TGF-β1与高血压及其靶器官关系的研究进展
Research Progress on the Relationship between TGF-β1 and Hypertension and Its Target Organs
DOI: 10.12677/acm.2025.1592544, PDF, HTML, XML,   
作者: 杨桂平, 陈炳霖:右江民族医学院研究生学院,广西 百色;潘兴寿*:右江民族医学院附属医院心血管内科,广西 百色
关键词: 高血压TGF-β1靶器官损害Hypertension TGF-β1 Target Organ Damage
摘要: 高血压是全球范围内严重威胁人类健康的常见心血管疾病,其发病机制复杂多样。转化生长因子-β1 (TGF-β1)作为一种多功能细胞因子,近年来在高血压领域的研究中备受关注。本文对TGF-β1与高血压及其靶器官的关系进行综述,进一步阐述TGF-β1在高血压发生发展过程中对血管、心脏、肾脏等靶器官的作用机制。
Abstract: Hypertension is a common cardiovascular disease that seriously threatens human health worldwide, with complex and diverse pathogenesis. Transforming growth factor-β1 (TGF-β1), as a multifunctional cytokine, has attracted considerable attention in hypertension research in recent years. This article reviews the relationship between TGF-β1 and hypertension as well as its target organs, and further elaborates on the mechanism of action of TGF-β1 on target organs such as blood vessels, heart, and kidneys during the occurrence and development of hypertension.
文章引用:杨桂平, 陈炳霖, 潘兴寿. TGF-β1与高血压及其靶器官关系的研究进展[J]. 临床医学进展, 2025, 15(9): 692-698. https://doi.org/10.12677/acm.2025.1592544

1. 引言

高血压是导致心、肾、血管疾病等严重并发症的主要危险因素之一。尽管目前对高血压的研究取得了一定进展,但其发病机制尚未完全明确。TGF-β1是一种具有广泛生物学活性的细胞因子,参与细胞增殖、分化、凋亡、免疫调节以及细胞外基质的合成与降解等多种生理过程。越来越多的证据表明,TGF-β1在高血压的发生发展中发挥着重要作用,与高血压引起的靶器官损害密切相关。

2. TGF-β1生物学特性及信号通路

2.1. TGF-β1的结构与表达分布

TGF-β1基因定位于人类染色体19q13.1,TGF-β1最初合成的是含有390个氨基酸的前体蛋白,经过加工形成相对分子质量约为25kD的具有生物活性的TGF-β1,它是由两个相同的12.5kD亚基通过二硫键连接而成的二聚体[1]。TGF-β1前体蛋白在细胞内合成后,经过一系列的剪切、修饰等加工过程,形成成熟的TGF-β1并分泌到细胞外。在人体内,TGF-β1几乎在所有组织和细胞均可表达,但其表达水平具有组织和细胞特异性,且在病理状态下会发生显著变化。其主要由[2]巨噬细胞、成纤维细胞、上皮细胞、内皮细胞和树突状细胞合成,广泛表达于肾脏、肝脏、肺、心脏、皮肤、骨骼、胎盘等组织,其广泛的表达和结构特性使其成为调控细胞增殖、分化、凋亡及组织稳态的关键因子。

2.2. TGFβ1信号通路激活与传导机制

细胞中的TGF-β信号活动只有在它们具有特定的膜受体时才有可能,目前[3]已经确定了九种不同类型的分子具有结合TGF-β的能力,主要的受体包含I型、II型和III型。TGF-β1作为配体,首先与细胞膜表面的II型受体(TGFbRII)结合,形成TGF-β1-TGFbRII复合物。随后,I型受体(TGFbRI)被招募到复合物中,形成异源四聚体复合物[4],TGFbRII磷酸化TGFbRI的GS结构域(富含甘氨酸和丝氨酸的区域),从而激活TGFbR[5]。被激活的TGFbRI通过至少两条途径传递信号:不依赖SMAD的非经典通路和依赖SMAD的经典通路。在依赖SMAD的经典通路中,激活的TGFbRI作用于下游的Smad蛋白(Smad2和Smad3),使其C末端的丝氨酸残基发生磷酸化[6]。磷酸化的Smad2和Smad3从受体复合物上解离下来,在细胞质中与Smad4结合,形成异源三聚体复合物[7],Smad2/3-Smad4异源三聚体复合物通过核孔进入细胞核内,在细胞核中,它们与其他转录因子、辅助激活因子或辅助抑制因子相互作用,结合到靶基因的启动子区域,调控靶基因的转录过程,从而影响细胞的生物学行为,如细胞增殖、分化、迁移和细胞外基质合成等[8]。因此,TGF-β1是一种多功能细胞因子,它参与胎儿发育,控制细胞生长和分化,诱导纤维化和疤痕形成,引起免疫反应的抑制,参与血管生成、肿瘤的发展和炎症过程[9]

