凝胶的构筑

双网络交联水凝胶并非两种不同的高分子材料的简单混合,其构筑需满足以下的基本条件:① 组成双网络的两种高分子材料性能应具有显著差异;② 第二网络里的中性高分子单体与第一层网络中聚电解质单体的摩尔浓度相差约20~30倍,只有中性单体的量足够多时,水凝胶的强度才能达到数十兆帕;③ 力学性能与第二网络的交联程度呈反相关,即第二网络应低交联或未交联时,才能有利于提高水凝胶的力学性能;④ 水强度与中性高分子的分子量呈正相关[12]

研究表明,骨再生过程受到拉伸、压缩及流体剪切应力等机械刺激的重要调控[13],而水凝胶的刚度、表面结构等物理性质对细胞的黏附、增殖和分化等行为有显著影响[14]。通过调控水凝胶的材料选择、第一和第二网络中单体摩尔比、交联方式等,可以有效优化水凝胶的黏弹性、韧性、机械强度及刺激响应性,从而更好地适应骨再生微环境的需求。

2.1. 合成双网络水凝胶的材料

双网络水凝胶的构筑材料主要分为天然高分子与合成高分子两大类。天然高分子材料是从植物、动物或微生物中提取的主要成分,主要包括蛋白质和多糖两大类[15]。因为他们多为ECM的组成成分,或与ECM相似,所以具有良好的生物相容性、较低的免疫反应和细胞毒性,可促进细胞黏附、增殖及组织再生[16]。合成高分子则通过加成聚合、开环聚合等方法制备[17]。与天然高分子材料相比,高分子合成材料可通过物理或化学方法稳定调控性能,加工性优良,但生物相容性和生物降解性通常较差,这限制了其在组织工程中的应用[18]

2.1.1. 天然高分子材料

海藻酸钠(Sodium Alginate, SA)是一种阴离子聚电解质多糖,具有良好的生物相容性及离子交换功能,容易与Ca2+、Fe2+、Zn2+等二价阳离子交联形成水凝胶[19],广泛应用于骨组织修复等领域[20]。然而其存在机械强度低、缺乏细胞结合位点、结构稳定性差及体内降解低等缺陷[21]。Zhang等[22]将聚乙烯醇(polyvinyl alcohol, PVA)和SA通过冻融循环和Ca2+交联形成双网络结构,并引入碱性磷酸酶进行酶诱导矿化。最终制得的水凝胶具有优异的力学性能(杨氏模量1.03 MPa,储能模量103 kPa)及优良的溶胀性能(平衡膨胀率达132%),同时具有一定的成骨分化能力。

黄原胶(xanthan gum, XG)是一种高亲水的多糖,因具有良好的生物相容性、黏附性而被广泛应用到食品、医药及化妆品等行业[23]。其溶液在低浓度下即可形成高黏度,常用作增稠剂、乳化剂及药物缓释基质[24]。Li等[25]以聚丙烯酰胺(polyacrylamide, PAM)为柔性亲水支架,XG形成具延展性的第二网络,SA则与金属离子形成稳定复合网络,构建了以SA增强的PAM/XG双网络水凝胶,大幅提升了水凝胶的整体力学强度(断裂强度0.65 MPa,断裂伸长率1800%),适用于自供电设备和可穿戴传感器。

2.1.2. 合成高分子材料

PAM是一种热塑性高分子材料,因良好力学性能及一定生物相容性,在骨修复领域受到广泛关注[26]。但是PAM存在易脆裂问题,可能引发异物反应、植入物松动等风险[1]。Liu等[27]构建了纳米颗粒增强的PAM/SA双网络水凝胶,以氧化镁–氧化银(MgO-Ag2O)纳米复合材料为功能增强因子,利用Mg2+与SA之间离子交联及PAM网络的疏水胶束交联,赋予材料自修复能力和优异力学性能,并能缓释Mg2+和Ag+促进细胞增殖、成骨分化及抗菌。

