恶性肿瘤合并脓毒血症生物标志物的研究进展
Research Progress on Biomarkers for Malignant Tumor Patients Complicated with Sepsis
DOI: 10.12677/acm.2025.1592533, PDF, HTML, XML,    科研立项经费支持
作者: 方章兰*, 杨湖广, 祝筱茜, 罗 玲#:重庆大学附属肿瘤医院普通内科,重庆
关键词: 恶性肿瘤脓毒血症生物标志物早期诊断预后Malignant Tumor Sepsis Biomarkers Early Diagnosis Prognosis
摘要: 恶性肿瘤患者免疫功能显著低下,且在抗肿瘤治疗过程中免疫屏障进一步受损,极易并发脓毒血症。一旦合并脓毒血症,患者病情往往进展迅速,死亡率显著升高。因此,早期准确诊断对改善预后至关重要,而相关标志物的精准检测在这一过程中发挥关键作用。本文系统综述了近年来恶性肿瘤合并脓毒血症相关标志物的研究进展,旨在为早期识别、精准诊断及有效治疗提供参考依据。
Abstract: Malignant tumor patients exhibit significantly compromised immune function, and their immune barriers are further damaged during anti-tumor therapy, making them highly susceptible to sepsis. Once sepsis occurs, the condition often progresses rapidly, leading to a markedly increased mortality rate. Therefore, early and accurate diagnosis is crucial for improving prognosis, and the precise detection of relevant biomarkers plays a key role in this process. This article systematically reviews recent research advances in biomarkers for sepsis in malignant tumor patients, aiming to provide a reference for early identification, precise diagnosis, and effective treatment.
文章引用:方章兰, 杨湖广, 祝筱茜, 罗玲. 恶性肿瘤合并脓毒血症生物标志物的研究进展[J]. 临床医学进展, 2025, 15(9): 606-612. https://doi.org/10.12677/acm.2025.1592533

1. 背景

脓毒血症是由感染引起的危及生命的器官功能障碍,严重威胁患者的生命健康[1] [2]。恶性肿瘤患者是脓毒血症的高危人群,流行病学数据显示,此类患者发生脓毒血症的风险较非癌症人群高出10倍[3]。一方面,肿瘤细胞的生长和浸润破坏了机体正常的免疫防御机制;另一方面,手术、化疗、放疗等抗肿瘤治疗手段进一步削弱了患者的免疫功能,使其更易受到病原体侵袭[4]-[6]。因此,对恶性肿瘤患者的脓毒血症进行早期识别与精准诊断,对改善预后具有重要临床价值。值得注意的是,传统诊断指标如白细胞计数(WBC)、C反应蛋白(CRP)、降钙素原(PCT)等,在恶性肿瘤患者中存在明显局限性(如肿瘤本身可能干扰指标基线)。近年来,随着研究的深入,一系列新的生物标志物被相继发现,为该类患者脓毒血症的早期诊断和病情评估提供了新的思路与方法。

2. 恶性肿瘤合并脓毒血症的常见生物标志物

2.1. 传统炎症标志物

CRP作为一种急性时相反应蛋白,在机体遭遇感染、炎症等应激状态时,会由肝脏快速合成并释放入血。当恶性肿瘤患者并发脓毒血症时,其CRP水平往往会出现显著升高。但CRP并非仅在感染性炎症时升高,在恶性肿瘤本身、创伤、手术等非感染性炎症情况下,它的水平也会上升,这就导致其特异性相对较低[7] [8]。所以,仅依靠CRP来诊断恶性肿瘤患者是否并发脓毒血症,准确性会受到限制,在实际应用中需要结合其他指标进行综合判断。

PCT是一种不具备激素活性的降钙素前肽物质,在健康人的血清中,其水平极低。而当机体受到严重细菌、真菌、寄生虫感染以及出现脓毒血症时,PCT水平会在短时间内迅速上升。与CRP相比,PCT对于细菌感染引发的脓毒血症,具有更高的特异性和敏感性,并且动态监测PCT的变化情况,与患者的生存率有着显著的相关[9]。相关研究显示,在血液肿瘤患者中,PCT水平升高与脓毒血症的风险显著相关(OR = 1.113),将其与CRP联合检测,可提高脓毒血症的诊断率。当恶性肿瘤患者并发脓毒血症时,PCT水平会显著升高,而且其升高的程度与脓毒血症的严重程度密切相关[10]。此外,PCT与CRP、白细胞介素-6 (IL-6)等因子联合检测的效果,明显优于单独检测,其中PC T > 1.0 ng/mL是脓毒血症的独立危险因素[11]