3. TGFβ1基因多态性对血压调节的影响

研究表明[10],高血压患者体内TGF-β1水平显著升高,且与血压水平呈正相关;其中,伴有微量白蛋白尿和左心室肥厚的高血压患者,其血清TGF-β1浓度高于无此类心肾损伤的高血压患者[11]。表明TGF-β1与高血压的发生发展及其靶器官损害显著相关,其中TGF-β1基因的多态性可通过影响TGF-β1的表达水平或活性,从而间接参与血压调节。Cambien等人[12]的研究识别出TGF-β1基因的七种基因多态性位点,具体包括:基因上游区域的3个单碱基替换,分别位于-988位(C→A)、-800位(G→A)和-509位(C→T);非翻译区+72位的1个碱基插入(C插入);信号序列中的2个单碱基替换,分别位于+869位(第10个密码子,T→C,对应氨基酸由Leu变为Pro)和+915位(第25个密码子,G→C,对应氨基酸由Arg变为Pro);密码子263位的1个单碱基替换(C→T,对应氨基酸由Thr变为Ile)。在这些多态性中,与Pro25等位基因的纯合子或杂合子相比,Arg25纯合子表现出更高的收缩压和更频繁的高血压病史,且Arg25等位基因还与TGF-β1的产生增加及纤维化进程存在关联[13]。Suthanthiran等人[14]的研究发现,黑人在TGF-β1第10密码子基因型中携带脯氨酸等位基因的频率显著高于白人;在该密码子10位点基因型为C/C或T/C的个体中,TGF-β1蛋白浓度较T/T基因型个体更高。这一结果证实了TGF-β1在高血压患者中呈高表达状态,且与白人相比,黑人中的高表达更为频繁。He等人[15]的研究表明,TGF-β1血液水平与中国人群原发性高血压存在相关的特定多态性(+869T/C和+915G/C),其中CG单倍型与患病风险增加显著相关。Xi等人[16]通过荟萃分析,进一步证实了+869T/C多态性与中国人群高血压的相关性。这些研究发现提示,TGF-β1的遗传变异可能影响个体对原发性高血压的易感性。子痫前期(PE)是一种以高血压和蛋白尿为特征的妊娠期疾病,TGF-β1作为子痫前期重要候选基因,其基因788C→T多态性被认为是介导子痫前期发病途径的重要因素[17]。此外,有研究表明[18] TGF-β1的+869T/C和-509C/T多态性与亚洲人群子痫前期风险增加相关。对于妊娠高血压综合征(PIH),其发病可能与TGF-β1基因rs1800469C/T位点的多态性突变有关,其中TT基因型可能是深圳地区PIH发病的易感遗传因素[19]

