维系类器官培养稳定性的相关研究进展
Research Progress on Maintaining the Stability of Organoid Culture
DOI: 10.12677/acm.2025.1592554, PDF, HTML, XML,   
作者: 夏雪妍:西安医学院研究生工作部,陕西 西安;段宝军*:陕西省人民医院肿瘤内科,陕西 西安
关键词: 类器官培养稳定性血管化Organoid Culture Stability Vascularization
摘要: 类器官作为三维微型器官模型,能够高度模拟体内器官的结构与功能,在疾病建模、药物筛选等领域彰显出巨大潜力。不过,其培养过程中存在的稳定性难题,极大地限制了实际应用。类器官的稳定性体现在两个维度:一方面是培养环境的稳态保持,涉及基质构成、生长因子、机械刺激等外源性要素;另一方面是细胞的内在稳态,包含遗传稳定性、代谢均衡以及细胞异质性等内源性要素。本文全面综述了维持类器官培养环境及内源稳定性的前沿手段,包括工程化基质、血管化技术、标准化流程、菌群平衡等方面,通过批判性评估各技术的优劣提出整合性策略,并对其临床转化前景进行了展望。
Abstract: As three-dimensional miniaturized organ models, organoids faithfully replicate the structural and functional characteristics of native tissues, demonstrating substantial potential in disease modeling, drug screening, and related fields. However, cultivation stability challenges significantly hinder their practical applications. Organoid stability encompasses two dimensions: Extrinsic homeostasis, maintenance of the culture environment through exogenous factors (e.g. matrix composition, growth factors, mechanical stimuli); Intrinsic cellular homeostasis, preservation of endogenous properties including genetic stability, metabolic equilibrium, and cellular heterogeneity. This review comprehensively examines cutting-edge strategies for sustaining both environmental and cellular stability in organoid cultures, covering engineered matrices, vascularization techniques, standardized protocols, and microbial community regulation. Future prospects for clinical translation are also discussed.
文章引用:夏雪妍, 段宝军. 维系类器官培养稳定性的相关研究进展[J]. 临床医学进展, 2025, 15(9): 771-777. https://doi.org/10.12677/acm.2025.1592554

1. 引言

类器官是源于成体或多能干细胞的体外三维自组装结构,可模拟靶器官的解剖与功能单元[1]。然而,相比于动物模型等传统的研究模式,类器官培养的难度更大,成本更高,且稳定性更加难以维持[2]。这种稳定性涵盖双重层面:一方面体现为培养过程的可重复性,即不同实验室、不同批次制备的类器官在细胞组成、结构成熟度等指标上常存在显著差异[3];另一方面表现为长期培养中的功能维持能力,部分类器官在传代过程中会出现结构坍塌、特异性功能退化等问题[4]。这些不稳定性直接影响实验结果的可靠性,成为制约其从基础研究向临床转化的主要障碍。因此,维稳的策略至关重要。

2. 工程化基质与血管微环境重建

2.1. 基质材料的创新

传统Matrigel因存在批次差异显著、成分模糊不清及动物源成分引发的安全风险,已成为制约类器官培养稳定性的主要瓶颈。荷兰Hubrecht研究所研发的细菌蛋白Invasin技术,为这一难题带来了突破性解决方案。该团队从耶尔森氏菌中分离并精制出Invasin蛋白片段,其能够有效替代Matrigel用于培养皿包被,成功支持人类肠道、呼吸道及蛇毒腺类器官的长期培养。这一技术的核心优势十分突出:成分完全明确,成本显著降低,且可支持平面3D薄片培养结构,让细胞更便于观测和操作,同时还能完好保留细胞的顶–底极性[5]。实验结果证实,基于Invasin的类器官培养不仅能维持干细胞的分化潜能,还规避了传统凝胶中常见的边界模糊问题。

在合成水凝胶领域,相关研究同样取得了显著进展。光固化GelMA水凝胶可通过调节交联度实现对基质刚度的精确控制,从而模拟从正常到纤维化的组织微环境[6]。值得关注的是,VitroGel 3D等植物源基质进一步降低了免疫排斥风险[7],为类器官的临床应用奠定了坚实基础。

2.2. 血管化的突破

血管网络缺失是制约大型类器官存活与功能成熟的关键瓶颈。目前主要通过细胞共培养、基因工程调控和生物打印仿生构建三大策略实现血管化重建,其生物学机制与应用局限如下:

