[1]
|
Krzemień, S. and Knapczyk, P. (1960) Current Review on the Role of Transforming Growth Factor Beta (TGF-Beta) in Some Pathological Disorders. Wiadomości lekarskie, 58, Article 536.
|
[2]
|
Kajdaniuk, D., Marek, B., Borgiel-Marek, H., et al. (2013) Transforming Growth Factor β1 (TGFβ1) in Physiology and Pathology. Endokrynologia Polska, 64, 384-396. https://doi.org/10.5603/ep.2013.0022
|
[3]
|
Gordon, K.J. and Blobe, G.C. (2008) Role of Transforming Growth Factor-β Superfamily Signaling Pathways in Human Disease. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1782, 197-228. https://doi.org/10.1016/j.bbadis.2008.01.006
|
[4]
|
Wrana, J.L., Attisano, L., Cárcamo, J., Zentella, A., Doody, J., Laiho, M., et al. (1992) TGF-β Signals through a Heteromeric Protein Kinase Receptor Complex. Cell, 71, 1003-1014. https://doi.org/10.1016/0092-8674(92)90395-s
|
[5]
|
Akhurst, R.J. and Hata, A. (2012) Targeting the TGF-β Signalling Pathway in Disease. Nature Reviews Drug Discovery, 11, 790-811. https://doi.org/10.1038/nrd3810
|
[6]
|
Kawabata, M. and Miyazono, K. (1999) Signal Transduction of the TGF-β Superfamily by Smad Proteins. Journal of Biochemistry, 125, 9-16. https://doi.org/10.1093/oxfordjournals.jbchem.a022273
|
[7]
|
Tzavlaki, K. and Moustakas, A. (2020) TGF-β Signaling. Biomolecules, 10, Article 487. https://doi.org/10.3390/biom10030487
|
[8]
|
Heldin, C.H., Miyazono, K. and Ten Dijke, P. (1997) TGF-β Signalling from Cell Membrane to Nucleus through SMAD Proteins. Nature, 390, 465-471. https://doi.org/10.1038/37284
|
[9]
|
Gressner, A.M. (2002) Roles of TGF-β in Hepatic Fibrosis. Frontiers in Bioscience, 7, A812. https://doi.org/10.2741/a812
|
[10]
|
Liu, Y., Lin, Y., Huang, X., Li, Y., Liu, Y. and Shi, L. (2023) Association of Serum Transforming Growth Factor β1 with Left Ventricular Hypertrophy in Children with Primary Hypertension. European Journal of Pediatrics, 182, 5439-5446. https://doi.org/10.1007/s00431-023-05219-2
|
[11]
|
Laviades, C., Varo, N. and Díez, J. (2000) Transforming Growth Factor β in Hypertensives with Cardiorenal Damage. Hypertension, 36, 517-522. https://doi.org/10.1161/01.hyp.36.4.517
|
[12]
|
Cambien, F., Ricard, S., Troesch, A., Mallet, C., Générénaz, L., Evans, A., et al. (1996) Polymorphisms of the Transforming Growth Factor-β1 Gene in Relation to Myocardial Infarction and Blood Pressure. Hypertension, 28, 881-887. https://doi.org/10.1161/01.hyp.28.5.881
|
[13]
|
El-Gamel, A., Awad, M., Sim, E., Hasleton, P., Yonan, N., Egan, J., et al. (1998) Transforming Growth Factor-β1 and Lung Allograft Fibrosis. European Journal of Cardio-Thoracic Surgery, 13, 424-430. https://doi.org/10.1016/s1010-7940(98)00048-7
|
[14]
|
Suthanthiran, M., Li, B., Song, J.O., et al. (2000) Transforming Growth Factor-β 1 Hyperexpression in African-American Hypertensives: A Novel Mediator of Hypertension and/or Target Organ Damage. Proceedings of the National Academy of Sciences, 97, 3479-3484. https://doi.org/10.1073/pnas.050420897
|
[15]
|
He, F., Zhao, D., Deng, F., Zhong, H., Shi, X., Yang, J., et al. (2010) Association of TGF-β1 Gene Polymorphisms in Exon1 and Blood Levels with Essential Hypertension. Blood Pressure, 19, 225-233. https://doi.org/10.3109/08037051003768254
|
[16]
|
Xi, B., Wang, Q. and Pan, H. (2012) Transforming Growth Factor-β1 Gene+869T/C, but Not+915G/C Polymorphism Is Associated with Essential Hypertension in a Chinese Patient Cohort. Molecular Biology Reports, 39, 6107-6112. https://doi.org/10.1007/s11033-011-1427-5
|
[17]
|
Khani, M., Amani, D., Taheripanah, R., Sanadgol, N., Feizollahzadeh, S. and Rahmani, Z. (2015) Transforming Growth Factor Beta-1 (TGF-β1) Gene Single Nucleotide Polymorphisms (SNPs) and Susceptibility to Pre-Eclampsia in Iranian Women: A Case-Control Study. Pregnancy Hypertension, 5, 267-272. https://doi.org/10.1016/j.preghy.2015.01.002
|
[18]
|
Zheng, N., Hu, X., Lin, L., Chen, L. and Guo, R. (2022) Association between Transforming Growth Factor-β 1 Polymorphisms and Risk of Pre-Eclampsia: A Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 9470-9480. https://doi.org/10.1080/14767058.2022.2044470
|
[19]
|
张燕, 卫玲, 刘媛媛, 等. 妊娠期高血压患者TGF-β1水平及其基因rs1800469 C/T位点多态性分析[J]. 中国优生与遗传杂志, 2020, 28(6): 679-681.