4. TGFβ1与高血压靶器官损害

4.1. TGF-β1与高血压血管重塑

TGF-β1作为一种在纤维生成和血流动力学调控中具有多重功能的细胞因子,可通过影响体内血流动力学、肾素–血管紧张素–醛固酮系统(RAAS)及刺激血管内皮素生成等途径,促进高血压状态下的血管重塑。具体而言,压力升高或血流量增加引发的流体剪切力可激活内皮细胞中的RAS和TGF-β1 [20];此外,血容量不足、钾离子缺乏等刺激因素,不仅能诱导肾脏球旁器生成肾素,也可刺激TGF-β1的合成[21]。Verrecchia等人[22]研究证实,RAAS相关信号通路的激活会诱导TGF-β1过度表达,显著增加细胞外基质的合成,导致I型胶原(Col1a)、III型胶原(Col3a)及纤维连接蛋白过度沉积,并增强血管平滑肌细胞(VSMCs)的增殖与迁移能力,从而加速血管重构进程。Kim等人[23]进一步研究发现,TGF-β1的升压作用依赖于血管紧张素II (AngII)的1型受体(AT1R)途径,而硫酸酯酶2(Sulf2)可通过AT1R通路拮抗TGF-β1对AMP激活蛋白激酶(AMPK)活化的抑制作用,并阻断TGF-β1与AngII协同抑制AMPK的效应,进而解除TGF-β1的致高血压作用。此外,Kurihara [24]研究发现TGF-β1还可通过刺激血管内皮细胞中内皮素编码基因的mRNA表达,调控血管内皮释放内皮素,使内皮素-1 (ET-1)合成增多。作为最强效的缩血管多肽,ET-1可通过自分泌和旁分泌方式作用于血管内皮细胞及周围平滑肌细胞,引发血管平滑肌收缩。同时,TGF-β1还能通过调控PI3KC3信号通路抑制血管内皮细胞自噬活性,介导其增殖、迁移及抗凋亡功能受损,从而加剧高血压状态下的内皮细胞损伤[25]。Kakoki等人[26]发现,TGF-β1可直接抑制肾上腺皮质合成盐皮质激素,并干扰其对肾小管钠重吸收的激活作用,在维持钠水稳态及调控血压中发挥关键作用。

4.2. TGFβ1与高血压心脏损害

心脏重塑被认为是决定心脏病临床结局的关键因素,其特征为心腔壁的结构重排,涉及心肌细胞肥大、成纤维细胞增殖及细胞外基质(ECM)蛋白沉积增加。研究显示[27],伴有左心室肥厚的高血压患者,其血清TGF-β1水平显著高于单纯高血压患者及血压正常人群。且在原发性高血压的成人和儿童中,其血清TGF-β1水平升高均与左心室肥厚存在正相关[28]。Kuwahara等人[29]在压力超负荷大鼠模型中,通过阻断TGF-β1功能可有效预防心肌纤维化和舒张功能障碍,从而表明TGF-β1在心肌重塑过程中发挥重要作用。TGF-β1由心肌细胞和心肌成纤维细胞产生,是调节心肌肥大的核心细胞因子之一,其作用机制主要包括:作为胶原纤维等细胞外成分合成与沉积的起始因子,可刺激心肌中心收缩蛋白的合成,进而诱导胚胎基因重新表达[10];调控细胞外基质蛋白合成,增加胶原蛋白、蛋白聚糖及纤连蛋白的生成,同时通过减少胶原酶合成及上调蛋白酶抑制剂抑制基质降解[30];通过Smad信号通路诱导成纤维细胞表达α-平滑肌肌动蛋白(α-SMA),使其转化为肌成纤维细胞,从而促进胶原沉积[31]。研究发现[32] TGF-β1的表达可被Kruppel样因子4 (Klf4)通过转录激活其启动子而上调,其表达上调后可进一步介导血管紧张素II (AngII)诱导的成纤维细胞分化及胶原合成,增强纤维化效应。脑钠肽(BNP)在心脏重塑中作为一种内源性保护因子和负性调节物质,其可抑制TGF-β1诱导的心脏成纤维细胞增殖,并能拮抗约88%由TGF-β1刺激的基因表达[33];此外,研究证实[34],机械牵张可增加人心脏成纤维细胞中BNP和利钠肽受体A(NPRA)的表达,进而通过抑制α-平滑肌肌动蛋白(α-SMA)和I型胶原α2链(COL1A2)的表达,减轻TGF-β1诱导的心肌纤维化。此外,Liu等人[35]研究发现活化的血小板在AngII刺激后会向血浆中释放高水平TGF-β1,同时浸润至心房并在局部进一步释放该因子,循环和局部的TGF-β1共同促进心房成纤维细胞活化,从而加剧心房纤维化和房颤易感性。治疗上,HBI-8000是一种国产苯甲酰胺类组蛋白去乙酰化酶亚型选择性抑制剂,常用于治疗复发难治性外周T细胞淋巴瘤,近期的研究发现[36]其可通过阻断TGF-β1/MAPK信号通路,抑制心肌成纤维细胞(CFs)的增殖与转化及细胞外基质(ECM)的过度沉积,从而发挥抗心肌纤维化作用。