2.2.1. 细胞共培养

IMALI培养系统(倒置多层气液界面技术)通过细胞定向分化与自组织调控实现功能性血管构建。其核心机制为:利用BMP4、VEGF等小分子诱导,将人多能干细胞定向分化为高表达CD31和VE-钙粘蛋白的CD32b+肝窦内皮祖细胞(iLSEP),该类细胞具备内皮增殖与管腔形成能力;随后在三维共培养体系中,通过动态气液界面微环境促进iLSEP与肝细胞、星状细胞等间质细胞间的旁分泌信号传导,引导内皮细胞自主组装成分支状血管网络。该策略构建的血管可通过内皮细胞紧密连接形成屏障,阻止大分子渗漏;同时实现管腔与基质的贯通,支持物质交换。例如,在血友病A模型小鼠中,肝类器官分泌的凝血因子VIII经血管网络高效运输,显著缓解出血症状。

然而,该策略仍存在局限:形成的血管网络以内皮细胞为主,缺乏周围细胞覆盖等成熟结构,长期培养易发生管腔塌陷;同时未整合巨噬细胞等免疫成分,难以模拟炎症相关的血管渗漏和免疫细胞浸润等病理过程[8]

2.2.2. 基因工程调控

耶鲁大学团队通过诱导内皮关键转录因子ETV2,在类脑器官中构建血管样网络(vhCOs)。其机制在于ETV2激活内皮分化通路,促使神经外胚层细胞转分化为血管内皮细胞;同时ETV2上调VEGF等血管生成因子,通过自分泌–旁分泌循环促进血管分支与生长。

该策略的不足在于细胞调控精度有限:ETV2过表达可能导致神经细胞异常向内皮分化,破坏神经组织结构;同时血管缺乏平滑肌细胞支持,无法模拟如高血压等病理条件下的血管收缩功能[9]

2.2.3. 生物打印技术:仿生血管结构的工程化构建

生物打印技术通过结构仿生与功能模块化设计构建血管网络。以“骨化中心类器官”(OCOs)为例,其采用“双模块化”设计,包括一个成骨诱导核心单元(含成骨细胞与BMP2等因子)和促血管化外壳层(负载内皮细胞与VEGF缓释微球)。血管募集机制为:外壳层释放VEGF梯度引导宿主内皮细胞迁移,多孔生物打印支架为血管长入提供物理通道,促进血管快速贯通并与内部网络连接,最终在骨缺损模型中实现血管化与骨再生的协同修复。

该技术目前仍存在局限:血管结构稳定性受支架材料降解速率影响,降解过快将阻碍血管成熟;此外,当前打印精度(约50~100 μm)尚难以模拟真正的毛细血管(5~10 μm),限制了其在糖尿病足等微循环障碍模型中的精准应用[10]

2.3. 力学微环境动态模拟

组织发育过程中的机械应力是调控细胞行为的关键因素[11]。在周期性拉伸装置中培养的肠类器官,其杯状细胞的分化率得到显著提升。这一实验现象清晰表明,适宜的力学刺激能够定向促进特定细胞类型的分化进程,为深入理解机械力在器官发育及细胞命运决定中的调控作用提供了重要依据[12]。肝脏类器官的相关研究说明,当基质刚度从正常水平增至纤维化状态时,能够激活肝星状细胞,进而重现肝硬化的发展进程。这一发现为揭示肝脏纤维化的病理机制提供了重要的实验依据,也为针对肝硬化的靶向治疗研究搭建了更贴近体内环境的模型[13]

3. 细胞内在稳态与抗应激调控

3.1. 遗传稳定性控制

长期传代引发的遗传漂变,是类器官稳定性面临的另一严峻挑战[14] [15]。在乳腺类器官的培养过程中,部分类器官形成后,会出现与亲代组织不匹配的受体表达缺失或异常获得现象。这一现象可能源于培养基中生长因子持续激活MAPK通路,进而筛选出携带PIK3CA或PTEN突变的亚克隆,最终导致激素受体表达沉默。针对这一问题,可通过标准化培养(如采用化学成分明确的培养基)、限制传代次数及实施单细胞监测等手段,有效降低误差[16]

