[1]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763
|
[2]
|
Klein, A.P. (2021) Pancreatic Cancer Epidemiology: Understanding the Role of Lifestyle and Inherited Risk Factors. Nature Reviews Gastroenterology & Hepatology, 18, 493-502. https://doi.org/10.1038/s41575-021-00457-x
|
[3]
|
Cai, J., Chen, H., Lu, M., Zhang, Y., Lu, B., You, L., et al. (2021) Advances in the Epidemiology of Pancreatic Cancer: Trends, Risk Factors, Screening, and Prognosis. Cancer Letters, 520, 1-11. https://doi.org/10.1016/j.canlet.2021.06.027
|
[4]
|
Ilic, M. and Ilic, I. (2016) Epidemiology of Pancreatic Cancer. World Journal of Gastroenterology, 22, 9694-9705. https://doi.org/10.3748/wjg.v22.i44.9694
|
[5]
|
Park, W., Chawla, A. and O’Reilly, E.M. (2021) Pancreatic Cancer: A Review. JAMA, 326, 851-862. https://doi.org/10.1001/jama.2021.13027
|
[6]
|
Halbrook, C.J., Lyssiotis, C.A., Pasca di Magliano, M. and Maitra, A. (2023) Pancreatic Cancer: Advances and Challenges. Cell, 186, 1729-1754. https://doi.org/10.1016/j.cell.2023.02.014
|
[7]
|
McGuigan, A., Kelly, P., Turkington, R.C., Jones, C., Coleman, H.G. and McCain, R.S. (2018) Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Outcomes. World Journal of Gastroenterology, 24, 4846-4861. https://doi.org/10.3748/wjg.v24.i43.4846
|
[8]
|
Kolbeinsson, H.M., Chandana, S., Wright, G.P. and Chung, M. (2022) Pancreatic Cancer: A Review of Current Treatment and Novel Therapies. Journal of Investigative Surgery, 36, Article ID: 2129884. https://doi.org/10.1080/08941939.2022.2129884
|
[9]
|
Hu, Z.I. and O’Reilly, E.M. (2023) Therapeutic Developments in Pancreatic Cancer. Nature Reviews Gastroenterology & Hepatology, 21, 7-24. https://doi.org/10.1038/s41575-023-00840-w
|
[10]
|
Ettrich, T.J. and Seufferlein, T. (2021) Systemic Therapy for Metastatic Pancreatic Cancer. Current Treatment Options in Oncology, 22, Article No. 106. https://doi.org/10.1007/s11864-021-00895-4
|
[11]
|
Turner, K.M., Delman, A.M., Kharofa, J.R., Smith, M.T., Choe, K.A., Olowokure, O., et al. (2022) Radiation Therapy in Borderline Resectable Pancreatic Cancer: A Review. Surgery, 172, 284-290. https://doi.org/10.1016/j.surg.2021.12.013
|
[12]
|
Neoptolemos, J.P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W. and Palmer, D.H. (2018) Therapeutic Developments in Pancreatic Cancer: Current and Future Perspectives. Nature Reviews Gastroenterology & Hepatology, 15, 333-348. https://doi.org/10.1038/s41575-018-0005-x
|
[13]
|
Heinrich, S. and Lang, H. (2017) Neoadjuvant Therapy of Pancreatic Cancer: Definitions and Benefits. International Journal of Molecular Sciences, 18, Article No. 1622. https://doi.org/10.3390/ijms18081622
|
[14]
|
Gugenheim, J., Crovetto, A. and Petrucciani, N. (2021) Neoadjuvant Therapy for Pancreatic Cancer. Updates in Surgery, 74, 35-42. https://doi.org/10.1007/s13304-021-01186-1
|
[15]
|
Springfeld, C., Jäger, D., Büchler, M.W., Strobel, O., Hackert, T., Palmer, D.H., et al. (2019) Chemotherapy for Pancreatic Cancer. La Presse Médicale, 48, e159-e174. https://doi.org/10.1016/j.lpm.2019.02.025
|
[16]
|
Yu, K.H. (2024) Advances in Systemic Therapy in Pancreatic Cancer. Hematology/Oncology Clinics of North America, 38, 617-627. https://doi.org/10.1016/j.hoc.2024.03.002
|
[17]
|
Wan, L., Zhang, Q., Wang, S., Gao, Y., Chen, X., Zhao, Y., et al. (2019) Gambogic Acid Impairs Tumor Angiogenesis by Targeting YAP/STAT3 Signaling Axis. Phytotherapy Research, 33, 1579-1591. https://doi.org/10.1002/ptr.6350
