细胞自噬在CRC转移中的作用及研究进展
The Role and Research Progress of Autophagy in Colorectal Cancer Metastasis
DOI: 10.12677/hjbm.2025.155100, PDF, HTML, XML,    科研立项经费支持
作者: 许洁斌:嘉兴大学医学院,浙江 嘉兴
关键词: 自噬结直肠癌转移Autophagy CRC (Colorectal Cancer) Metastasis
摘要: 细胞自噬(autophagy),作为真核生物中高度保守的生物学过程,在结直肠癌(colorectal cancer, CRC)转移过程中具有双重作用。晚期CRC预后较差,易发生转移,且转移过程中通常伴有细胞自噬发生。多种细胞因子通过调控细胞自噬,促进或抑制CRC转移。在本文中我们探讨不同细胞因子如何通过调控细胞自噬影响CRC转移。
Abstract: Autophagy, as a highly conserved biological process in eukaryotes, plays a dual role in the metastasis of colorectal cancer (CRC). The prognosis of advanced CRC is poor, and it is prone to metastasis. During the metastasis process, autophagy usually occurs. Various cytokines regulate autophagy and either promote or inhibit the metastasis of CRC. In this article, we explore how different cytokines affect CRC metastasis by regulating autophagy.
文章引用:许洁斌. 细胞自噬在CRC转移中的作用及研究进展[J]. 生物医学, 2025, 15(5): 947-953. https://doi.org/10.12677/hjbm.2025.155100

1. 引言

中国CRC发病率与死亡率逐年上升,2022年中国新增癌症中CRC仅次于肺癌。2022年中国癌症死亡病例中CRC仅次于肺癌、肝癌和胃癌[1]。早期CRC症状不明显,易被忽视,初诊时常为中晚期CRC。中晚期CRC易发生转移。转移性结直肠癌(metastatic colorectal cancer, mCRC) 5年生存率约为14% [2]。肝脏是晚期CRC最常转移部位,其次为肺部、腹膜。CRC脑转移最少见[3]。细胞自噬在CRC转移过程中具有双重作用。细胞自噬可通过调节不同信号通路或效应分子调节CRC转移。

2. 细胞自噬

细胞自噬是真核生物进化中高度保守地对细胞中错误折叠的蛋白质、入侵的病原体、受损的细胞器等进行分解回收利用,降解产生氨基酸、葡萄糖等小分子物质,以维持细胞内环境稳定,或在营养缺乏等应激条件下为细胞提供能量。

细胞自噬的发生大致可分为以下几个阶段:1) 起始阶段:信号刺激细胞时,自噬相关基因(ATG基因家族)被激活,启动自噬。2) 成核阶段:在细胞内形成内质网和/或反式高尔基体和内体的脂质双层形成的双层膜结构的自噬前体(phagophore),延伸并包裹需要降解的物质如错误折叠的蛋白质、入侵的病原体、受损的细胞器。自噬前体不断扩展,包裹底物,形成封闭囊泡,形成自噬体(autophagosome)。3) 融合阶段:自噬体与细胞内的溶酶体融合,形成自噬溶酶(autolysosome)。4) 降解与回收阶段:溶酶体中的酶将自噬体内的底物分解为小分子(如氨基酸、核苷酸等),释放到细胞质中,重新被细胞利用[4]

细胞自噬按运输机制分为巨自噬(macroautophagy) (以下简称为自噬)、伴侣蛋白介导的自噬(chaperone-Mediated Autophagy, CMA)和通过溶酶体直接吞噬的微自噬(microautophagy)。

自噬按照降解底物的类型和特异性可分为非选择性自噬和选择性自噬。选择性自噬包括细胞器相关自噬(如线粒体自噬、内质网自噬、核糖体自噬等)、病原体相关自噬、蛋白聚集体相关自噬等。