3.2. 代谢与氧化平衡

类器官的中心坏死常与代谢废物积累及氧化应激相关。郭峰团队开发的血管网络启发式可扩散支架(VID),通过3D打印网状管道模拟血管结构,使代谢废物清除效率大幅提升,中心坏死率较传统模型显著下降[17] [18]。耶鲁大学团队则通过诱导内皮转录因子ETV2,构建出带有血管样网络的类器官(vhCOs),首次在类脑器官中实现“形态–功能”双模拟的血管网络,成功解决了长期培养中代谢废物累积与氧化应激损伤的问题,为脑发育研究、神经疾病建模及移植医学提供了长效稳定的生物学平台[9]。未来的研究需进一步整合血管免疫共培养系统,以更全面地模拟体内清除机制。

3.3. 菌群互作与免疫微环境

微生物群在器官功能中扮演着关键角色。肠类器官与菌群的共培养技术主要包括:直接接种法、Transwell共培养法及工程菌定植法[19]-[21]。为维持菌群平衡,需对短链脂肪酸浓度及菌群比例波动进行监测。添加黏液素能够促进菌群定植,而调节TGF-β则可调控调节性T细胞的分化,从而防止过度炎症反应[22]-[24]。借助Transwell室的气液界面,能够保留结直肠癌、肺癌等类器官中的内源性免疫细胞,延长免疫细胞的存活时间,进而更精准地模拟体内免疫微环境[25]。但仍然存在菌群比例易波动,需持续监测增加成本等问题。

4. 标准化流程与全链条质控体系

4.1. 标准化操作流程(SOP)

类器官培养的标准化流程已逐步构建起统一框架。尽管不同组织来源的类器官(如乳腺类器官、胃肠道类器官)在消化时间、培养基配方等细节上存在差异,但核心操作流程——从样本处理、三维培养,到传代、冻存及质量控制——已通过团体标准达成行业共识。无基质胶培养系统、自动化操作平台(如人工智能驱动的形态分析技术)以及合成基质的持续开发,进一步提高了培养过程的标准化程度与实验可重复性。同时,严格遵循相关团体标准(如T/CMBA 017-2022),为全流程的规范化实施提供了有力保障[26]

4.2. 质量评估与污染防控

形态学分析是类器官质量评估的首要环节,健康的类器官需具备清晰的腔体结构与明确的细胞极性[27]。采用传统ECM包埋法培养的类器官,其尺寸变异往往较大;而新型悬浮培养系统能有效缩小这种尺寸差异。在悬浮培养体系中,机械搅拌生物反应器通过提供均匀的流体剪切力,可有效促进细胞的均匀分布与营养物质的充分摄取,从而显著降低因ECM局部浓度不均引发的类器官尺寸异质性问题。进一步的转录组学分析揭示,悬浮培养能特异性激活PI3K信号通路,从而增强细胞间黏附作用并优化细胞极性排布,为类器官的结构稳定性与均一发育提供了关键分子机制支撑[28]。借助自动化成像系统结合人工智能算法,可对类器官的直径分布、腔体形成率及细胞活力进行精准量化[29]。组织学染色则进一步用于验证超微结构:H&E染色可识别胃类器官中的壁细胞、主细胞等四类细胞谱系[30];免疫荧光技术则适用于检测谱系特异性标志物的空间分布情况[31]

操作规范的标准化是防控类器官培养污染的基础。关键控制点涵盖:生物安全柜的规范管理、培养基的标准化处理、冷冻保存的严格操作,以及覆盖全流程的环境监测。试剂的质量控制同样至关重要,以基质胶为例,其批次差异会显著影响类器官的形成率,因此在正式实验前必须通过预实验进行有效性验证[26] [32]

5. 前沿交叉技术与临床转化突破

5.1. 多器官芯片与人工智能融合

器官芯片是一种集成化的细胞培养设备,借助微流控平台连接多种类器官,能够模拟人体系统性反应[33]。欧盟“芯片人体”项目整合10个器官芯片的数据,构建出全身药代动力学数字孪生模型,显著降低了药物开发成本[34]。此外,人工智能在质量控制与预测方面的作用也日益凸显,例如通过机器学习驱动的跨物种比较,能够对类器官发育成熟度进行评估[35]