聚己内酯(polycaprolactone, PCL)是由己内酯单体经开环聚合反应制备的合成高分子材料,具有良好生物相容性与可生物降解性,且来源广泛、成本低廉[28]。PCL可溶于多种有机溶剂,熔点较低(约55℃~65℃),具备优异加工性、渗透性及柔韧性,适合作为骨组织工程支架材料[17],但其疏水性限制了细胞粘附与浸润[29] [30]。Wu等[31]利用3D打印技术,以PCL为刚性第一网络,聚多巴胺改性沸石咪唑框架(PDA-ZIF-8)为柔性第二网络,构建仿生支架。该支架兼具生物降解性、力学性能及光热响应能力,可通过募集内源性干细胞、促进血管生成并调节成骨/破骨平衡加速糖尿病骨缺损修复。

2.2. 双网络水凝胶的制备方法

经典的双网络水凝胶可以通过两步法制备,首先将交联密度高的聚电解质水凝胶作为第一网络结构,将其浸泡在中性单体溶液中,在原位合成交联密度低或者未交联的第二层韧性网络结构[32]。目前,双网络水凝胶根据其交联方式,可分为:化学–化学交联、物理–化学交联和物理–物理交联三大类。

2.2.1. 化学–化学交联

化学–化学交联通过共价键分别构筑两个独立的网络,是最常用的双网络制备策略。这种制备方法相对简单,所得的水凝胶结构稳定性好[33]。Gong等[9]于2003年率先报道了典型的化学–化学交联双网络水凝胶,它是通过带负电荷的聚(2-丙烯酰胺-2-甲基丙磺酸) (PAMPS)构成第一网络,中性的PAM构成第二网络。尽管化学–化学交联的双网络水凝胶结构稳定,但其共价键断裂通常是不可逆的,在外力的反复作用下,水凝胶会出现不可逆的变形[34]。因此,化学–化学交联的双网络水凝胶一般具有较差的恢复性能和抗疲劳性能。

2.2.2. 物理–化学交联

物理–化学交联通过非共价相互作用(氢键、静电相互作用、金属配位键等)和共价键相结合,这种方法不仅有利于调控交联过程,还能使双网络水凝胶具有良好的可塑性、自愈性和抗疲劳性能等[35]。Liu等[36]构建了一种基于多重物理–化学交联机制的双网络水凝胶,通过β-环糊精和二茂铁的相互作用以及PVA和硼砂的动态硼酸酯键,并引入碳纳米管提高其导电性,制备出的多功能双网络水凝胶具有良好的生物相容性、拉伸性、断裂强度、自修复能力等,可作为柔性应变传感器用于监测多种人体运动。

2.2.3. 物理–物理交联

物理–物理交联的双网络水凝胶仅通过非共价键结合,通过第二物理网络的动态特性赋予其刺激响应性[37]。非共价相互作用的可逆性使水凝胶能有效承受并耗散应力,从而具备优异的抗疲劳性能[38]。Ma等[39]利用氢键形成羧甲基壳聚糖(carboxymethyl chitosan, CMCS)与PAM的双网络水凝胶,CMCS的引入改变了PAM的微观结构,使其孔隙率分布更加均匀,最终制备的CMCS/PAM双网络水凝胶具有高溶胀性、可注射性和细胞生物相容性等优异性能,在生物医学应用中具有潜在的应用价值。

综上所述,不同的交联方式赋予双网络水凝胶差异化的核心性能:化学–化学交联提供高强度和稳定性;物理–化学和物理–物理交联则带来动态可逆性、自愈性和智能响应能力,为设计适应复杂骨修复场景的多功能水凝胶材料奠定了基础。