4.3. TGFβ1与高血压肾脏损害

肾功能损害是高血压常见的并发症,在肾脏中,几乎所有类型的慢性肾脏疾病(CKD)都会不可避免地进展为进行性间质纤维化,最终导致肾衰竭。高血压与CKD关系密切,持续的高血压会加速肾功能下降,而肾功能恶化又会反过来影响血压控制,形成恶性循环。在CKD的发病机制中,TGF-β1扮演着关键角色。Susic等人[37]研究发现,自发性高血压大鼠在高盐诱导下会出现肾小管硬化和肾间质纤维化,且肾脏中TGF-β1基因存在过量表达。TGF-β1作为一种强效致纤维化细胞因子,能促进肌成纤维细胞的形成,这类细胞是产生过量细胞外基质并导致其硬化的最重要效应细胞,最终引发组织纤维化改变[38]。TGF-β1还是调控肾小管上皮细胞中上皮–间质转化(EMT)的关键细胞间介质[39]。Li等人[40]的研究发现,在老年单纯收缩期高血压(ISH)大鼠中,TGF-β1/Smad3信号通路会因脉压升高导致的剪切应力增加而被激活,其激活后可进一步诱导上皮–间质转化(EMT)的发生,最终通过参与肾小管间质纤维化导致肾损伤。同时,脉压增大可引起肾脏TGF-β1表达上调,增加其下游III型胶原(COL-III)的表达,使肾小球基底膜及肾间质内细胞外基质过度沉积,加剧肾小球硬化和肾小管间质纤维化,导致肾功能进行性下降[41]。TGF-β1调控的Smad通路的失调是组织纤维化的重要发病机制,TGF-β1可直接激活Smad信号通路,进而触发促纤维化基因的过度表达[42],其中,Smad2和Smad3是促进TGF-β1介导组织纤维化的主要调控因子,而Smad7作为该通路的负反馈调控因子,可对TGF-β1介导的纤维化起到保护作用。TGF-β1的表达会因表皮生长因子受体(EGFR)的激活而增加[43],其表达增加后可进一步刺激肾间质肌成纤维细胞增殖,诱导胶原蛋白及其他细胞外基质蛋白分泌,最终导致肾间质纤维化和肾单位功能衰竭。AngII作为肾素–血管紧张素–醛固酮系统(RAAS)中最强效的血管收缩剂和活性物质,其可诱导肌成纤维细胞上调细胞内TGF-β1的表达并促进其分泌,同时,AngII还会刺激结缔组织生长因子(CTGF)的合成,与TGF-β1共同介导肾小管间质纤维化[44]。研究还发现,巨噬细胞来源的Dectin-1也可上调TGF-β1的分泌[45],且Dectin-1在激活中性粒细胞向肾脏迁移的同时,其与Syk构成的通路可能主要通过TGF-β1/Smad3通路参与巨噬细胞与肾小球肌成纤维细胞的相互作用,最终在AngII输注作用下,TGF-β1参与介导肾功能障碍和纤维化的发生。

5. 结语

综上所述,TGF-β1作为一种多功能细胞因子,在高血压的发生发展及其靶器官损害中扮演着核心角色。然而,TGF-β1的作用具有复杂性和多效性,其在不同病理阶段、不同细胞类型中的具体调控机制仍需深入解析;同时,TGF-β1作为诊断标志物的特异性及靶向干预的安全性仍需进一步验证。未来研究可聚焦于TGF-β1信号网络的精准调控、特异性抑制剂的研发及临床转化,以期为高血压及其靶器官损害的早期诊断、病情评估及靶向治疗提供更坚实的理论基础和实践依据。