5.2. 患者来源类器官与精准医疗

患者来源的类器官在肿瘤精准治疗中具有极高价值。中国学者开发的GlioME类器官,通过机械剪碎肿瘤组织进行三维原位培养,完整保留了肿瘤微环境。经多组学验证,该类器官与原发肿瘤高度吻合,在靶向药Vebreltinib的筛选中成功指导临床实践,助力患者实现完全缓解。GlioME类器官模型能够在体外环境中完整复刻亲本肿瘤的微环境特征,并可稳定用于各类治疗药物的有效性测试。研究证实,该模型在培养体系中可维持至少两周的结构与功能稳定性,这为后续开展深入实验奠定了扎实的技术基础。这一创新培养方法不仅为胶质瘤的基础机制研究提供了极具价值的实验工具,更能为临床制定个体化治疗策略提供关键参考,推动胶质瘤精准治疗的发展[36]

6. 结论与展望

为确保类器官培养稳定性,需构建“三维协同优化框架”,形成从微环境调控到功能验证的全流程闭环。该框架包含以下三个层次:

6.1. 微环境工程化优化层

以“标准化替代 + 功能仿生”为核心策略:采用Invasin蛋白或合成水凝胶替代Matrigel,以降低基质批次差异;通过模块化血管技术选择——如实质器官类器官采用IMALI共培养,复杂器官采用ETV2基因调控,缺血组织类器官选用生物打印双模块设计——实现血管功能精准模拟;结合力学刺激(如肠道类器官的周期性拉伸)与基质刚度调控(如肝纤维化模型),还原体内机械微环境。

6.2. 细胞稳态精准调控层

针对遗传突变,建立“传代限制 + 单细胞监测 + 通路抑制”联合体系,例如在乳腺类器官中抑制MAPK通路过度激活;代谢平衡方面,应用VID支架与vhCOs血管网络,通过结构优化与功能强化协同清除代谢废物;菌群与免疫微环境需借助标准化Transwell共培养,并基于短链脂肪酸监测与TGF-β调节,维持免疫平衡。

6.3. 全流程质控与转化层

以“数字化 + 标准化”为核心:依据T/CMBA 017-2022团体标准建立SOP,利用AI自动化成像(量化直径、腔体形成等)与多组学数据(转录组、蛋白组)进行系统评估;整合环境监测与试剂预验证以防控污染。

结合以上新技术的优缺点,未来的研究重点包括:开发可模拟血管渗漏和免疫浸润的共培养系统;优化生物打印支架降解与血管成熟的匹配性;通过自动化生物反应器与AI决策降低个体化培养成本,推动类器官从模型向临床治疗方案的转化,服务于肿瘤精准医疗与再生医学等领域。