Lac (Lac):Lac是葡萄糖经糖酵解途径产生的代谢产物。当机体处于缺氧状态时,线粒体功能受抑,三羧酸循环无法正常进行,导致Lac因无氧代谢增强而大量堆积。在脓毒血症患者中,Lac的产生与清除失衡表现尤为显著:一方面,红细胞(因缺乏线粒体,只能依赖无氧酵解供能)及糖酵解率较高的组织会持续产生Lac;另一方面,Lac的代谢主要依赖肝脏和肾脏,若脓毒血症患者并发肝、肾功能障碍,会导致Lac清除率下降。这种“产多排少”的失衡状态,会进一步加重因组织灌注不足引发的器官缺氧[12]

在恶性肿瘤相关研究中,Lac代谢异常同样是显著特征:肿瘤细胞在缺氧微环境中依赖糖酵解大量生成Lac,并通过单羧酸转运体排出细胞,这为肿瘤缺氧状态下Lac的异常产生提供了合理解释[13] [14]。此外,肿瘤微环境因血管结构异常、缺氧等因素,会导致糖酵解途径持续增强,使肿瘤患者基础血Lac水平升高。这提示肿瘤相关的缺氧状态可独立引发血Lac升高[15] [16]。因此,在肿瘤患者中,需结合具体临床背景及其他辅助指标,才能有效区分Lac升高是源于肿瘤本身,还是由脓毒血症所致。

2.2. 免疫相关标志物

IL-6:IL-6是一种具有多重生物学功能的细胞因子,在机体炎症反应和免疫调节中发挥关键作用。在脓毒血症中,由于免疫系统被病原体强烈激活,IL-6会大量释放,导致血清水平快速升高[17]。多项研究证实,IL-6水平的动态变化可作为脓毒血症病情评估和预后判断的重要指标:KLAG T等对20例普通脓毒血症患者的研究显示,基线后24~48小时内IL-6浓度迅速下降或降至基线值以下,提示经验性抗生素治疗有效,且可作为生存的预测因子[18];另有研究纳入48例普通脓毒血症或脓毒血症休克患者,结果显示入院7小时后IL-6水平降低与生存结局相关[19];进一步研究明确,入院24小时内IL-6水平降低 ≥ 86%,可作为脓毒血症及脓毒血症休克患者的独立生存预测指标[20]。但IL-6在恶性肿瘤合并脓毒血症患者中是否可作为特异性标志物,尚缺乏相关的研究。

在恶性肿瘤领域,IL-6的异常表达与疾病进展密切相关。研究发现,膀胱癌患者的IL-6水平显著高于健康人群,且IL-6及其可溶性受体水平与肿瘤分期、转移状态相关,是疾病复发和特定疾病生存率的独立预测因子[21]。Lane D.等人的研究也提示,腹水中IL-6与IL-8水平升高可能参与肿瘤进展过程[22]。上述研究结果为恶性肿瘤合并脓毒血症的IL-6应用提供参考,但癌症患者的IL-6水平会因肿瘤特性发生改变,因此在临床应用中需针对癌症患者设定特异性IL-6阈值,但其具体数值仍需进一步研究明确。

中性粒细胞表面CD64 (CD64):CD64是一种高亲和力Fc受体,可与免疫球蛋白G结合,不仅在固有免疫中通过刺激吞噬作用清除病原体,还参与适应性免疫反应,介导抗体依赖的细胞毒作用。当机体受到病原体入侵时,CD64可被微生物壁成分、补体裂解产物及感染诱导的促炎细胞因子(如干扰素-γ、IL-6、肿瘤坏死因子-α、粒细胞集落刺激因子等)激活,其表达在4~6小时内显著上调;而在刺激因素消除后,CD64表达会在48小时内大幅降低,并于7天后恢复至正常基线水平[23]-[25]