有研究认为微管相关蛋白1轻链3 (microtubule-associated protein 1 light chain 3β, LC3β)与年龄、肿瘤位置、肿瘤分级、肿瘤分期、淋巴结分期、肿瘤出芽、肿瘤浸润淋巴细胞、患者生存率无显著关联[5]。但也有研究认为LC3表达水平升高与组织学分级和TNM分期相关[6]。UNC-51样自噬激活激酶1 (unc-51 like autophagy activating kinase 1, ULK1) mRNA在淋巴结转移、淋巴浸润、病理分期3期和4期的CRC患者中上调,造成患者的疾病特异性生存期、无进展间期和总生存期降低[7]

调节自噬的信号通路主要分为雷帕霉素靶蛋白复合体1 (mammalian target of rapamycin, mTOR)依赖的信号通路和非mTOR依赖的信号通路,它们可能单独或共同调节自噬。

mTOR依赖的信号通路是调节自噬的主要信号通路,包括PI3K-AKT-mTOR信号通路和AMPK-mTOR信号通路等。

非mTOR依赖的信号通路包括Beclin1-Vps34复合物通路、内质网应激相关通路(如PERK-eIF2α通路和IRE1-JNK通路)、MAPK通路等[8]

自噬在CRC中既能促进CRC也能抑制CRC。自噬在转移瘤内中功能不同可能取决于细胞类型和肿瘤微环境(tumor Microenvironment, TME) [9]

3. 转移级联反应

转移级联反应包含以下六个阶段:局部浸润、内渗、循环系统存活、外渗、次要部位存活和最后次要部位的生长。

上皮–间质转化(epithelial-mesenchymal transition, EMT)是上皮细胞在特定生理或病理条件下,失去上皮细胞特性(如细胞间连接、极性等),获得间质细胞表型(如迁移能力、侵袭能力增强等)的生物学过程。EMT与CRC肿瘤细胞的迁移、侵袭和转移密切相关。EMT与多种信号通路如TGF-β、Wnt/β-catenin、PI3K/Akt等密切相关。EMT相关转录因子包括SNAIL、TWIST和ZEB等。EMT相关特征蛋白包括上皮标志物E-钙粘蛋白(E-cadherin)和间质标志物N-钙粘蛋白(N-cadherin)、波形蛋白(vimentin)、基质金属蛋白酶(matrix metalloproteinases, MMPs)等[10]

由于各种不利条件如氧化还原和免疫应激源,循环肿瘤细胞(circulating tumor cells, CTCs)在血液、淋巴液循环过程中数量大幅减少。但CTCs以单细胞被血小板、中性粒细胞、肿瘤来源的基质细胞包被,形成富含干细胞样癌细胞的微簇形式循环,以保护CTCs逃避免疫监视,使CTCs获得更强的转移能力。

到达远处器官后,由于缺乏营养和免疫细胞的杀伤作用,播散性肿瘤细胞(disseminated tumor cell, DTC)数量进一步减少。存活的DTC进入休眠状态。免疫抑制或肿瘤微环境(tumor microenvironment, TME)抑制DTC增殖[11]

4. 细胞自噬与CRC转移

4.1. 细胞自噬水平与CRC转移潜能成正相关性

4.1.1. 细胞自噬与凋亡

膜联蛋白A10 (annexin A10, ANXA10)在BRAF突变CRC中高度表达,并且与不良预后相关。敲低ANXA10抑制自噬进而增加转铁蛋白受体(transferrin receptor, TFRC)蛋白表达,下调细胞内GSH/GSSG,上调Fe2+、MDA以及活性氧(reactive oxygen species, ROS)最终诱导铁死亡发生。此外敲低ANXA10抑制CRC肺转移[12]