3. 双网络水凝胶在骨组织工程中的应用

组织工程是指借助工程学与生命科学的方法和原理,分析不同组织在生理及病理状态下的“结构–功能”关系,进而开发生物替代材料,以恢复、维持或改善组织功能[40]。组织工程的经典“三要素”包括细胞、信号因子和支架材料,其中支架材料作为组织形成的模板,为细胞提供黏附、迁移及增殖的空间,起到支持组织再生的作用[41]。双网络水凝胶作为骨组织工程中的支架材料,不仅有利于骨髓间充质干细胞的黏附和增殖,还可诱导其成骨分化,在一定程度上可调控细胞形态,促进骨再生[32]。双网络水凝胶的在骨组织工程中的应用场景广泛,本文简要选取了其能够精确控制生物活性物质的递送、提供力学适配的骨再生微环境和响应病理性骨缺损微环境三个方面的核心功能,阐述其应用进展。

3.1. 生物活性物质的可控递送平台

骨缺损修复是一个受多种生长因子精密调控的复杂过程[1] [17]。双网络水凝胶凭借其网络结构的可设计性(网络密度、交联类型)和固有的生物相容性,成为实现药物、蛋白类生长因子乃至细胞长效、可控释放的理想载体平台[34] [42]。Liu等[43]针对成骨生长肽易降解、释放快的问题,用甲基丙烯酰化明胶(gelatin methacryloyl, GelMA)与甲基丙烯酰化透明质酸(methacrylated hyaluronic acid, HAMA)构建双网络药物递送系统,GelMA/HAMA水凝胶可在紫外光下快速成型,兼具适宜物理特性、多孔结构与生物相容性,能促进细胞增殖及成骨相关基因和蛋白表达,为骨修复提供长效安全的药物递送方案。Zhan等[44]设计的可注射双网络水凝胶,以HAMA构建刚性网络、壳寡糖形成柔性网络,并嵌入负载骨形态发生蛋白4 (bone morphogenetic protein 4, BMP-4)的介孔二氧化硅纳米粒子,通过双网络结构提升机械稳定性并实现BMP-4缓释,适用于颅骨缺损的长期修复。

3.2. 力学适配的骨再生微环境构建

骨再生过程受到机械刺激的重要调控,支架材料的力学性能对细胞行为和组织形态发展具有决定性影响[45]。网络水凝胶的核心优势之一,正是通过刚性第一网络与柔性第二网络的协同耗能机制,实现了力学性能提升,使其能够在复杂的生理力学环境下保持形态,为新生骨组织的长入提供稳定的空间支撑[46]。Li等[47]则直接通过模拟ECM,构建了一种由GelMA和脱氧核糖核酸(DNA)组成的双网络水凝胶,同时提供了力学支撑和生理信号。其中,GelMA网络提供力学和生物稳定性,而DNA网络则赋予材料动态应力松弛能力,有效促进细胞增殖和成骨分化。进一步研究表明,该水凝胶促进了BMSCs的黏附,并通过激活FAK/PI3K/Akt/β-Catenin信号通路显著增强成骨分化和血管化骨再生。

3.3. 智能响应病理性骨缺损微环境

由炎症、糖尿病、肿瘤等引起的骨缺损微环境,往往具有特定的病理特征,如较低pH、特定酶的高表达、高活性氧(reactive oxygen species, ROS)等[48]。智能响应型双网络水凝胶能够感应温度、光照、磁场等外界刺激及pH值、生物分子、压力、氧化还原状态等内部刺激,并通过改变自身机械性能、溶胀度、亲疏水性或渗透性作出响应[49]。这种自适应能力赋予其可注射性、自愈合性、形状记忆等功能,使其便于携带细胞和因子植入缺损部位,实现骨组织修复与功能重建。而实现这种智能响应的关键机制在于引入动态、可逆的交联键,如氢键、配位键、主客体作用、动态共价键等。Li等[50]开发的基于苯硼酸动态交联的PVA与明胶双网络水凝胶,能够特异性响应糖尿病骨缺损区域的高ROS水平,其原理在于高ROS环境导致苯硼酸酯键断裂,从而触发负载药物的按需释放以调控免疫–骨级联反应,该系统融合“诊断–治疗”双重逻辑,一方面可识别血糖波动、ROS及基质金属蛋白酶表达等病理信号,另一方面通过调控药物释放匹配免疫–骨级联反应,显著促进糖尿病相关骨缺损再生。