临床研究证实,CD64是诊断细菌性脓毒血症的特异性标志物,能有效区分脓毒血症与非脓毒血症状态,同时可用于预测脓毒血症患者的病死率[26]。该指标对血液系统恶性肿瘤患者(尤其是合并中性粒细胞减少者)的感染诊断也具有较高的敏感性和特异性[27]。上述研究证实CD64可作为脓毒血症的特异性标志物,但这些结论不能直接外推至肿瘤合并脓毒血症患者中。此类群体的病理生理特点,决定了CD64的表达与普通脓毒血症患者存在着差异。一方面,肿瘤本身及治疗手段会显著干扰免疫状态,可能使CD64的基础表达水平偏离普通人群[28] [29]。另一方面,肿瘤合并脓毒血症的病情复杂,可能要求阈值设定需结合临床特征分层。如不同肿瘤类型[30]、治疗阶段[31]、合并症[32]均可能影响CD64的表达。因此,针对该群体,需开展针对性的研究明确不同亚群中CD64的表达分布特征、结合临床结局,重新确定最佳诊断阈值。

2.3. 新型生物标志物的研究进展

除上述传统生物标志物外,近年来一系列新型标志物在脓毒血症的机制研究与临床评估中展现出重要价值,但其在脓毒血症合并恶性肿瘤患者中的应用仍需进一步探索。

骨形态发生蛋白9 (BMP9):最新研究通过对两个独立脓毒血症患者队列的分析发现,脓毒血症患者入院时血清BMP9浓度较健康对照组显著降低,且该浓度与28天死亡率密切相关,提示BMP9可作为脓毒血症的独立预后标志物[33]。进一步机制研究在动物模型中证实,补充BMP9能通过激活ALK1-Smad1/5信号通路增强巨噬细胞功能,为脓毒血症的宿主导向治疗提供了新的潜在靶点,这一发现为理解脓毒血症免疫紊乱机制增添了新视角。

糖与白蛋白比值(GAR):GAR作为整合血糖与血浆白蛋白水平的新兴标志物,可更全面反映机体代谢与营养状态的协同变化。既往研究已证实其与非酒精性脂肪肝(NAFLD)进展及脑出血患者死亡率相关[34] [35],而近期研究进一步揭示了其在脓毒血症中的临床意义:当GAR ≥ 27.93时,脓毒血症患者28天死亡率显著升高(HR = 1.186) [36]。这一指标对合并糖尿病或营养不良的恶性肿瘤患者尤为适用,此类患者常存在基础代谢紊乱与营养状态失衡,GAR能更精准地捕捉脓毒血症状态下的机体应激反应,为复杂病情评估提供参考。

岩藻糖基化结合珠蛋白(Fu-Hp):最新研究表明[37],对脓毒症患者血浆中岩藻糖基化结合珠蛋白(Fu-Hp)的促炎机制展开深入探索,通过多中心队列分析结合单细胞测序技术,首次揭示其分子通路:Fu-Hp通过激活C型凝集素受体Mincle (CLEC4E)驱动NLRP3炎症小体活化。研究发现,Asn207/Asn211位点的末端岩藻糖基化修饰是触发NF-κB和MAPK信号级联放大的关键结构特征,同时鉴定出FUT4⁺巨噬细胞亚群的预后标志物价值。该成果为脓毒症精准干预提供新靶点,且该糖基化修饰可作为潜在预后标志物。

上述新型生物标志物已在脓毒血症机制研究中展现出独特价值,但针对脓毒血症合并恶性肿瘤患者的特异性表达规律、临床意义及应用阈值,仍需开展更深入的研究以明确其适用性。

3. 标志物联合检测在脓毒血症及脓毒血症合并恶性肿瘤患者诊断中的价值

恶性肿瘤患者因免疫功能受抑、化疗或放疗引发的骨髓抑制等因素,感染性并发症(尤其是脓毒血症)的发生率和死亡率显著高于普通人群。然而,传统单一生物标志物(如CRP、PCT)在这类患者中常受肿瘤自身炎症微环境(如肿瘤相关慢性炎症)或抗肿瘤治疗(如放疗导致的组织损伤)的干扰,特异性欠佳,因此,探索多标志物联合检测的应用价值成为研究热点。