|
[20]
|
Ohno, M., Cooke, J.P., Dzau, V.J. and Gibbons, G.H. (1995) Fluid Shear Stress Induces Endothelial Transforming Growth Factor β-1 Transcription and Production. Modulation by Potassium Channel Blockade. Journal of Clinical Investigation, 95, 1363-1369. https://doi.org/10.1172/jci117787
|
[21]
|
Ray, P.E., McCune, B.K., Gomez, R.A., Horikoshi, S., Kopp, J.B. and Klotman, P.E. (1993) Renal Vascular Induction of TGF-β2 and Renin by Potassium Depletion. Kidney International, 44, 1006-1013. https://doi.org/10.1038/ki.1993.342
|
[22]
|
Verrecchia, F. and Mauviel, A. (2002) Transforming Growth Factor-β Signaling through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. Journal of Investigative Dermatology, 118, 211-215. https://doi.org/10.1046/j.1523-1747.2002.01641.x
|
[23]
|
Kim, H.S. and Kim, H.Y. (2022) Hypertensive Effects of Transforming Growth Factor-β1 in Vascular Smooth Muscles Cells from Spontaneously Hypertensive Rats Are Mediated by Sulfatase 2. Cytokine, 150, Article 155754. https://doi.org/10.1016/j.cyto.2021.155754
|
[24]
|
Kurihara, H., Yoshizumi, M., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T., et al. (1989) Transforming Growth Factor-β Stimulates the Expression of Endothelin mRNA by Vascular Endothelial Cells. Biochemical and Biophysical Research Communications, 159, 1435-1440. https://doi.org/10.1016/0006-291x(89)92270-5
|
[25]
|
Zhang, Q., Liu, H. and Yang, J. (2019) Regulation of TGF‑β1 on PI3KC3 and Its Role in Hypertension‑Induced Vascular Injuries. Experimental and Therapeutic Medicine, 17, 1717-1727. https://doi.org/10.3892/etm.2018.7128
|
[26]
|
Kakoki, M., Pochynyuk, O.M., Hathaway, C.M., Tomita, H., Hagaman, J.R., Kim, H., et al. (2013) Primary Aldosteronism and Impaired Natriuresis in Mice Underexpressing TGF-β1. Proceedings of the National Academy of Sciences, 110, 5600-5605. https://doi.org/10.1073/pnas.1302641110
|
[27]
|
Tang, Y., Shen, L., Bao, J. and Xu, D. (2023) Deficiency of Tregs in Hypertension-Associated Left Ventricular Hypertrophy. The Journal of Clinical Hypertension, 25, 562-572. https://doi.org/10.1111/jch.14660
|
[28]
|
Li, B., Khanna, A., Sharma, V., et al. (1999) TGF-β1 DNA Polymorphisms, Protein Levels, and Blood Pressure. Hypertension, 33, 271-275. https://doi.org/10.1161/01.hyp.33.1.271
|
[29]
|
Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Egashira, K., et al. (2002) Transforming Growth Factor-β Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats. Circulation, 106, 130-135. https://doi.org/10.1161/01.cir.0000020689.12472.e0
|
[30]
|
Petrov, V.V., Fagard, R.H. and Lijnen, P.J. (2002) Stimulation of Collagen Production by Transforming Growth Factor-β 1 during Differentiation of Cardiac Fibroblasts to Myofibroblasts. Hypertension, 39, 258-263. https://doi.org/10.1161/hy0202.103268
|
[31]
|
Sappino, A.P., Schürch, W. and Gabbiani, G. (1990) Differentiation Repertoire of Fibroblastic Cells: Expression of Cytoskeletal Proteins as Marker of Phenotypic Modulations. Laboratory Investigation, 63, 144-161.