4.1.2. 细胞自噬与EMT

鞘氨醇激酶1 (sphingosine kinase 1, SPHK1)和肿瘤坏死因子受体相关因子6 (tumor necrosis factor receptor-associated factor-6, TRAF6)在CRC组织中高表达,且与远处转移显著相关。过表达SPHK1通过抑制TRAF6蛋白的降解,进而上调泛素化蛋白ULK1和泛素蛋白(ubiquitin protein)促进自噬,下调E-钙粘蛋白上调波形蛋白促进EMT发生,进而提高CRC细胞迁移和侵袭能力[13]。CMA调节因子热休克70 kDa蛋白8 (heat shock 70 kDa protein 8, HSPA8)在BRAF V600E突变型CRC中上调。HSPA8通过CMA降解小窝蛋白-1 (caveolin-1, CAV1) (CAV1也可能被巨自噬降解)将β-catenin转运至细胞核内并发生核内累积,进而激活Wnt/β-catenin通路,促进BRAF V600E突变型CRC转移和EMT [14]。核梭杆菌(fusobacterium nucleatum)通过上调半胱氨酸天冬氨酸蛋白酶激活和募集域3 (caspase activation and recruitment domain 3, CARD3)激活自噬,上调波形蛋白,下调E-钙粘蛋白,促进CRC转移[15]。没食子鞣质(gallotannin, GT)上调LC3B和p62水平抑制自噬并抑制MMP-2和MMP-9的表达和活性来抑制CRC细胞的迁移和侵袭,并通过下调间充质标志物(包括SNAIL, TWIST和波形蛋白)的表达抑制EMT [16]。tRNA衍生片段-3019a (tRNA-derived fragment-3019a, tRF-3019a)与BECN1 mRNA竞争性结合STAU1蛋白,促进自噬相关蛋白BECN1表达,通过自噬促进EMT发生,促进CRC转移[17]

4.1.3. 自噬与CRC细胞循环系统存活

休眠癌细胞造成CRC预后不良及癌症复发、远处转移。细胞周期和增殖的中心调节因子polo样激酶4 (polo-like kinases 4, PLK4)表达与CRC组织休眠标志物(Ki67, p-ERK, p-p38)和晚期复发相关,PLK4抑制自噬,通过MAPK信号通路将侵袭性CRC细胞恢复到休眠状态[18]。可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(soluble N-ethylmaleimide-sensitive factor attachment protein receptors, SNARE)是自噬必需的一大类蛋白质。囊泡型可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体SEC22B在CRC中表达高于正常组织,在转移组织中显著增加。SEC22B通过介导膜融合以促进ATG9运输到吞噬泡组装位点,促进自噬体和自溶酶体的形成。应激条件会促进CRC中的自噬进而使CRC细胞能够在血清饥饿和缺氧环境中生存。敲低SEC22B抑制CRC细胞异种移植小鼠模型中CRC肝转移[19]

4.1.4. 分子通过自噬调节转移机制不明确

CRC患者组织中的溶酶体整合膜蛋白2 (lysosomal integral membrane protein 2, LIMP2)高表达。敲低LIMP2在体外抑制CRC细胞的侵袭、迁移,在体内抑制CRC肝转移,但对肿瘤细胞的增殖无影响。同时敲低LIMP2抑制CRC中的自噬。该研究并未指出LIMP2抑制CRC细胞的侵袭、迁移具有自噬特异性[20]。氯丙嗪(chlorpromazine, CPZ)阻断CRC细胞中的自噬溶酶体的形成,使自噬体积累,抑制自噬流的形成。CPZ同时诱导G2/M细胞周期停滞并上调ROS,诱导线粒体依赖性细胞凋亡。进而抑制CRC细胞生长促进细胞凋亡并抑制CRC肺转移。但研究并未指出CPZ 通过调控细胞自噬发生调控CRC转移[21]。自噬调节因子贝林蛋白1 (beclin 1, BECN1)在CRC中低表达。敲低BECN1增强STAT3与JAK2结合,促进STAT3磷酸化(但不抑制自噬)促进CRC肺转移,但该过程与自噬无关[22]

4.2. 细胞自噬水平与CRC转移潜能成负相关性

4.2.1. 细胞自噬与凋亡

阿尔努斯通(alnustone, Aln)可能通过诱导自噬、线粒体介导的细胞凋亡和抑制细胞周期蛋白-CDK复合蛋白表达导致G0/G1期停滞抑制CRC肺转移[23]。柴胡皂苷D (saikosaponin D, SSD)促进CRC自噬并激活MAPK信号通路及线粒体去极化细胞凋亡,抑制CRC肺部转移[24]