一项发表于《美国医学会杂志》的研究,系统比较了9种生物标志物(α-2巨球蛋白、CRP、纤维蛋白、纤维蛋白原、触珠蛋白、PCT、血清淀粉样蛋白A、血清淀粉样蛋P、组织型纤溶酶原激活剂)对临床疑似细菌性脓毒血症患者死亡率的预测效能。结果显示,血清淀粉样蛋白P (SAP)和组织型纤溶酶原激活剂(TPA)的单项预测性能最优,而多标志物联合检测可显著提升对疑似脓毒血症患者14天及总体院内死亡风险的预测精度[38]。有研究指出,患者预后受年龄、序贯器官衰竭评估(SOFA)评分、急性生理学与慢性健康状况评估II (APACHE II)评分、有创机械通气状态及血清淀粉样蛋白A (SAA)、Lac水平等多重因素影响,其中SAA和Lac水平升高与不良结局显著相关,二者联合检测能为预后评估提供更可靠的指导[39]

在恶性肿瘤人群中,Chaftari P.等[40]的分析显示,基于PCT、CRP、Lac等指标构建的评分系统,可有效预测感染合并癌症患者短期死亡风险,为急诊科疑似感染癌症患者提供便捷病情分层工具。一项针对73例恶性肿瘤伴脓毒血症与73例非肿瘤脓毒血症患者的对比研究显示,联合检测PCT、IL-6、CRP、WBC及ESR,可更精准判断恶性肿瘤患者的感染严重程度[41]。在脓毒血症并发症方面,Feng Q. [42]探讨了神经元特异性烯醇化酶(NSE)、S100β与IL-6联合检测对脓毒血症脑病的诊断价值,证实NSE水平与脑病严重程度呈正相关;Meta分析也支持NSE作为脓毒血症脑病的特异性标志物,结果表明脓毒血症脑病患者血清NSE水平显著高于非脑病患者,且其升高与死亡率及谵妄风险增加密切相关,提示NSE可作为神经元损伤的量化指标[43] [44]

综上,鉴于恶性肿瘤患者的病理生理特殊性(如肿瘤微环境干扰、治疗相关免疫紊乱),单一生物标志物的临床效能有限。通过整合多个标志物构建联合诊断模型,借助统计学方法综合分析,可有效克服上述局限,进一步提升脓毒血症诊断与预后评估的准确性,为临床个体化治疗决策提供更坚实的依据。

4. 结论与展望

恶性肿瘤合并脓毒血症病情复杂且死亡率居高不下,其核心困境在于肿瘤引发的免疫抑制、营养耗竭与脓毒血症导致的全身炎症反应、器官损伤形成恶性循环,这使得患者病情进展迅猛、治疗难度显著增加。因此,实现早期诊断、精准评估病情及有效预测预后,成为改善患者生存质量、提高救治成功率的关键。

在该病症的诊疗过程中,不同类型的生物标志物各具优势,共同构成疾病评估的重要体系。传统炎症标志物(如CRP、PCT)凭借检测便捷、结果稳定、临床应用成熟的特点,成为疾病早期诊断和病情动态监测的临床基石,可快速反映机体炎症反应状态;免疫相关标志物(如CD64、IL-6)通过评估免疫细胞功能及细胞因子水平,补充机体免疫状态的关键信息;新型生物标志物(如BMP9、GAR、Fu-Hp)则通过揭示疾病发生发展中的免疫代谢机制,为预后评估和靶向治疗开辟新方向,但其临床价值仍需在恶性肿瘤合并脓毒血症人群中进一步验证,其特异性阈值的设定是未来研究重点。这些标志物从炎症反应、免疫功能、代谢状态等层面协同作用,为疾病诊疗提供多维度依据。由于单一标志物存在局限性,联合检测多种标志物可有效弥补不足,提升诊断效能,更精准地评估病情和预测预后。