4. 结语

自2003年Gong首次提出“双网络水凝胶”的概念已经过去20多年,双网络水凝胶因其独特的能量耗散机制在力学性能上表现出显著优势,且兼具良好的生物相容性、组织黏附性,能够影响细胞行为、调节局部微环境、智能响应外部刺激、递送药物与细胞等多重功能,是实现骨组织再生的理想生物材料之一。然而与部分成熟水凝胶体系相比,双网络水凝胶的研究仍处于起步阶段。尽管大量研究证实了其成骨有效性,但由于机体的内部环境复杂,细胞与因子间存在相互作用,仍需进一步分析不同条件下诱导的细胞行为的影响因素及其潜在分子机制。因此,未来研究方向可能聚焦于调控双网络水凝胶结构与功能,以适配不同类型细胞对微环境需求,并精准模拟骨组织生长空间、构建适宜的成骨环境。

NOTES

*通讯作者。

参考文献

[1] De Pace, R., Molinari, S., Mazzoni, E. and Perale, G. (2025) Bone Regeneration: A Review of Current Treatment Strategies. Journal of Clinical Medicine, 14, Article No. 1838.
https://doi.org/10.3390/jcm14061838
[2] Donos, N., Akcali, A., Padhye, N., Sculean, A. and Calciolari, E. (2023) Bone Regeneration in Implant Dentistry: Which Are the Factors Affecting the Clinical Outcome? Periodontology 2000, 93, 26-55.
https://doi.org/10.1111/prd.12518
[3] Zhang, J., Zhang, W., Yue, W., Qin, W., Zhao, Y. and Xu, G. (2025) Research Progress of Bone Grafting: A Comprehensive Review. International Journal of Nanomedicine, 20, 4729-4757.
https://doi.org/10.2147/ijn.s510524
[4] Gajurel, B., Tamang, K.B., Das, D. and Adhikari, R. (2025) Advances in Synthetic Strategies and Applications of Polymeric Hydrogels. Polymer Engineering & Science, 65, 2803-2840.
https://doi.org/10.1002/pen.27200
[5] Gao, K. and Xu, K. (2025) Advancements and Prospects of pH-Responsive Hydrogels in Biomedicine. Gels, 11, Article No. 293.
https://doi.org/10.3390/gels11040293
[6] Choi, H., Choi, W. and Jeong, J. (2024) A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels, 10, Article No. 693.
https://doi.org/10.3390/gels10110693
[7] Wancura, M., Nkansah, A., Chwatko, M., Robinson, A., Fairley, A. and Cosgriff-Hernandez, E. (2023) Interpenetrating Network Design of Bioactive Hydrogel Coatings with Enhanced Damage Resistance. Journal of Materials Chemistry B, 11, 5416-5428.
https://doi.org/10.1039/d2tb02825e
[8] Nie, L., Muñoz-Camargo, C., Ganguly, S., Bahsis, L., Cruz, J.C., Mohammadinejad, R., et al. (2024) Editorial: Biocompatible Hydrogels: Properties, Synthesis and Applications in Biomedicine. Frontiers in Chemistry, 12, Article ID: 1500836.
https://doi.org/10.3389/fchem.2024.1500836
[9] Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y. (2003) Double‐Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials, 15, 1155-1158.
https://doi.org/10.1002/adma.200304907
[10] Gong, J.P. (2010) Why Are Double Network Hydrogels So Tough? Soft Matter, 6, 2583-2590.
https://doi.org/10.1039/b924290b
[11] Zhu, S., Wang, Y., Wang, Z., Chen, L., Zhu, F., Ye, Y., et al. (2023) Metal-Coordinated Dynamics and Viscoelastic Properties of Double-Network Hydrogels. Gels, 9, Article No. 145.
https://doi.org/10.3390/gels9020145
[12] 李立清, 钟秀敏, 章礼旭, 等. 双网络水凝胶制备及其力学改性[J]. 化学进展, 2023, 35(11): 1674-1685.
[13] Chen, Z., Lv, Z., Zhuang, Y., Saiding, Q., Yang, W., Xiong, W., et al. (2023) Mechanical Signal‐Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. Advanced Materials, 35, Article ID: 2300180.
https://doi.org/10.1002/adma.202300180