NOTES

*通讯作者。

参考文献

[1] Krzemień, S. and Knapczyk, P. (1960) Current Review on the Role of Transforming Growth Factor Beta (TGF-Beta) in Some Pathological Disorders. Wiadomości lekarskie, 58, Article 536.
[2] Kajdaniuk, D., Marek, B., Borgiel-Marek, H., et al. (2013) Transforming Growth Factor β1 (TGFβ1) in Physiology and Pathology. Endokrynologia Polska, 64, 384-396.
https://doi.org/10.5603/ep.2013.0022
[3] Gordon, K.J. and Blobe, G.C. (2008) Role of Transforming Growth Factor-β Superfamily Signaling Pathways in Human Disease. Biochimica et Biophysica ActaMolecular Basis of Disease, 1782, 197-228.
https://doi.org/10.1016/j.bbadis.2008.01.006
[4] Wrana, J.L., Attisano, L., Cárcamo, J., Zentella, A., Doody, J., Laiho, M., et al. (1992) TGF-β Signals through a Heteromeric Protein Kinase Receptor Complex. Cell, 71, 1003-1014.
https://doi.org/10.1016/0092-8674(92)90395-s
[5] Akhurst, R.J. and Hata, A. (2012) Targeting the TGF-β Signalling Pathway in Disease. Nature Reviews Drug Discovery, 11, 790-811.
https://doi.org/10.1038/nrd3810
[6] Kawabata, M. and Miyazono, K. (1999) Signal Transduction of the TGF-β Superfamily by Smad Proteins. Journal of Biochemistry, 125, 9-16.
https://doi.org/10.1093/oxfordjournals.jbchem.a022273
[7] Tzavlaki, K. and Moustakas, A. (2020) TGF-β Signaling. Biomolecules, 10, Article 487.
https://doi.org/10.3390/biom10030487
[8] Heldin, C.H., Miyazono, K. and Ten Dijke, P. (1997) TGF-β Signalling from Cell Membrane to Nucleus through SMAD Proteins. Nature, 390, 465-471.
https://doi.org/10.1038/37284
[9] Gressner, A.M. (2002) Roles of TGF-β in Hepatic Fibrosis. Frontiers in Bioscience, 7, A812.
https://doi.org/10.2741/a812
[10] Liu, Y., Lin, Y., Huang, X., Li, Y., Liu, Y. and Shi, L. (2023) Association of Serum Transforming Growth Factor β1 with Left Ventricular Hypertrophy in Children with Primary Hypertension. European Journal of Pediatrics, 182, 5439-5446.
https://doi.org/10.1007/s00431-023-05219-2
[11] Laviades, C., Varo, N. and Díez, J. (2000) Transforming Growth Factor β in Hypertensives with Cardiorenal Damage. Hypertension, 36, 517-522.
https://doi.org/10.1161/01.hyp.36.4.517
[12] Cambien, F., Ricard, S., Troesch, A., Mallet, C., Générénaz, L., Evans, A., et al. (1996) Polymorphisms of the Transforming Growth Factor-β1 Gene in Relation to Myocardial Infarction and Blood Pressure. Hypertension, 28, 881-887.
https://doi.org/10.1161/01.hyp.28.5.881
[13] El-Gamel, A., Awad, M., Sim, E., Hasleton, P., Yonan, N., Egan, J., et al. (1998) Transforming Growth Factor-β1 and Lung Allograft Fibrosis. European Journal of Cardio-Thoracic Surgery, 13, 424-430.
https://doi.org/10.1016/s1010-7940(98)00048-7
[14] Suthanthiran, M., Li, B., Song, J.O., et al. (2000) Transforming Growth Factor-β 1 Hyperexpression in African-American Hypertensives: A Novel Mediator of Hypertension and/or Target Organ Damage. Proceedings of the National Academy of Sciences, 97, 3479-3484.
https://doi.org/10.1073/pnas.050420897
[15] He, F., Zhao, D., Deng, F., Zhong, H., Shi, X., Yang, J., et al. (2010) Association of TGF-β1 Gene Polymorphisms in Exon1 and Blood Levels with Essential Hypertension. Blood Pressure, 19, 225-233.
https://doi.org/10.3109/08037051003768254
[16] Xi, B., Wang, Q. and Pan, H. (2012) Transforming Growth Factor-β1 Gene+869T/C, but Not+915G/C Polymorphism Is Associated with Essential Hypertension in a Chinese Patient Cohort. Molecular Biology Reports, 39, 6107-6112.
https://doi.org/10.1007/s11033-011-1427-5