|
[18]
|
Su, S.C., Chen, Y.T., Hsieh, Y.H., Yang, W., Su, C., Chiu, W., et al. (2022) Gambogic Acid Induces HO-1 Expression and Cell Apoptosis through P38 Signaling in Oral Squamous Cell Carcinoma. The American Journal of Chinese Medicine, 50, 1663-1679. https://doi.org/10.1142/s0192415x22500707
|
[19]
|
Yu, J., Wang, W., Yao, W., Yang, Z., Gao, P., Liu, M., et al. (2020) Gambogic Acid Affects ESCC Progression through Regulation of PI3K/AKT/mTOR Signal Pathway. Journal of Cancer, 11, 5568-5577. https://doi.org/10.7150/jca.41115
|
[20]
|
Hatami, E., Nagesh, P.K.B., Jaggi, M., Chauhan, S.C. and Yallapu, M.M. (2020) Gambogic Acid Potentiates Gemcitabine Induced Anticancer Activity in Non-Small Cell Lung Cancer. European Journal of Pharmacology, 888, Article ID: 173486. https://doi.org/10.1016/j.ejphar.2020.173486
|
[21]
|
Wu, X., Long, L., Liu, J., Zhang, J., Wu, T., Chen, X., et al. (2017) Gambogic Acid Suppresses Inflammation in Rheumatoid Arthritis Rats via PI3K/Akt/mTOR Signaling Pathway. Molecular Medicine Reports, 16, 7112-7118. https://doi.org/10.3892/mmr.2017.7459
|
[22]
|
Liu, Y., Chen, Y., Lin, L. and Li, H. (2020) Gambogic Acid as a Candidate for Cancer Therapy: A Review. International Journal of Nanomedicine, 15, 10385-10399. https://doi.org/10.2147/ijn.s277645
|
[23]
|
Lyu, S., Zhang, X., Tu, Z., Zhou, H., Ke, X. and Qu, Y. (2022) GPR108 Is Required for Gambogic Acid Inhibiting NF-κB Signaling in Cancer. Pharmacological Research, 182, Article ID: 106279. https://doi.org/10.1016/j.phrs.2022.106279
|
[24]
|
Lin, D., Lin, X., He, T. and Xie, G. (2020) Gambogic Acid Inhibits the Progression of Gastric Cancer via circR-NA_ASAP2/miR-33a-5p/CDK7 Axis. Cancer Management and Research, 12, 9221-9233. https://doi.org/10.2147/cmar.s269768
|
[25]
|
Zhang, D., Chen, Y., Sun, Y., Xu, H., Wei, R., Zhou, Y., et al. (2025) Gambogic Acid Induces GSDME Dependent Pyroptotic Signaling Pathway via ROS/P53/Mitochondria/Caspase-3 in Ovarian Cancer Cells. Biochemical Pharmacology, 232, Article ID: 116695. https://doi.org/10.1016/j.bcp.2024.116695
|
[26]
|
Xu, H., Zhang, D., Wei, R., Zhou, Y., Dai, G., Li, J., et al. (2022) Gambogic Acid Induces Pyroptosis of Colorectal Cancer Cells through the GSDME-Dependent Pathway and Elicits an Antitumor Immune Response. Cancers, 14, Article No. 5505. https://doi.org/10.3390/cancers14225505
|
[27]
|
Qian, C., Yang, L., Wang, Y., Wang, Z., Xu, Z., Xu, M., et al. (2025) Gambogic Acid Induces Ferroptosis via miR-1291/FOXA2 Axis in Gastric Cancer. The American Journal of Chinese Medicine, 53, 951-971. https://doi.org/10.1142/s0192415x25500363
|
[28]
|
Wang, M., Liu, J., Yu, W., Shao, J., Bao, Y., Jin, M., et al. (2025) Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis. Pharmaceuticals, 18, Article No. 374. https://doi.org/10.3390/ph18030374
|
[29]
|
Li, Y., Liao, W., Huang, W., Liu, F., Ma, L. and Qian, X. (2024) Mechanism of Gambogic Acid Repressing Invasion and Metastasis of Colorectal Cancer by Regulating Macrophage Polarization via Tumor Cell‐Derived Extracellular Vesicle‐Shuttled miR-21. Drug Development Research, 85, e22141. https://doi.org/10.1002/ddr.22141
|
[30]
|