[14] Whitehead, J., Griffin, K.H., Gionet-Gonzales, M., Vorwald, C.E., Cinque, S.E. and Leach, J.K. (2021) Hydrogel Mechanics Are a Key Driver of Bone Formation by Mesenchymal Stromal Cell Spheroids. Biomaterials, 269, Article ID: 120607.
https://doi.org/10.1016/j.biomaterials.2020.120607
[15] Gomez-Florit, M., Pardo, A., Domingues, R.M.A., Graça, A.L., Babo, P.S., Reis, R.L., et al. (2020) Natural-Based Hydrogels for Tissue Engineering Applications. Molecules, 25, Article No. 5858.
https://doi.org/10.3390/molecules25245858
[16] Gujjar, S., Tyagi, A., Sainger, S., Bharti, P., Nain, V., Sood, P., et al. (2023) Biocompatible Human Placental Extracellular Matrix Derived Hydrogels. Advanced Biology, 8, Article ID: 2300349.
https://doi.org/10.1002/adbi.202300349
[17] Garimella, A., Ghosh, S.B. and Bandyopadhyay-Ghosh, S. (2024) Biomaterials for Bone Tissue Engineering: Achievements to Date and Future Directions. Biomedical Materials, 20, Article ID: 012001.
https://doi.org/10.1088/1748-605x/ad967c
[18] Rahman Khan, M.M. and Rumon, M.M.H. (2025) Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels, 11, Article No. 88.
https://doi.org/10.3390/gels11020088
[19] Lekhavadhani, S., Babu, S., Shanmugavadivu, A. and Selvamurugan, N. (2025) Recent Progress in Alginate-Based Nanocomposites for Bone Tissue Engineering Applications. Colloids and Surfaces B: Biointerfaces, 250, Article ID: 114570.
https://doi.org/10.1016/j.colsurfb.2025.114570
[20] Mane, S., Sankpal, P., Patil, S., Pathak, R. and Sharma, H. (2025) Unlocking the Potential of Alginate Polymers: A Review of Recent Advances in Physicochemical Modulation for Versatile Biomaterials. Current Drug Discovery Technologies, 22.
https://doi.org/10.2174/0115701638372447250515104200
[21] Li, W., Wu, Y., Zhang, X., Wu, T., Huang, K., Wang, B., et al. (2023) Self-Healing Hydrogels for Bone Defect Repair. RSC Advances, 13, 16773-16788.
https://doi.org/10.1039/d3ra01700a
[22] Zhang, G., Wang, X., Meng, G., Xu, T., Shu, J., Zhao, J., et al. (2023) Enzyme-Mineralized PVASA Hydrogels with Combined Toughness and Strength for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 16, 178-189.
https://doi.org/10.1021/acsami.3c14006
[23] Hassanisaadi, M., Vatankhah, M., Kennedy, J.F., Rabiei, A. and Saberi Riseh, R. (2025) Advancements in Xanthan Gum: A Macromolecule for Encapsulating Plant Probiotic Bacteria with Enhanced Properties. Carbohydrate Polymers, 348, Article ID: 122801.
https://doi.org/10.1016/j.carbpol.2024.122801
[24] Dzionek, A., Wojcieszyńska, D. and Guzik, U. (2022) Use of Xanthan Gum for Whole Cell Immobilization and Its Impact in Bioremediation—A Review. Bioresource Technology, 351, Article ID: 126918.
https://doi.org/10.1016/j.biortech.2022.126918
[25] Li, T., Wei, H., Zhang, Y., Wan, T., Cui, D., Zhao, S., et al. (2023) Sodium Alginate Reinforced Polyacrylamide/Xanthan Gum Double Network Ionic Hydrogels for Stress Sensing and Self-Powered Wearable Device Applications. Carbohydrate Polymers, 309, Article ID: 120678.
https://doi.org/10.1016/j.carbpol.2023.120678
[26] Busch, A., Jäger, M., Mayer, C. and Sowislok, A. (2021) Functionalization of Synthetic Bone Substitutes. International Journal of Molecular Sciences, 22, Article No. 4412.