[17] Khani, M., Amani, D., Taheripanah, R., Sanadgol, N., Feizollahzadeh, S. and Rahmani, Z. (2015) Transforming Growth Factor Beta-1 (TGF-β1) Gene Single Nucleotide Polymorphisms (SNPs) and Susceptibility to Pre-Eclampsia in Iranian Women: A Case-Control Study. Pregnancy Hypertension, 5, 267-272.
https://doi.org/10.1016/j.preghy.2015.01.002
[18] Zheng, N., Hu, X., Lin, L., Chen, L. and Guo, R. (2022) Association between Transforming Growth Factor-β 1 Polymorphisms and Risk of Pre-Eclampsia: A Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 9470-9480.
https://doi.org/10.1080/14767058.2022.2044470
[19] 张燕, 卫玲, 刘媛媛, 等. 妊娠期高血压患者TGF-β1水平及其基因rs1800469 C/T位点多态性分析[J]. 中国优生与遗传杂志, 2020, 28(6): 679-681.
[20] Ohno, M., Cooke, J.P., Dzau, V.J. and Gibbons, G.H. (1995) Fluid Shear Stress Induces Endothelial Transforming Growth Factor β-1 Transcription and Production. Modulation by Potassium Channel Blockade. Journal of Clinical Investigation, 95, 1363-1369.
https://doi.org/10.1172/jci117787
[21] Ray, P.E., McCune, B.K., Gomez, R.A., Horikoshi, S., Kopp, J.B. and Klotman, P.E. (1993) Renal Vascular Induction of TGF-β2 and Renin by Potassium Depletion. Kidney International, 44, 1006-1013.
https://doi.org/10.1038/ki.1993.342
[22] Verrecchia, F. and Mauviel, A. (2002) Transforming Growth Factor-β Signaling through the Smad Pathway: Role in Extracellular Matrix Gene Expression and Regulation. Journal of Investigative Dermatology, 118, 211-215.
https://doi.org/10.1046/j.1523-1747.2002.01641.x
[23] Kim, H.S. and Kim, H.Y. (2022) Hypertensive Effects of Transforming Growth Factor-β1 in Vascular Smooth Muscles Cells from Spontaneously Hypertensive Rats Are Mediated by Sulfatase 2. Cytokine, 150, Article 155754.
https://doi.org/10.1016/j.cyto.2021.155754
[24] Kurihara, H., Yoshizumi, M., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T., et al. (1989) Transforming Growth Factor-β Stimulates the Expression of Endothelin mRNA by Vascular Endothelial Cells. Biochemical and Biophysical Research Communications, 159, 1435-1440.
https://doi.org/10.1016/0006-291x(89)92270-5
[25] Zhang, Q., Liu, H. and Yang, J. (2019) Regulation of TGF‑β1 on PI3KC3 and Its Role in Hypertension‑Induced Vascular Injuries. Experimental and Therapeutic Medicine, 17, 1717-1727.
https://doi.org/10.3892/etm.2018.7128
[26] Kakoki, M., Pochynyuk, O.M., Hathaway, C.M., Tomita, H., Hagaman, J.R., Kim, H., et al. (2013) Primary Aldosteronism and Impaired Natriuresis in Mice Underexpressing TGF-β1. Proceedings of the National Academy of Sciences, 110, 5600-5605.
https://doi.org/10.1073/pnas.1302641110
[27] Tang, Y., Shen, L., Bao, J. and Xu, D. (2023) Deficiency of Tregs in Hypertension-Associated Left Ventricular Hypertrophy. The Journal of Clinical Hypertension, 25, 562-572.
https://doi.org/10.1111/jch.14660
[28] Li, B., Khanna, A., Sharma, V., et al. (1999) TGF-β1 DNA Polymorphisms, Protein Levels, and Blood Pressure. Hypertension, 33, 271-275.
https://doi.org/10.1161/01.hyp.33.1.271
[29] Kuwahara, F., Kai, H., Tokuda, K., Kai, M., Takeshita, A., Egashira, K., et al. (2002) Transforming Growth Factor-β Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats. Circulation, 106, 130-135.
https://doi.org/10.1161/01.cir.0000020689.12472.e0
[30] Petrov, V.V., Fagard, R.H. and Lijnen, P.J. (2002) Stimulation of Collagen Production by Transforming Growth Factor-β 1 during Differentiation of Cardiac Fibroblasts to Myofibroblasts. Hypertension, 39, 258-263.
https://doi.org/10.1161/hy0202.103268