基金项目

重庆市沙坪坝区科委联合项目,2023SQKWLH031,恶性肿瘤患者合并脓毒血症诊疗标志物的研究。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] van der Poll, T., Shankar-Hari, M. and Wiersinga, W.J. (2021) The Immunology of Sepsis. Immunity, 54, 2450-2464.
https://doi.org/10.1016/j.immuni.2021.10.012
[2] Ackerman, M.H., Ahrens, T., Kelly, J. and Pontillo, A. (2021) Sepsis. Critical Care Nursing Clinics of North America, 33, 407-418.
https://doi.org/10.1016/j.cnc.2021.08.003
[3] Hotchkiss, R.S. and Moldawer, L.L. (2014) Parallels between Cancer and Infectious Disease. New England Journal of Medicine, 371, 380-383.
https://doi.org/10.1056/nejmcibr1404664
[4] Hiong, A., Thursky, K.A., Teh, B.W., Haeusler, G.M., Slavin, M.A. and Worth, L.J. (2016) Sepsis Following Cancer Surgery: The Need for Early Recognition and Standardised Clinical Care. Expert Review of Anti-Infective Therapy, 14, 425-433.
https://doi.org/10.1586/14787210.2016.1154787
[5] Mirouse, A., Vigneron, C., Llitjos, J., Chiche, J., Mira, J., Mokart, D., et al. (2020) Sepsis and Cancer: An Interplay of Friends and Foes. American Journal of Respiratory and Critical Care Medicine, 202, 1625-1635.
https://doi.org/10.1164/rccm.202004-1116tr
[6] Chen, A.X., Simpson, S.Q. and Pallin, D.J. (2019) Sepsis Guidelines. New England Journal of Medicine, 380, 1369-1371.
https://doi.org/10.1056/nejmclde1815472
[7] Allin, K.H. and Nordestgaard, B.G. (2011) Elevated C-Reactive Protein in the Diagnosis, Prognosis, and Cause of Cancer. Critical Reviews in Clinical Laboratory Sciences, 48, 155-170.
https://doi.org/10.3109/10408363.2011.599831
[8] Gao, P., Zhou, C., Yang, H., Deng, S., Jiang, B., Wang, Z., et al. (2025) Comparison of Circulating Immune Signatures across Different Consensus Molecular Subtypes (CMS) and between Left-and Right-Sided Lesions in Stage II Colorectal Cancer Using Single-Cell Mass Cytometry. Journal of Translational Medicine, 23, Article No. 496.
https://doi.org/10.1186/s12967-025-06481-8
[9] Vijayan, A.L., Vanimaya,, Ravindran, S., Saikant, R., Lakshmi, S., Kartik, R., et al. (2017) Procalcitonin: A Promising Diagnostic Marker for Sepsis and Antibiotic Therapy. Journal of Intensive Care, 5, Article No. 51.
https://doi.org/10.1186/s40560-017-0246-8
[10] Doganci, M., Eraslan Doganay, G., Sazak, H., Alagöz, A., Cirik, M.O., Hoşgün, D., et al. (2024) The Utility of C-Reactive Protein, Procalcitonin, and Leukocyte Values in Predicting the Prognosis of Patients with Pneumosepsis and Septic Shock. Medicina, 60, Article 1560.
https://doi.org/10.3390/medicina60101560
[11] lyu, Y., Han, T., Zhang, Z., Wu, Y., Guan, Q., Hong, E., et al. (2025) Procalcitonin and Interleukin-6 in Predicting Prognosis of Sepsis Patients with Cancer. Supportive Care in Cancer, 33, Article No. 404.
https://doi.org/10.1007/s00520-025-09464-z
[12] Brooks, G.A. (2018) The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 27, 757-785.
https://doi.org/10.1016/j.cmet.2018.03.008
[13] Jamali, S., Klier, M., Ames, S., Felipe Barros, L., McKenna, R., Deitmer, J.W., et al. (2015) Hypoxia-induced Carbonic Anhydrase IX Facilitates Lactate Flux in Human Breast Cancer Cells by Non-Catalytic Function. Scientific Reports, 5, Article No. 13605.
https://doi.org/10.1038/srep13605
[14] Kooshki, L., Mahdavi, P., Fakhri, S., Akkol, E.K. and Khan, H. (2021) Targeting Lactate Metabolism and Glycolytic Pathways in the Tumor Microenvironment by Natural Products: A Promising Strategy in Combating Cancer. BioFactors, 48, 359-383.
https://doi.org/10.1002/biof.1799
[15] Hayes, C., Donohoe, C.L., Davern, M. and Donlon, N.E. (2021) The Oncogenic and Clinical Implications of Lactate Induced Immunosuppression in the Tumour Microenvironment. Cancer Letters, 500, 75-86.