NOTES

*通讯作者。

参考文献

[1] Marsee, A., Roos, F.J.M., Verstegen, M.M.A., Gehart, H., de Koning, E., Lemaigre, F., et al. (2021) Building Consensus on Definition and Nomenclature of Hepatic, Pancreatic, and Biliary Organoids. Cell Stem Cell, 28, 816-832.
https://doi.org/10.1016/j.stem.2021.04.005
[2] Yan, H.H.N., Chan, A.S., Lai, F.P. and Leung, S.Y. (2023) Organoid Cultures for Cancer Modeling. Cell Stem Cell, 30, 917-937.
https://doi.org/10.1016/j.stem.2023.05.012
[3] Sauter, M.M., Noel, H.R., Sinha, D., Nelson, E.C., Xiong, M.N., Gamm, D.M., et al. (2025) AAV2.7m8 Transduction of Stage 2 Human Retinal Organoids Induces Highly Variable Responses in Innate and Inflammatory Gene Expression and Cytokine Secretion. Experimental Eye Research, 258, Article ID: 110478.
https://doi.org/10.1016/j.exer.2025.110478
[4] Baghdadi, M.B., Houtekamer, R.M., Perrin, L., Rao-Bhatia, A., Whelen, M., Decker, L., et al. (2024) Piezo-Dependent Mechanosensing Is Essential for Intestinal Stem Cell Fate Decision and Maintenance. Science, 386, eadj7615.
https://doi.org/10.1126/science.adj7615
[5] Wijnakker, J.J.A.P.M., van Son, G.J.F., Krueger, D., van de Wetering, W.J., Lopez-Iglesias, C., Schreurs, R., et al. (2024) Integrin-Activating Yersinia Protein Invasin Sustains Long-Term Expansion of Primary Epithelial Cells as 2D Organoid Sheets. Proceedings of the National Academy of Sciences of the United States of America, 122, e2420595121.
https://doi.org/10.1073/pnas.2420595121
[6] Chalard, A.E., Dixon, A.W., Taberner, A.J. and Malmström, J. (2022) Visible-light Stiffness Patterning of Gelma Hydrogels Towards in Vitro Scar Tissue Models. Frontiers in Cell and Developmental Biology, 10, Article 946754.
https://doi.org/10.3389/fcell.2022.946754
[7] Rijal, G. and Li, W. (2017) A Versatile 3D Tissue Matrix Scaffold System for Tumor Modeling and Drug Screening. Science Advances, 3, e1700764.
https://doi.org/10.1126/sciadv.1700764
[8] Saiki, N., Nio, Y., Yoneyama, Y., Kawamura, S., Iwasawa, K., Kawakami, E., Araki, K., Fukumura, J., Sakairi, T., Kono, T., et al. (2024) Self-Organization of Sinusoidal Vessels in Pluripotent Stem Cell-Derived Human Liver Bud Organoids. Cold Spring Harbor Laboratory.
https://doi.org/10.1101/2024.07.02.601804
[9] Cakir, B., Xiang, Y., Tanaka, Y., Kural, M.H., Parent, M., Kang, Y., et al. (2019) Engineering of Human Brain Organoids with a Functional Vascular-Like System. Nature Methods, 16, 1169-1175.
https://doi.org/10.1038/s41592-019-0586-5
[10] Zhang, X., Jiang, W., Wu, X., Xie, C., Zhang, Y., Li, L., et al. (2025) Divide-and-Conquer Strategy with Engineered Ossification Center Organoids for Rapid Bone Healing through Developmental Cell Recruitment. Nature Communications, 16, Article No. 6200.
https://doi.org/10.1038/s41467-025-61619-y
[11] Ingber, D.E. (1997) Tensegrity: The Architectural Basis of Cellular Mechanotransduction. Annual Review of Physiology, 59, 575-599.
https://doi.org/10.1146/annurev.physiol.59.1.575
[12] Meng, F., Shen, C., Yang, L., Ni, C., Huang, J., Lin, K., et al. (2022) Mechanical Stretching Boosts Expansion and Regeneration of Intestinal Organoids through Fueling Stem Cell Self-Renewal. Cell Regeneration, 11, Article No. 39.
https://doi.org/10.1186/s13619-022-00137-4
[13] Zhou, L., Shi, Z., Yang, X., Zeng, J., You, Z., Zhang, Y., et al. (2025) Tension-Induced Directional Migration of Hepatic Stellate Cells Potentially Coordinates Liver Fibrosis Progression. Nature Biomedical Engineering.
https://doi.org/10.1038/s41551-025-01381-0
[14] Usman, O.H., Zhang, L., Xie, G., Kocher, H.M., Hwang, C., Wang, Y.J., et al. (2022) Genomic Heterogeneity in Pancreatic Cancer Organoids and Its Stability with Culture. NPJ Genomic Medicine, 7, Article No. 71.
https://doi.org/10.1038/s41525-022-00342-9
[15] Klaasen, S.J., Truong, M.A., van Jaarsveld, R.H., Koprivec, I., Štimac, V., de Vries, S.G., et al. (2022) Nuclear Chromosome Locations Dictate Segregation Error Frequencies. Nature, 607, 604-609.
https://doi.org/10.1038/s41586-022-04938-0