4.2.2. 细胞自噬与EMT

高浓度葡萄糖激活CRC细胞PI3K/AKT/mTOR通路抑制自噬并增加EMT相关蛋白如N-钙粘蛋白、波形蛋白、ZEB1和MMP9表达促进CRC细胞转移[25]。核受体亚家族3 C组成员2 (nuclear receptor subfamily 3 group C member 2, NR3C2)和SIRT1在CRC中低表达。过表达NR3C2上调自噬的调节因子去乙酰化酶(sirtuin1, SIRT1)进而促进自噬,抑制CRC EMT和肺转移[26]。去氢吴茱萸碱(dehydroevodiamine, DHE)通过磷酸化AKT诱导CRC细胞自噬并上调E-钙粘蛋白,下调N-钙粘蛋白和波形蛋白抑制EMT并抑制小鼠CRC肺转移[27]。龙胆酸(gentisic acid, GA)通过特异性G蛋白偶联受体81 (G protein-coupled receptor 81, GPR81)介导抑制的CMA依赖性含DEP结构域蛋白5 (DEP domain containing 5, DEPDC5)降解,抑制mTOR-HIF-1α信号通路,上调E-钙粘蛋白并下调N-钙粘蛋白和波形蛋白,抑制CRC的EMT和转移[28]。晚期CRC患者中跨膜9超家族成员1 (transmembrane 9 superfamily member 1, TM9SF1)下调,且预后良好。TM9SF1通过促进E3连接酶TRIM21泛素化连接波形蛋白K63,使波形蛋白作为底物被自噬转运受体Tollip识别,并被选择性自噬降解造成波形蛋白下调导致CRC细胞中丝状突起(filopodium-like protrusions, FLP)减少,最终抑制CRC转移[29]

4.2.3. 分子通过mTOR依赖途径调控细胞自噬

SF3B3在CRC中高表达,与CRC患者生存率成负相关。U2小核核糖核蛋白(small nuclear ribonucleoproteins, snRNPs)复合物的一个剪接因子组件SF3B3抑制mTOR外显子8跳跃剪接,提高mTORα同时降低mTORβ,抑制CRC细胞自噬,促进CRC转移[30]。G蛋白信号调节剂1 (G-protein signaling modulator 1, GPSM1)在CRC中高表达,并与淋巴结转移和不良预后相关。GPSM1通过激活PI3K/AKT/mTOR通路并抑制自噬进而促进CRC转移[31]。酰基辅酶A氧化酶家族的成员酰基辅酶A氧化酶1 (Acyl-CoA oxidase 1, ACOX1)在CRC中下调并与不良预后相关。过表达ACOX1通过上调脂肪酸β氧化衍生的活性氧(reactive oxygen, ROS),调节脂肪酸代谢,增加ROS水平,减少关键自噬调节因子mTOR磷酸化激活,增强自噬,抑制CRC的生长和转移[32]。亚甲基四氢叶酸脱氢酶1 (methylenetetrahydrofolate dehydrogenase 1, MTHFD1)在CRC患者过表达。过表达MTHFD1激活PI3K-AKT-mTOR信号通路抑制自噬促进CRC迁移和侵袭[33]

