[1]
|
Araújo, T., Aresta, G., Mendonça, L., Penas, S., Maia, C., Carneiro, Â., et al. (2020) DR|GRADUATE: Uncertainty-Aware Deep Learning-Based Diabetic Retinopathy Grading in Eye Fundus Images. Medical Image Analysis, 63, Article 101715. https://doi.org/10.1016/j.media.2020.101715
|
[2]
|
Qian, X., Jingying, H., Xian, S., Yuqing, Z., Lili, W., Baorui, C., et al. (2022) The Effectiveness of Artificial Intelligence-Based Automated Grading and Training System in Education of Manual Detection of Diabetic Retinopathy. Frontiers in Public Health, 10, Article 1025271. https://doi.org/10.3389/fpubh.2022.1025271
|
[3]
|
Han, R., Yu, W., Chen, H. and Chen, Y. (2022) Using Artificial Intelligence Reading Label System in Diabetic Retinopathy Grading Training of Junior Ophthalmology Residents and Medical Students. BMC Medical Education, 22, Article No. 258. https://doi.org/10.1186/s12909-022-03272-3
|
[4]
|
Hassan, M.F., Al-Zurfi, A.N., Abed, M.H. and Ahmed, K. (2024) An Effective Ensemble Learning Approach for Classification of Glioma Grades Based on Novel MRI Features. Scientific Reports, 14, Article No. 11977. https://doi.org/10.1038/s41598-024-61444-1
|
[5]
|
Shah, A., Clarida, W., Amelon, R., Hernaez-Ortega, M.C., Navea, A., Morales-Olivas, J., et al. (2021) Validation of Automated Screening for Referable Diabetic Retinopathy with an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. Journal of Diabetes Science and Technology, 15, 655-663. https://doi.org/10.1177/1932296820906212
|
[6]
|
Zhou, Z., Qian, X., Hu, J., Chen, G., Zhang, C., Zhu, J., et al. (2023) An Artificial Intelligence-Assisted Diagnosis Modeling Software (AIMS) Platform Based on Medical Images and Machine Learning: A Development and Validation Study. Quantitative Imaging in Medicine and Surgery, 13, 7504-7522. https://doi.org/10.21037/qims-23-20
|
[7]
|
Guan, A., Liu, L., Fu, X. and Liu, L. (2022) Precision Medical Image Hash Retrieval by Interpretability and Feature Fusion. Computer Methods and Programs in Biomedicine, 222, Article 106945. https://doi.org/10.1016/j.cmpb.2022.106945
|
[8]
|
Zhang, Z., Sun, G., Zheng, K., Yang, J., Zhu, X. and Li, Y. (2023) TC-Net: A Joint Learning Framework Based on CNN and Vision Transformer for Multi-Lesion Medical Images Segmentation. Computers in Biology and Medicine, 161, Article 106967. https://doi.org/10.1016/j.compbiomed.2023.106967
|
[9]
|
Hua, C., Wu, Y., Shi, Y., Hu, M., Xie, R., Zhai, G., et al. (2023) Steganography for Medical Record Image. Computers in Biology and Medicine, 165, Article 107344. https://doi.org/10.1016/j.compbiomed.2023.107344
|
[10]
|
Wang, G., Li, W. and Huang, Y. (2021) Medical Image Fusion Based on Hybrid Three-Layer Decomposition Model and Nuclear Norm. Computers in Biology and Medicine, 129, Article 104179. https://doi.org/10.1016/j.compbiomed.2020.104179
|
[11]
|
Mortazi, A., Cicek, V., Keles, E. and Bagci, U. (2023) Selecting the Best Optimizers for Deep Learning-Based Medical Image Segmentation. Frontiers in Radiology, 3, Article 1175473. https://doi.org/10.3389/fradi.2023.1175473
|
[12]
|
Mehmood, Y. and Bajwa, U.I. (2024) Brain Tumor Grade Classification Using the ConvNext Architecture. Digit Health, 10, Article 20552076241284920.
|
[13]
|
郭佳凯, 郑黎强, 岳阳阳, 等. 中国大陆二、三级医院大型医疗设备配置与使用情况分析[J]. 中国临床医学影像杂志, 2016, 27(2): 127-130.
|
[14]
|
Kaffas, A.E., Vo-Phamhi, J.M., Griffin, J.F. and Hoyt, K. (2024) Critical Advances for Democratizing Ultrasound Diagnostics in Human and Veterinary Medicine. Annual Review of Biomedical Engineering, 26, 49-65. https://doi.org/10.1146/annurev-bioeng-110222-095229
|
[15]
|
Bruthans, J. (2020) The Successful Usage of the DICOM Images Exchange System (ePACS) in the Czech Republic. Applied Clinical Informatics, 11, 104-111. https://doi.org/10.1055/s-0040-1701252
|
[16]
|
Fan, K., Yang, L., Ren, F., Zhang, X., Liu, B., Zhao, Z., et al. (2024) Intelligent Imaging Technology Applications in Multidisciplinary Hospitals. Chinese Medical Journal, 137, 3083-3092. https://doi.org/10.1097/cm9.0000000000003436
|
[17]
|
Sengupta, C., Nguyen, D.T., Li, Y., Hewson, E., Ball, H., O’Brien, R., et al. (2025) The TROG 15.01 Stereotactic Prostate Adaptive Radiotherapy Utilizing Kilovoltage Intrafraction Monitoring (SPARK) Clinical Trial Database. Medical Physics, 52, 1941-1949. https://doi.org/10.1002/mp.17529
|
[18]
|
谭裕奇, 叶铮, 李函宇, 吕欣阳, 夏春潮, 李真林. 中国医学影像技术从业人员现状和需求调查研究[J]. 四川大学学报(医学版), 2024, 55(3): 612-618.
|
[19]
|
Wodzinski, M., Banzato, T., Atzori, M., Andrearczyk, V., Cid, Y.D. and Muller, H. (2020). Training Deep Neural Networks for Small and Highly Heterogeneous MRI Datasets for Cancer Grading. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, 20-24 July 2020, 1758-1761. https://doi.org/10.1109/embc44109.2020.9175634
|
[20]
|
Hou, Q., Cao, P., Jia, L., Chen, L., Yang, J. and Zaiane, O.R. (2023) Image Quality Assessment Guided Collaborative Learning of Image Enhancement and Classification for Diabetic Retinopathy Grading. IEEE Journal of Biomedical and Health Informatics, 27, 1455-1466. https://doi.org/10.1109/jbhi.2022.3231276
|
[21]
|
Liu, Y.H., Li, L.Y., Liu, S.J., et al. (2024) Artificial Intelligence in the Anterior Segment of Eye Diseases. International Journal of Ophthalmology, 17, 1743-1751.
|