https://doi.org/10.1016/j.canlet.2020.12.021
[16] Faubert, B., Li, K.Y., Cai, L., Hensley, C.T., Kim, J., Zacharias, L.G., et al. (2017) Lactate Metabolism in Human Lung Tumors. Cell, 171, 358-371.e9.
https://doi.org/10.1016/j.cell.2017.09.019
[17] Gentile, L.F., Cuenca, A.G., Vanzant, E.L., Efron, P.A., McKinley, B., Moore, F., et al. (2013) Is There Value in Plasma Cytokine Measurements in Patients with Severe Trauma and Sepsis? Methods, 61, 3-9.
https://doi.org/10.1016/j.ymeth.2013.04.024
[18] Klag, T., Cantara, G., Sechtem, U. and Athanasiadis, A. (2016) Interleukin-6 Kinetics Can Be Useful for Early Treatment Monitoring of Severe Bacterial Sepsis and Septic Shock. Infectious Disease Reports, 8, Article 6213.
https://doi.org/10.4081/idr.2016.6213
[19] Ricarte-Bratti, J.P., Jaime-Albarrán, N., Montrull, H.L. and Brizuela, N.Y. (2017) IL-6, MMP 3 and Prognosis in Previously Healthy Sepsis Patients. Revista de la Facultad de Ciencias Médicas de Córdoba, 74, 99-106.
https://doi.org/10.31053/1853.0605.v74.n2.14608
[20] Thao, P.T.N., Tra, T.T., Son, N.T. and Wada, K. (2018) Reduction in the IL-6 Level at 24 H after Admission to the Intensive Care Unit Is a Survival Predictor for Vietnamese Patients with Sepsis and Septic Shock: A Prospective Study. BMC Emergency Medicine, 18, Article No. 39.
https://doi.org/10.1186/s12873-018-0191-4
[21] Andrews, B., Shariat, S.F., Kim, J., Wheeler, T.M., Slawin, K.M. and Lerner, S.P. (2002) Preoperative Plasma Levels of Interleukin-6 and Its Soluble Receptor Predict Disease Recurrence and Survival of Patients with Bladder Cancer. Journal of Urology, 167, 1475-1481.
https://doi.org/10.1016/s0022-5347(05)65348-7
[22] Lane, D., Matte, I., Rancourt, C. and Piché, A. (2011) Prognostic Significance of IL-6 and IL-8 Ascites Levels in Ovarian Cancer Patients. BMC Cancer, 11, Article No. 210.
https://doi.org/10.1186/1471-2407-11-210
[23] Larsen, F.F. and Petersen, J.A. (2017) Novel Biomarkers for Sepsis: A Narrative Review. European Journal of Internal Medicine, 45, 46-50.
https://doi.org/10.1016/j.ejim.2017.09.030
[24] Zola, H., Swart, B., Banham, A., Barry, S., Beare, A., Bensussan, A., et al. (2007) CD Molecules 2006—Human Cell Differentiation Molecules. Journal of Immunological Methods, 319, 1-5.
https://doi.org/10.1016/j.jim.2006.11.001
[25] Song, S.H., Kim, H.K., Park, M.H. and Cho, H. (2008) Neutrophil CD64 Expression Is Associated with Severity and Prognosis of Disseminated Intravascular Coagulation. Thrombosis Research, 121, 499-507.
https://doi.org/10.1016/j.thromres.2007.05.013
[26] Agarwal, V. (2020) Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review. Indian Journal of Critical Care Medicine, 24, 1242-1250.
https://doi.org/10.5005/jp-journals-10071-23558
[27] Comolli, G., Torchio, M., Lenta, E., et al. (2015) Neutrophil CD64 Expression: A Reliable Diagnostic Marker of Infection in Advanced Cancer Patients. The New Microbiologica, 38, 427-430.
[28] Gabrilovich, D.I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated Regulation of Myeloid Cells by Tumours. Nature Reviews Immunology, 12, 253-268.
https://doi.org/10.1038/nri3175
[29] Greten, F.R. and Grivennikov, S.I. (2019) Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 51, 27-41.
https://doi.org/10.1016/j.immuni.2019.06.025
[30] Azoulay, E., Mokart, D., Pène, F., Lambert, J., Kouatchet, A., Mayaux, J., et al. (2013) Outcomes of Critically Ill Patients with Hematologic Malignancies: Prospective Multicenter Data from France and Belgium—A Groupe De Recherche Respiratoire En Réanimation Onco-Hématologique Study. Journal of Clinical Oncology, 31, 2810-2818.