4.2.4. 分子通过非mTOR依赖途径调控细胞自噬

细胞衰老抑制基因核糖体L1域包含1 (ribosomal L1 domain containing 1, RSL1D1)在CRC患者中高表达,并且与CRC 患者低生存率相关。RSL1D1通过与去乙酰化酶7 (Sirtuin 7, Sirt7)竞争性结合抑制小GTP酶RAS超家族的成员RAN脱乙酰化,进而减少信号转导和转录激活因子3 (signal transducer and activator of transcription-3, STAT3)核积累,最后通过抑制自噬促进CRC细胞的增殖和侵袭[34]。细胞质细胞视黄酸结合蛋白2 (cellular retinoic acid-binding protein 2, CRABP2)通过与ATP酶家族基因3-样2 (ATPase family gene 3-like 2, AFG3L2)的m-AAA结构域结合下调AFG3L2并阻断AFG3L2介导的PINK1降解增强线粒体自噬抑制CRC肝转移[35]。氧化苦参碱(oxymatrine)通过抑制富含亮氨酸的五肽重复序列基序蛋白(leucine rich pentatricopeptide repeat-containing protein, LRPPRC)促进E3泛素连接酶Parkin易位到线粒体中,抑制线粒体自噬及其激活的炎性小体NLRP3,抑制CRC细胞异种移植和肝转移[36]。miR-1825在CRC组织中高表达,与淋巴结转移和远处转移呈正相关。miR-1825可以通过直接结合ATG14的3’UTR区抑制自噬进而抑制CRC迁移能力[37]。2’-(4-氨基苯基)-[2,5’-双-1H-苯并咪唑]-5-胺(‘2’-(4-aminophenyl)-[2,5’-bi-1H-benzimidazol]-5-amine, Ro 90-7501)通过MAVS-TRAF6信号轴促进视黄酸诱导基因I (retinoic acid-inducible gene I, RIG-I)介导的自噬抑制CRC转移[38]。miR-449a在CRC患者中低表达量,与肿瘤转移呈负相关。自噬通过降解共激活因子p300蛋白,p300蛋白可乙酰化转录因子叉头盒O1 (transcription factor forkhead box O1, FoxO1) (FoxO1),抑制p300蛋白乙酰化,而未乙酰化的FoxO1易位到细胞核并与miR-449a启动子结合以上调miR-449a基因表达,进而降低靶基因LEF-1和细胞周期蛋白D1的表达,抑制CRC迁移和侵袭能力[39]

5. 讨论与展望

近年来越来越多的研究证明自噬在癌症转移过程中发挥重要作用,多种分子可通过mTOR依赖途径或非mTOR依赖途径调控细胞自噬,通过调节不同CRC细胞迁移能力。但目前部分研究中机制不明确的分子(如LIMP2,CPZ等),需通过特异性干预实验(如利用自噬激动剂或抑制剂进行回复实验)进一步验证其调控转移是否依赖自噬,同时探索新的自噬相关分子(如tRF-3019a,TM9SF1等)的作用网络,为靶向治疗提供靶点。同时利用空间转录组学等技术动态追踪自噬在CRC转移级联反应中的时空变化,为进一步的靶向药物研发提供依据。