https://doi.org/10.3390/ijms22094412
[27] Liu, J., Yang, S., Tan, Y., Liu, X., Tian, Y., Liang, L., et al. (2022) Simultaneously Stimulated Osteogenesis and Anti-Bacteria of Physically Cross-Linked Double-Network Hydrogel Loaded with MgO-Ag2O Nanocomposites. Biomaterials Advances, 141, Article ID: 213123.
https://doi.org/10.1016/j.bioadv.2022.213123
[28] Yadav, A., Ghosh, S., Samanta, A., Pal, J. and Srivastava, R.K. (2022) Emulsion Templated Scaffolds of Poly(ε-Caprolactone)—A Review. Chemical Communications, 58, 1468-1480.
https://doi.org/10.1039/d1cc04941k
[29] Adamu, M.A., Sumaila, M., Dauda, M. and Ause, T. (2023) A Novel Polycaprolactone/Rice Husk Ash/Hydroxyapatite Biopolymer Composite for Bone Implant: Physico-Mechanical and Biodegradable Analysis. Iranian Polymer Journal, 33, 395-404.
https://doi.org/10.1007/s13726-023-01248-8
[30] Ghosh, R., Gupta, S., Mehrotra, S. and Kumar, A. (2024) Surface-Modified Diopside-Reinforced PCL Biopolymer Composites with Enhanced Interfacial Strength and Mechanical Properties for Orthopedic Applications. ACS Applied Materials & Interfaces, 16, 7670-7685.
https://doi.org/10.1021/acsami.3c15637
[31] Wu, M., Liu, H., Zhu, Y., Wu, P., Chen, Y., Deng, Z., et al. (2024) Bioinspired Soft-Hard Combined System with Mild Photothermal Therapeutic Activity Promotes Diabetic Bone Defect Healing via Synergetic Effects of Immune Activation and Angiogenesis. Theranostics, 14, 4014-4057.
https://doi.org/10.7150/thno.97335
[32] Yin, Y., Gu, Q., Liu, X., Liu, F. and McClements, D.J. (2023) Double Network Hydrogels: Design, Fabrication, and Application in Biomedicines and Foods. Advances in Colloid and Interface Science, 320, Article ID: 102999.
https://doi.org/10.1016/j.cis.2023.102999
[33] Patel, D.K., Jung, E., Priya, S., Won, S. and Han, S.S. (2024) Recent Advances in Biopolymer-Based Hydrogels and Their Potential Biomedical Applications. Carbohydrate Polymers, 323, Article ID: 121408.
https://doi.org/10.1016/j.carbpol.2023.121408
[34] 黎贵凤, 梁家玲, 郭世锐, 等. 双网络水凝胶的构筑及其在生物医药领域的应用[J]. 工程塑料应用, 2024, 52(12): 165-170.
[35] Xu, X., Jerca, V.V. and Hoogenboom, R. (2021) Bioinspired Double Network Hydrogels: From Covalent Double Network Hydrogels via Hybrid Double Network Hydrogels to Physical Double Network Hydrogels. Materials Horizons, 8, 1173-1188.
https://doi.org/10.1039/d0mh01514h
[36] Liu, X., Ren, Z., Liu, F., Zhao, L., Ling, Q. and Gu, H. (2021) Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS Applied Materials & Interfaces, 13, 14612-14622.
https://doi.org/10.1021/acsami.1c03213
[37] Guo, B., Liang, Y. and Dong, R. (2023) Physical Dynamic Double-Network Hydrogels as Dressings to Facilitate Tissue Repair. Nature Protocols, 18, 3322-3354.
https://doi.org/10.1038/s41596-023-00878-9
[38] Zankowski, S.P. and Vereecken, P.M. (2018) Combining High Porosity with High Surface Area in Flexible Interconnected Nanowire Meshes for Hydrogen Generation and Beyond. ACS Applied Materials & Interfaces, 10, 44634-44644.
https://doi.org/10.1021/acsami.8b15888