https://doi.org/10.1200/jco.2012.47.2365
[31] Klastersky, J., de Naurois, J., Rolston, K., Rapoport, B., Maschmeyer, G., Aapro, M., et al. (2016) Management of Febrile Neutropaenia: ESMO Clinical Practice Guidelines. Annals of Oncology, 27, v111-v118.
https://doi.org/10.1093/annonc/mdw325
[32] van Vught, L.A., Scicluna, B.P., Wiewel, M.A., Hoogendijk, A.J., Klein Klouwenberg, P.M.C., Ong, D.S.Y., et al. (2017) Association of Gender with Outcome and Host Response in Critically Ill Sepsis Patients. Critical Care Medicine, 45, 1854-1862.
https://doi.org/10.1097/ccm.0000000000002649
[33] Bai, H., Lu, Q., Wu, C., Xu, F., Liu, J., Wang, K., et al. (2024) Bone Morphogenetic Protein 9 Is a Candidate Prognostic Biomarker and Host-Directed Therapy Target for Sepsis. Science Translational Medicine, 16, eadi3275.
https://doi.org/10.1126/scitranslmed.adi3275
[34] Paik, J.M., Henry, L., De Avila, L., Younossi, E., Racila, A. and Younossi, Z.M. (2019) Mortality Related to Nonalcoholic Fatty Liver Disease Is Increasing in the United States. Hepatology Communications, 3, 1459-1471.
https://doi.org/10.1002/hep4.1419
[35] Parasram, M., Parikh, N.S., Merkler, A.E., Falcone, G.J., Sheth, K.N., Navi, B.B., et al. (2021) Risk of Mortality after an Arterial Ischemic Event among Intracerebral Hemorrhage Survivors. The Neurohospitalist, 12, 19-23.
https://doi.org/10.1177/19418744211026709
[36] Yan, F., Chen, X., Quan, X., Wang, L., Wei, X. and Zhu, J. (2024) Association between the Stress Hyperglycemia Ratio and 28-Day All-Cause Mortality in Critically Ill Patients with Sepsis: A Retrospective Cohort Study and Predictive Model Establishment Based on Machine Learning. Cardiovascular Diabetology, 23, Article No. 163.
https://doi.org/10.1186/s12933-024-02265-4
[37] Roh, T., Ju, S., Park, S.Y., Ahn, Y., Chung, J., Nakano, M., et al. (2025) Fucosylated Haptoglobin Promotes Inflammation via Mincle in Sepsis: An Observational Study. Nature Communications, 16, Article No. 1342.
https://doi.org/10.1038/s41467-025-56524-3
[38] Kelly, B.J., Lautenbach, E., Nachamkin, I., Coffin, S.E., Gerber, J.S., Fuchs, B.D., et al. (2018) Combined Biomarkers Predict Acute Mortality among Critically Ill Patients with Suspected Sepsis. Critical Care Medicine, 46, 1106-1113.
https://doi.org/10.1097/ccm.0000000000003137
[39] Xie, M., Min, Z., Jiang, W., He, Z. and Xia, X. (2025) Prognostic Value of Multivariate Logistic Regression Analysis and Amyloid a Lactate Monitoring in Patients with Severe Pneumonia-Associated Sepsis. BMC Pulmonary Medicine, 25, Article No. 191.
https://doi.org/10.1186/s12890-025-03648-3
[40] Chaftari, P., Qdaisat, A., Chaftari, A., Maamari, J., Li, Z., Lupu, F., et al. (2021) Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection. Cancers, 13, Article 4087.
https://doi.org/10.3390/cancers13164087
[41] 张天大, 徐剑晶, 乐道平, 等. 恶性肿瘤伴脓毒血症患者炎症指标及预后评估分析[J]. 中国肿瘤临床与康复, 2017, 24(12): 1487-1490.
[42] Feng, Q., Wu, L., Ai, Y.H., et al. (2017) [The Diagnostic Value of Neuron-Specific Enolase, Central Nervous System Specific Protein and Interleukin-6 in Sepsis-Associated Encephalopathy]. Chinese Journal of Internal Medicine, 56, 747-751.
[43] 张杏, 刘传明, 樊菲菲. 脓毒血症相关性脑病与血清S100β、NSE水平关联性的Meta分析[J]. 医学信息, 2023, 36(10): 98-104.
[44] Anderson, B.J., Reilly, J.P., Shashaty, M.G.S., Palakshappa, J.A., Wysoczanski, A., Dunn, T.G., et al. (2016) Admission Plasma Levels of the Neuronal Injury Marker Neuron-Specific Enolase Are Associated with Mortality and Delirium in Sepsis. Journal of Critical Care, 36, 18-23.
https://doi.org/10.1016/j.jcrc.2016.06.012