基金项目

嘉兴大学SRT项目(8517241044)。

参考文献

[1] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53.
https://doi.org/10.1016/j.jncc.2024.01.006
[2] Rumpold, H., Niedersüß-Beke, D., Heiler, C., Falch, D., Wundsam, H.V., Metz-Gercek, S., et al. (2020) Prediction of Mortality in Metastatic Colorectal Cancer in a Real-Life Population: A Multicenter Explorative Analysis. BMC Cancer, 20, Article No. 1149.
https://doi.org/10.1186/s12885-020-07656-w
[3] Ilyas, M.I.M. (2023) Epidemiology of Stage IV Colorectal Cancer: Trends in the Incidence, Prevalence, Age Distribution, and Impact on Life Span. Clinics in Colon and Rectal Surgery, 37, 57-61.
https://doi.org/10.1055/s-0043-1761447
[4] Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12.
https://doi.org/10.1002/path.2697
[5] Gakinya, S., Nzioka, A.K., Mugo, A.G., Onyuma, T. and Ogutu, J. (2025) Autophagy-Related Protein LC3β and Its Association with Clinical-Pathological Characteristics, Mismatch Repair Proteins and Survival in Colorectal Carcinoma. Frontiers in Medicine, 12, Article ID: 1512127.
https://doi.org/10.3389/fmed.2025.1512127
[6] Shen, N., Wang, L., Wu, J., Chen, X., Hu, F. and Su, Y. (2023) Meta-Analysis of the Autophagy-Associated Protein LC3 as a Prognostic Marker in Colorectal Cancer. Experimental and Therapeutic Medicine, 26, Article No. 492.
https://doi.org/10.3892/etm.2023.12191
[7] Lv, P., Wu, Z., Lai, L., Zhang, Y. and Pei, B. (2023) The Clinicopathological Significance and Potential Function of ULK1 in Colon Cancer. Biotechnology and Genetic Engineering Reviews, 40, 4380-4393.
https://doi.org/10.1080/02648725.2023.2210952
[8] 武强, 赵冉, 葛中宽, 邹静敏, 韩大力, 王世江, 等. 细胞自噬治疗肿瘤的研究进展[J]. 中华肿瘤防治杂志, 2024, 31(16): 1029-1036.
[9] Ayub, A., Hasan, M.K., Mahmud, Z., Hossain, M.S. and Kabir, Y. (2024) Dissecting the Multifaceted Roles of Autophagy in Cancer Initiation, Growth, and Metastasis: From Molecular Mechanisms to Therapeutic Applications. Medical Oncology, 41, Article No. 183.
https://doi.org/10.1007/s12032-024-02417-2
[10] Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196.
https://doi.org/10.1038/nrm3758
[11] Gerstberger, S., Jiang, Q. and Ganesh, K. (2023) Metastasis. Cell, 186, 1564-1579.
https://doi.org/10.1016/j.cell.2023.03.003
[12] Wang, X., Zhou, Y., Ning, L., Chen, J., Chen, H. and Li, X. (2023) Knockdown of ANXA10 Induces Ferroptosis by Inhibiting Autophagy-Mediated TFRC Degradation in Colorectal Cancer. Cell Death & Disease, 14, Article No. 588.
https://doi.org/10.1038/s41419-023-06114-2
[13] Chen, D., Wu, J., Qiu, X., Luo, S., Huang, S., Wei, E., et al. (2023) SPHK1 Potentiates Colorectal Cancer Progression and Metastasis via Regulating Autophagy Mediated by Traf6-Induced ULK1 Ubiquitination. Cancer Gene Therapy, 31, 410-419.
https://doi.org/10.1038/s41417-023-00711-1
[14] Li, B., Ming, H., Qin, S., Zhou, L., Huang, Z., Jin, P., et al. (2023) HSPA8 Activates Wnt/β-Catenin Signaling to Facilitate BRAF V600E Colorectal Cancer Progression by CMA-Mediated CAV1 Degradation. Advanced Science, 11, Article 2306535.
https://doi.org/10.1002/advs.202306535
[15] Chen, Y., Chen, Y., Zhang, J., Cao, P., Su, W., Deng, Y., et al. (2020) Fusobacterium nucleatum Promotes Metastasis in Colorectal Cancer by Activating Autophagy Signaling via the Upregulation of CARD3 Expression. Theranostics, 10, 323-339.
https://doi.org/10.7150/thno.38870