[39] Ma, C., Dou, Y., Li, R., Zhang, L., Zhou, Z., Guo, S., et al. (2024) Carboxymethyl Chitosan/Polyacrylamide Double Network Hydrogels Based on Hydrogen Bond Cross-Linking as Potential Wound Dressings for Skin Repair. International Journal of Biological Macromolecules, 280, Article ID: 135735.
https://doi.org/10.1016/j.ijbiomac.2024.135735
[40] Jagadale, S., Damle, M. and Joshi, M.G. (2025) Bone Tissue Engineering: From Biomaterials to Clinical Trials. In: Turksen, K., Ed., Cell Biology and Translational Medicine, Volume 24: Regeneration in Normal and Cancerous Tissues, Springer, 73-115.
https://doi.org/10.1007/5584_2024_841
[41] Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi‐Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, Article ID: 2202766.
https://doi.org/10.1002/adhm.202202766
[42] El-Nablaway, M., Rashed, F., Taher, E.S., Atia, G.A., Foda, T., Mohammed, N.A., et al. (2024) Bioactive Injectable Mucoadhesive Thermosensitive Natural Polymeric Hydrogels for Oral Bone and Periodontal Regeneration. Frontiers in Bioengineering and Biotechnology, 12, Article ID: 1384326.
https://doi.org/10.3389/fbioe.2024.1384326
[43] Liu, B., Wu, J., Sun, X., Meng, Q. and Zhang, J. (2023) Sustained Delivery of Osteogenic Growth Peptide through Injectable Photoinitiated Composite Hydrogel for Osteogenesis. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1228250.
https://doi.org/10.3389/fbioe.2023.1228250
[44] Zhan, Y., Yang, K., Zhao, J., Wang, K., Li, Z., Liu, J., et al. (2024) Injectable and in Situ Formed Dual-Network Hydrogel Reinforced by Mesoporous Silica Nanoparticles and Loaded with BMP-4 for the Closure and Repair of Skull Defects. ACS Biomaterials Science & Engineering, 10, 2414-2425.
https://doi.org/10.1021/acsbiomaterials.3c01685
[45] Chen, Z., Lv, Z., Zhuang, Y., Saiding, Q., Yang, W., Xiong, W., et al. (2023) Mechanical Signal‐Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation. Advanced Materials, 35, e2300180.
https://doi.org/10.1002/adma.202300180
[46] Whitehead, J., Griffin, K.H., Gionet-Gonzales, M., Vorwald, C.E., Cinque, S.E. and Leach, J.K. (2021) Hydrogel Mechanics Are a Key Driver of Bone Formation by Mesenchymal Stromal Cell Spheroids. Biomaterials, 269, Article ID: 120607.
https://doi.org/10.1016/j.biomaterials.2020.120607
[47] Li, G., Gao, F., Yang, D., Lin, L., Yu, W., Tang, J., et al. (2024) ECM-Mimicking Composite Hydrogel for Accelerated Vascularized Bone Regeneration. Bioactive Materials, 42, 241-256.
https://doi.org/10.1016/j.bioactmat.2024.08.035
[48] Wu, S., Gai, T., Chen, J., Chen, X. and Chen, W. (2024) Smart Responsive in Situ Hydrogel Systems Applied in Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 12, Article ID: 1389733.
https://doi.org/10.3389/fbioe.2024.1389733
[49] 徐青雨, 张保健, 李红日, 等. 智能响应型水凝胶在关节软骨损伤修复中的应用与进展[J]. 中国修复重建外科杂志, 2025, 39(2): 250-256.
[50] Li, D., Chen, K., Tang, H., Hu, S., Xin, L., Jing, X., et al. (2022) A Logic‐Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. Advanced Materials, 34, Article ID: 2108430.
https://doi.org/10.1002/adma.202108430