Da, M., Li, S., Yang, R., Jia, Z., Ma, Y., Qi, F., et al. (2023) Therapeutic Effect and Metabolic Fingerprinting of Triple-Negative Breast Cancer Cells Following Exposure to a Novel pH-Responsive, Gambogic Acid-Loaded Micelle. Nanotechnology, 35, Article ID: 115101. https://doi.org/10.1088/1361-6528/ad1448
|
[31]
|
Wang, Q., Wei, J., Wang, C., Zhang, T., Huang, D., Wei, F., et al. (2018) Gambogic Acid Reverses Oxaliplatin Resistance in Colorectal Cancer by Increasing Intracellular Platinum Levels. Oncology Letters, 16, 2366-2372. https://doi.org/10.3892/ol.2018.8916
|
[32]
|
Huang, J., Zhu, X., Wu, Y., Han, S., Xie, Y., Yang, S., et al. (2021) Combined Effects of Low-Dose Gambogic Acid and Nai131 in Drug-Resistant Non-Small Cell Lung Cancer Cells. Oncology Letters, 22, Article No. 588. https://doi.org/10.3892/ol.2021.12849
|
[33]
|
Ji, Y., Li, J., Xiao, S., Kwan, H.Y., Bian, Z. and Chu, C. (2023) Optimization of Amino Acid-Based Poly(Ester Urea Urethane) Nanoparticles for the Systemic Delivery of Gambogic Acid for Treating Triple Negative Breast Cancer. Biomaterials Science, 11, 4370-4384. https://doi.org/10.1039/d3bm00128h
|
[34]
|
Wang, S., Xu, Y., Li, C., Tao, H., Wang, A., Sun, C., et al. (2018) Gambogic Acid Sensitizes Breast Cancer Cells to TRAIL-Induced Apoptosis by Promoting the Crosstalk of Extrinsic and Intrinsic Apoptotic Signalings. Food and Chemical Toxicology, 119, 334-341. https://doi.org/10.1016/j.fct.2018.02.037
|
[35]
|
Mei, Y., Xu, J., Li, W., et al. (2024) Gambogic Acid Improves Cisplatin Resistance of Bladder Cancer Cells through the Epithelial-Mesenchymal Transition Pathway Mediated by the miR-205-5p/ZEB1 Axis. Annals of Clinical & Laboratory Science, 54, 354-362.
|
[36]
|
Li, X., Tang, X., Su, J., Xu, G., Zhao, L. and Qi, Q. (2019) Involvement of E-Cadherin/AMPK/mTOR Axis in Lkb1-Induced Sensitivity of Non-Small Cell Lung Cancer to Gambogic Acid. Biochemical Pharmacology, 169, Article ID: 113635. https://doi.org/10.1016/j.bcp.2019.113635
|
[37]
|
Xia, Z. and Tang, Z. (2021) Network Pharmacology Analysis and Experimental Pharmacology Study Explore the Mechanism of Gambogic Acid against Endometrial Cancer. ACS Omega, 6, 10944-10952. https://doi.org/10.1021/acsomega.1c00696
|
[38]
|
Wang, Y., Sui, Y. and Tao, Y. (2019) Gambogic Acid Increases the Sensitivity to Paclitaxel in Drug-Resistant Triple-Negative Breast Cancer via the SHH Signaling Pathway. Molecular Medicine Reports, 20, 4515-4522. https://doi.org/10.3892/mmr.2019.10697
|
[39]
|
Xu, X., Liu, K., Jiao, B., Luo, K., Ren, J., Zhang, G., et al. (2020) Mucoadhesive Nanoparticles Based on ROS Activated Gambogic Acid Prodrug for Safe and Efficient Intravesical Instillation Chemotherapy of Bladder Cancer. Journal of Controlled Release, 324, 493-504. https://doi.org/10.1016/j.jconrel.2020.03.028
|
[40]
|
Lyu, L., Huang, L., Huang, T., Xiang, W., Yuan, J. and Zhang, C. (2018) Cell-Penetrating Peptide Conjugates of Gambogic Acid Enhance the Antitumor Effect on Human Bladder Cancer EJ Cells through ROS-Mediated Apoptosis. Drug Design, Development and Therapy, 12, 743-756. https://doi.org/10.2147/dddt.s161821
|
[41]
|
Chen, X., Chen, D., Liu, H., Yang, L., Zhang, Y., Bu, L., et al. (2022) Local Delivery of Gambogic Acid to Improve Anti-Tumor Immunity against Oral Squamous Cell Carcinoma. Journal of Controlled Release, 351, 381-393. https://doi.org/10.1016/j.jconrel.2022.09.010
|
[42]
|