[16] Mun, J., Han, Y., Jeon, H., Yoon, D.H., Lee, Y.G., Hong, S., et al. (2021) Inhibitory Effect of Gallotannin on Lung Metastasis of Metastatic Colorectal Cancer Cells by Inducing Apoptosis, Cell Cycle Arrest and Autophagy. The American Journal of Chinese Medicine, 49, 1535-1555.
https://doi.org/10.1142/s0192415x21500725
[17] Yuan, X., Li, W., Li, J., Zhang, W., Xiong, Y., Tang, H., et al. (2025) Trf-3019a/Stau1/Becn1 Axis Promotes Autophagy and Malignant Progression of Colon Cancer. Cellular Signalling, 132, Article 111813.
https://doi.org/10.1016/j.cellsig.2025.111813
[18] Tian, X., He, Y., Qi, L., Liu, D., Zhou, D., Liu, Y., et al. (2023) Autophagy Inhibition Contributes to Apoptosis of PLK4 Downregulation-Induced Dormant Cells in Colorectal Cancer. International Journal of Biological Sciences, 19, 2817-2834.
https://doi.org/10.7150/ijbs.79949
[19] Choi, J., Park, S., Lee, W., Lee, C., Kim, J., Jang, T., et al. (2023) SEC22B Inhibition Attenuates Colorectal Cancer Aggressiveness and Autophagic Flux under Unfavorable Environment. Biochemical and Biophysical Research Communications, 665, 10-18.
https://doi.org/10.1016/j.bbrc.2023.03.039
[20] Tian, Y., Liang, L., Chen, J., Liu, J., Su, Y., Shi, M., et al. (2023) Knockdown LIMP2 Inhibits Colorectal Cancer Cells Migration, Invasion, and Metastasis. Experimental Cell Research, 431, Article 113757.
https://doi.org/10.1016/j.yexcr.2023.113757
[21] Xu, F., Xi, H., Liao, M., Zhang, Y., Ma, H., Wu, M., et al. (2022) Repurposed Antipsychotic Chlorpromazine Inhibits Colorectal Cancer and Pulmonary Metastasis by Inducing G2/M Cell Cycle Arrest, Apoptosis, and Autophagy. Cancer Chemotherapy and Pharmacology, 89, 331-346.
https://doi.org/10.1007/s00280-021-04386-z
[22] Hu, F., Li, G., Huang, C., Hou, Z., Yang, X., Luo, X., et al. (2020) The Autophagy-Independent Role of BECN1 in Colorectal Cancer Metastasis through Regulating STAT3 Signaling Pathway Activation. Cell Death & Disease, 11, Article No. 304.
https://doi.org/10.1038/s41419-020-2467-3
[23] Park, S., Mun, J., Lee, Y., Lee, S., Kim, S., Jang, J., et al. (2024) Inhibitory Effect of Alnustone on Survival and Lung Metastasis of Colorectal Cancer Cells. Nutrients, 16, Article 3737.
https://doi.org/10.3390/nu16213737
[24] Lee, Y., Mun, J., Park, S., Hong, D.Y., Kim, H., Kim, S., et al. (2024) Saikosaponin D Inhibits Lung Metastasis of Colorectal Cancer Cells by Inducing Autophagy and Apoptosis. Nutrients, 16, Article 1844.
https://doi.org/10.3390/nu16121844
[25] Li, F., Wan, X., Li, Z. and Zhou, L. (2024) High Glucose Inhibits Autophagy and Promotes the Proliferation and Metastasis of Colorectal Cancer through the PI3k/Akt/mTOR Pathway. Cancer Medicine, 13, e7382.
https://doi.org/10.1002/cam4.7382
[26] Li, F., Wan, X., Li, Z. and Zhou, L. (2025) The NR3C2-SIRT1 Signaling Axis Promotes Autophagy and Inhibits Epithelial Mesenchymal Transition in Colorectal Cancer. Cell Death & Disease, 16, Article No. 295.
https://doi.org/10.1038/s41419-025-07575-3
[27] Jeon, H.D., Han, Y., Mun, J., Yoon, D.H., Lee, Y.G., Kee, J., et al. (2022) Dehydroevodiamine Inhibits Lung Metastasis by Suppressing Survival and Metastatic Abilities of Colorectal Cancer Cells. Phytomedicine, 96, Article 153809.
https://doi.org/10.1016/j.phymed.2021.153809