[31] Sappino, A.P., Schürch, W. and Gabbiani, G. (1990) Differentiation Repertoire of Fibroblastic Cells: Expression of Cytoskeletal Proteins as Marker of Phenotypic Modulations. Laboratory Investigation, 63, 144-161.
[32] Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y. and Du, J. (2013) Krüppel-Like Factor 4 Transcriptionally Regulates TGF-β1 and Contributes to Cardiac Myofibroblast Differentiation. PLOS ONE, 8, e63424.
https://doi.org/10.1371/journal.pone.0063424
[33] Kapoun, A.M., Liang, F., O’Young, G., Damm, D.L., Quon, D., White, R.T., et al. (2004) B-Type Natriuretic Peptide Exerts Broad Functional Opposition to Transforming Growth Factor-β in Primary Human Cardiac Fibroblasts. Circulation Research, 94, 453-461.
https://doi.org/10.1161/01.res.0000117070.86556.9f
[34] Watson, C.J., Phelan, D., Xu, M., Collier, P., Neary, R., Smolenski, A., et al. (2012) Mechanical Stretch Up-Regulates the B-Type Natriuretic Peptide System in Human Cardiac Fibroblasts: A Possible Defense against Transforming Growth Factor-β Mediated Fibrosis. Fibrogenesis & Tissue Repair, 5, Article No. 9.
https://doi.org/10.1186/1755-1536-5-9
[35] Liu, Y., Lv, H., Tan, R., et al. (2020) Platelets Promote Ang II (Angiotensin II)-Induced Atrial Fibrillation by Releasing TGF-β1 (Transforming Growth Factor-β1) and Interacting with Fibroblasts. Hypertension, 76, 1856-1867.
https://doi.org/10.1161/hypertensionaha.120.15016
[36] Tian, J., Li, W., Zeng, L., et al. (2024) HBI-8000 Improves Heart Failure with Preserved Ejection Fraction via the TGF-β1/MAPK Signalling Pathway. Journal of Cellular and Molecular Medicine, 28, e18238.
https://doi.org/10.1111/jcmm.18238
[37] Susic, D., Frohlich, E.D., Kobori, H., Shao, W., Seth, D. and Navar, L.G. (2011) Salt-Induced Renal Injury in SHRs Is Mediated by AT1 Receptor Activation. Journal of Hypertension, 29, 716-723.
https://doi.org/10.1097/hjh.0b013e3283440683
[38] Frangogiannis, N.G. (2020) Transforming Growth Factor-β in Tissue Fibrosis. Journal of Experimental Medicine, 217, e20190103.
https://doi.org/10.1084/jem.20190103
[39] Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. and Brown, R.A. (2002) Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling. Nature Reviews Molecular Cell Biology, 3, 349-363.
https://doi.org/10.1038/nrm809
[40] Li, L., Xia, G., Lei, L., et al. (2025) Role of TGF-β1/Smad3 Signalling Pathway in Renal Tubulointerstitial Fibrosis and Renal Damage in Elderly Rats with Isolated Systolic Hypertension Induced by Increased Pulse Pressure. Acta Cardiologica, 80, 135-147.
https://doi.org/10.1080/00015385.2024.2445339
[41] 李璐, 陈春艳, 杨冬花, 等. 脉压增大对老年单纯收缩期高血压大鼠肾脏纤维化的影响及其机制[J]. 中国老年学杂志, 2024, 44(17): 4301-4305.
[42] Hu, H., Chen, D., Wang, Y., Feng, Y., Cao, G., Vaziri, N.D., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83.
https://doi.org/10.1016/j.cbi.2018.07.008
[43] Panizo, S., Martínez-Arias, L., Alonso-Montes, C., Cannata, P., Martín-Carro, B., Fernández-Martín, J.L., et al. (2021) Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. International Journal of Molecular Sciences, 22, Article 408.
https://doi.org/10.3390/ijms22010408
[44] Huo, J., Jiao, L., An, Q., Chen, X., Qi, Y., Wei, B., et al. (2021) Myofibroblast Deficiency of LSD1 Alleviates TAC-Induced Heart Failure. Circulation Research, 129, 400-413.
https://doi.org/10.1161/circresaha.120.318149
[45] Ye, S., Huang, H., Xiao, Y., Han, X., Shi, F., Luo, W., et al. (2023) Macrophage Dectin-1 Mediates Ang II Renal Injury through Neutrophil Migration and TGF-β1 Secretion. Cellular and Molecular Life Sciences, 80, Article No. 184.
https://doi.org/10.1007/s00018-023-04826-4