Yang, L. and Chen, Y. (2012) New Targets for the Antitumor Activity of Gambogic Acid in Hematologic Malignancies. Acta Pharmacologica Sinica, 34, 191-198. https://doi.org/10.1038/aps.2012.163
|
[43]
|
Huang, H., Chen, D., Li, S., Li, X., Liu, N., Lu, X., et al. (2011) Gambogic Acid Enhances Proteasome Inhibitor-Induced Anticancer Activity. Cancer Letters, 301, 221-228. https://doi.org/10.1016/j.canlet.2010.12.015
|
[44]
|
Chen, B., Wang, C. and Zhang, H. (2011) Study of the Enhanced Anticancer Efficacy of Gambogic Acid on Capan-1 Pancreatic Cancer Cells When Mediated via Magnetic Fe3O4 Nanoparticles. International Journal of Nanomedicine, 6, 1929-1935. https://doi.org/10.2147/ijn.s24707
|
[45]
|
Saeed, L.M., Mahmood, M., Pyrek, S.J., Fahmi, T., Xu, Y., Mustafa, T., et al. (2014) Single‐Walled Carbon Nanotube and Graphene Nanodelivery of Gambogic Acid Increases Its Cytotoxicity in Breast and Pancreatic Cancer Cells. Journal of Applied Toxicology, 34, 1188-1199. https://doi.org/10.1002/jat.3018
|
[46]
|
Xia, G., Wang, H., Song, Z., Meng, Q., Huang, X. and Huang, X. (2017) Gambogic Acid Sensitizes Gemcitabine Efficacy in Pancreatic Cancer by Reducing the Expression of Ribonucleotide Reductase Subunit-M2 (RRM2). Journal of Experimental & Clinical Cancer Research, 36, Article No. 107. https://doi.org/10.1186/s13046-017-0579-0
|
[47]
|
Youns, M., ElKhoely, A. and Kamel, R. (2018) The Growth Inhibitory Effect of Gambogic Acid on Pancreatic Cancer Cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391, 551-560. https://doi.org/10.1007/s00210-018-1485-5
|
[48]
|
Wang, H., Zhao, Z., Lei, S., Li, S., Xiang, Z., Wang, X., et al. (2019) Gambogic Acid Induces Autophagy and Combines Synergistically with Chloroquine to Suppress Pancreatic Cancer by Increasing the Accumulation of Reactive Oxygen Species. Cancer Cell International, 19, Article No. 7. https://doi.org/10.1186/s12935-018-0705-x
|
[49]
|
Liu, F., Huang, X., Han, L., Sang, M., Hu, L., Liu, B., et al. (2019) Improved Druggability of Gambogic Acid Using Core-Shell Nanoparticles. Biomaterials Science, 7, 1028-1042. https://doi.org/10.1039/c8bm01154k
|
[50]
|
Wang, R., Xiao, Y., Zhang, Z., Huang, X., Zhu, W., Ma, X., et al. (2024) Simplified Gambogic Acid Prodrug Nanoparticles to Improve Efficiency and Reduce Toxicity for Clinical Translation Potential. Advanced Healthcare Materials, 13, e2401950. https://doi.org/10.1002/adhm.202401950
|
[51]
|
Wang, S., Yang, Y., Wang, Y. and Chen, M. (2015) Gambogic Acid-Loaded pH-Sensitive Mixed Micelles for Overcoming Breast Cancer Resistance. International Journal of Pharmaceutics, 495, 840-848. https://doi.org/10.1016/j.ijpharm.2015.09.041
|
[52]
|
Li, Y., Wang, G., Wang, T., Li, C., Zhang, X., Li, J., et al. (2023) Pegylated Gambogic Acid Nanoparticles Enable Efficient Renal-Targeted Treatment of Acute Kidney Injury. Nano Letters, 23, 5641-5647. https://doi.org/10.1021/acs.nanolett.3c01235
|
[53]
|
Zhang, Z., Qian, H., Yang, M., Li, R., Hu, J., Li, L., et al. (2017) Gambogic Acid-Loaded Biomimetic Nanoparticles in Colorectal Cancer Treatment. International Journal of Nanomedicine, 12, 1593-1605. https://doi.org/10.2147/ijn.s127256
|
[54]
|
Chi, Y., Zhan, X., Yu, H., Xie, G., Wang, Z., Xiao, W., et al. (2013) An Open-Labeled, Randomized, Multicenter Phase IIa Study of Gambogic Acid Injection for Advanced Malignant Tumors. Chinese Medical Journal, 126, 1642-1646. https://doi.org/10.3760/cma.j.issn.0366-6999.20122582
|