[28] Feng, G., Zhang, L., Bao, W., Ni, J., Wang, Y., Huang, Y., et al. (2024) Gentisic Acid Prevents Colorectal Cancer Metastasis via Blocking GPR81-Mediated DEPDC5 Degradation. Phytomedicine, 129, Article 155615.
https://doi.org/10.1016/j.phymed.2024.155615
[29] Wang, H., Hu, J., Wang, D., Cai, Y., Zhu, W., Deng, R., et al. (2025) TM9SF1 Inhibits Colorectal Cancer Metastasis by Targeting Vimentin for Tollip-Mediated Selective Autophagic Degradation. Cell Death & Differentiation, 1-15.
https://doi.org/10.1038/s41418-025-01498-4
[30] Xu, T., Li, X., Zhao, W., Wang, X., Jin, L., Feng, Z., et al. (2024) SF3B3-Regulated mTOR Alternative Splicing Promotes Colorectal Cancer Progression and Metastasis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 126.
https://doi.org/10.1186/s13046-024-03053-4
[31] Yang, C., Yaolin, S., Lu, W., Wenwen, R., Hailei, S., Han, Z., et al. (2023) G-Protein Signaling Modulator 1 Promotes Colorectal Cancer Metastasis by PI3K/Akt/mTOR Signaling and Autophagy. The International Journal of Biochemistry & Cell Biology, 157, Article 106388.
https://doi.org/10.1016/j.biocel.2023.106388
[32] Shi, B., Chen, J., Guo, H., Shi, X., Tai, Q., Chen, G., et al. (2025) ACOX1 Activates Autophagy via the ROS/mTOR Pathway to Suppress Proliferation and Migration of Colorectal Cancer. Scientific Reports, 15, Article No. 2992.
https://doi.org/10.1038/s41598-025-87728-8
[33] Li, Z., Ke, H., Cai, J., Ye, S., Huang, J., Zhang, C., et al. (2024) mthfd1 Regulates Autophagy to Promote Growth and Metastasis in Colorectal Cancer via the PI3K-Akt-mTOR Signaling Pathway. Cancer Medicine, 13, e70267.
https://doi.org/10.1002/cam4.70267
[34] Liu, X., Chen, J., Long, X., Lan, J., Liu, X., Zhou, M., et al. (2022) RSL1D1 Promotes the Progression of Colorectal Cancer through Ran-Mediated Autophagy Suppression. Cell Death & Disease, 13, Article No. 43.
https://doi.org/10.1038/s41419-021-04492-z
[35] Tian, C., Yang, S., Zhang, C., Zhu, R., Chen, C., Wang, X., et al. (2025) Dual Role of CRABP2 in Colorectal Cancer: Oncogenesis via Nuclear RB1 and Cytoplasmic AFG3L2/SLC25A39 Axis, While Limiting Liver Metastasis through Cytoplasmic AFG3L2/Pink1/Parkin-Mediated Mitophagy. Advanced Science, 12, Article 2500552.
https://doi.org/10.1002/advs.202500552
[36] Liang, L., Sun, W., Wei, X., Wang, L., Ruan, H., Zhang, J., et al. (2023) Oxymatrine Suppresses Colorectal Cancer Progression by Inhibiting NLRP3 Inflammasome Activation through Mitophagy Induction in Vitro and in Vivo. Phytotherapy Research, 37, 3342-3362.
https://doi.org/10.1002/ptr.7808
[37] Sun, J., Wu, H., Luo, J., Qiu, Y., Li, Y., Xu, Y., et al. (2024) CircTBC1D22A Inhibits the Progression of Colorectal Cancer through Autophagy Regulated via miR-1825/ATG14 Axis. iScience, 27, Article 109168.
https://doi.org/10.1016/j.isci.2024.109168
[38] Zhao, X., Zhang, Z., Wang, J., Feng, S., Jiang, L., Chen, L., et al. (2024) Ro 90-7501 Suppresses Colon Cancer Progression by Inducing Immunogenic Cell Death and Promoting RIG-1-Mediated Autophagy. International Immunopharmacology, 143, Article 113631.
https://doi.org/10.1016/j.intimp.2024.113631
[39] Lan, S., Lin, S., Wang, W., Yang, Y., Lee, J., Lin, P., et al. (2021) Autophagy Upregulates miR-449a Expression to Suppress Progression of Colorectal Cancer. Frontiers in Oncology, 11, Article ID: 738144.
https://doi.org/10.3389/fonc.2021.738144