|
[32]
|
Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y. and Du, J. (2013) Krüppel-Like Factor 4 Transcriptionally Regulates TGF-β1 and Contributes to Cardiac Myofibroblast Differentiation. PLOS ONE, 8, e63424. https://doi.org/10.1371/journal.pone.0063424
|
[33]
|
Kapoun, A.M., Liang, F., O’Young, G., Damm, D.L., Quon, D., White, R.T., et al. (2004) B-Type Natriuretic Peptide Exerts Broad Functional Opposition to Transforming Growth Factor-β in Primary Human Cardiac Fibroblasts. Circulation Research, 94, 453-461. https://doi.org/10.1161/01.res.0000117070.86556.9f
|
[34]
|
Watson, C.J., Phelan, D., Xu, M., Collier, P., Neary, R., Smolenski, A., et al. (2012) Mechanical Stretch Up-Regulates the B-Type Natriuretic Peptide System in Human Cardiac Fibroblasts: A Possible Defense against Transforming Growth Factor-β Mediated Fibrosis. Fibrogenesis & Tissue Repair, 5, Article No. 9. https://doi.org/10.1186/1755-1536-5-9
|
[35]
|
Liu, Y., Lv, H., Tan, R., et al. (2020) Platelets Promote Ang II (Angiotensin II)-Induced Atrial Fibrillation by Releasing TGF-β1 (Transforming Growth Factor-β1) and Interacting with Fibroblasts. Hypertension, 76, 1856-1867. https://doi.org/10.1161/hypertensionaha.120.15016
|
[36]
|
Tian, J., Li, W., Zeng, L., et al. (2024) HBI-8000 Improves Heart Failure with Preserved Ejection Fraction via the TGF-β1/MAPK Signalling Pathway. Journal of Cellular and Molecular Medicine, 28, e18238. https://doi.org/10.1111/jcmm.18238
|
[37]
|
Susic, D., Frohlich, E.D., Kobori, H., Shao, W., Seth, D. and Navar, L.G. (2011) Salt-Induced Renal Injury in SHRs Is Mediated by AT1 Receptor Activation. Journal of Hypertension, 29, 716-723. https://doi.org/10.1097/hjh.0b013e3283440683
|
[38]
|
Frangogiannis, N.G. (2020) Transforming Growth Factor-β in Tissue Fibrosis. Journal of Experimental Medicine, 217, e20190103. https://doi.org/10.1084/jem.20190103
|
[39]
|
Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. and Brown, R.A. (2002) Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling. Nature Reviews Molecular Cell Biology, 3, 349-363. https://doi.org/10.1038/nrm809
|
[40]
|
Li, L., Xia, G., Lei, L., et al. (2025) Role of TGF-β1/Smad3 Signalling Pathway in Renal Tubulointerstitial Fibrosis and Renal Damage in Elderly Rats with Isolated Systolic Hypertension Induced by Increased Pulse Pressure. Acta Cardiologica, 80, 135-147. https://doi.org/10.1080/00015385.2024.2445339
|
[41]
|
李璐, 陈春艳, 杨冬花, 等. 脉压增大对老年单纯收缩期高血压大鼠肾脏纤维化的影响及其机制[J]. 中国老年学杂志, 2024, 44(17): 4301-4305.
|
[42]
|
Hu, H., Chen, D., Wang, Y., Feng, Y., Cao, G., Vaziri, N.D., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83. https://doi.org/10.1016/j.cbi.2018.07.008
|
[43]
|
Panizo, S., Martínez-Arias, L., Alonso-Montes, C., Cannata, P., Martín-Carro, B., Fernández-Martín, J.L., et al. (2021) Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. International Journal of Molecular Sciences, 22, Article 408. https://doi.org/10.3390/ijms22010408
|
[44]
|
Huo, J., Jiao, L., An, Q., Chen, X., Qi, Y., Wei, B., et al. (2021) Myofibroblast Deficiency of LSD1 Alleviates TAC-Induced Heart Failure. Circulation Research, 129, 400-413. https://doi.org/10.1161/circresaha.120.318149
|
[45]
|
Ye, S., Huang, H., Xiao, Y., Han, X., Shi, F., Luo, W., et al. (2023) Macrophage Dectin-1 Mediates Ang II Renal Injury through Neutrophil Migration and TGF-β1 Secretion. Cellular and Molecular Life Sciences, 80, Article No. 184. https://doi.org/10.1007/s00018-023-04826-4
|