[16] Dekkers, J.F., van Vliet, E.J., Sachs, N., Rosenbluth, J.M., Kopper, O., Rebel, H.G., et al. (2021) Long-Term Culture, Genetic Manipulation and Xenotransplantation of Human Normal and Breast Cancer Organoids. Nature Protocols, 16, 1936-1965.
https://doi.org/10.1038/s41596-020-00474-1
[17] Koch, L.S., Choy Buentello, D. and Broersen, K. (2023) Robust Tissue Fabrication for Long-Term Culture of iPSC-Derived Brain Organoids for Aging Research. Journal of Visualized Experiments, 195, e64586.
https://doi.org/10.3791/64586
[18] Cai, H., Tian, C., Chen, L., Yang, Y., Sun, A.X., McCracken, K., et al. (2025) Vascular Network-Inspired Diffusible Scaffolds for Engineering Functional Midbrain Organoids. Cell Stem Cell, 32, 824-837.e5.
https://doi.org/10.1016/j.stem.2025.02.010
[19] Hou, Q., Jia, J., Lin, J., Zhu, L., Xie, S., Yu, Q., et al. (2022) Bacillus Subtilis Programs the Differentiation of Intestinal Secretory Lineages to Inhibit Salmonella Infection. Cell Reports, 40, Article ID: 111416.
https://doi.org/10.1016/j.celrep.2022.111416
[20] Zhang, J., Hernandez-Gordillo, V., Trapecar, M., Wright, C., Taketani, M., Schneider, K., et al. (2021) Coculture of Primary Human Colon Monolayer with Human Gut Bacteria. Nature Protocols, 16, 3874-3900.
https://doi.org/10.1038/s41596-021-00562-w
[21] Yao, W., Song, W., Deng, X., Lin, Y., Meng, R., Wang, J., et al. (2024) Harnessing the Engineered Probiotic‐Nanosystem to Remodulate Tumor Extracellular Matrix and Regulate Tumor‐Colonizing Bacteria for Improving Pancreatic Cancer Chemo‐Immunotherapy. Small, 21, e2406837.
https://doi.org/10.1002/smll.202406837
[22] Volta, V., Pérez-Baos, S., de la Parra, C., Katsara, O., Ernlund, A., Dornbaum, S., et al. (2021) A DAP5/eIF3d Alternate mRNA Translation Mechanism Promotes Differentiation and Immune Suppression by Human Regulatory T Cells. Nature Communications, 12, Article No. 6979.
https://doi.org/10.1038/s41467-021-27087-w
[23] Smith, T.J., Sundarraman, D., Melancon, E., Desban, L., Parthasarathy, R. and Guillemin, K. (2023) A Mucin-Regulated Adhesin Determines the Spatial Organization and Inflammatory Character of a Bacterial Symbiont in the Vertebrate Gut. Cell Host & Microbe, 31, 1371-1385.e6.
https://doi.org/10.1016/j.chom.2023.07.003
[24] Tan, J.K., Macia, L. and Mackay, C.R. (2023) Dietary Fiber and SCFAs in the Regulation of Mucosal Immunity. Journal of Allergy and Clinical Immunology, 151, 361-370.
https://doi.org/10.1016/j.jaci.2022.11.007
[25] Yao, N., Jing, N., Lin, J., Niu, W., Yan, W., Yuan, H., et al. (2025) Patient-Derived Tumor Organoids for Cancer Immunotherapy: Culture Techniques and Clinical Application. Investigational New Drugs, 43, 394-404.
https://doi.org/10.1007/s10637-025-01523-w
[26] Yang, R., Qi, Y., Zhang, X., Gao, H. and Yu, Y. (2024) Living Biobank: Standardization of Organoid Construction and Challenges. Chinese Medical Journal, 137, 3050-3060.
https://doi.org/10.1097/cm9.0000000000003414
[27] Wang, X., Xia, T., Tang, H., Liu, X., Han, R., Zou, X., et al. (2022) Establishment of a Patient-Derived Organoid Model and Living Biobank for Nasopharyngeal Carcinoma. Annals of Translational Medicine, 10, 526-526.
https://doi.org/10.21037/atm-22-1076
[28] Gong, S., He, K., Liu, Y., Luo, X., Ashraf, K., He, J., et al. (2025) Scalable Matrigel‐Free Suspension Culture for Generating High‐Quality Human Liver Ductal Organoids. Cell Proliferation, 58, e70033.
https://doi.org/10.1111/cpr.70033
[29] Ong, H.T., Karatas, E., Poquillon, T., Grenci, G., Furlan, A., Dilasser, F., et al. (2025) Digitalized Organoids: Integrated Pipeline for High-Speed 3D Analysis of Organoid Structures Using Multilevel Segmentation and Cellular Topology. Nature Methods, 22, 1343-1354.
https://doi.org/10.1038/s41592-025-02685-4
[30] Hong, F., Wang, X., Zhong, N., Zhang, Z., Lin, S., Zhang, M., et al. (2025) The Critical Role of BMP Signaling in Gastric Epithelial Cell Differentiation Revealed by Organoids. Cell Regeneration, 14, Article No. 18.
https://doi.org/10.1186/s13619-025-00237-x
[31] Hofer, M., Kim, Y., Broguiere, N., Gorostidi, F., Klein, J.A., Amieva, M.R., et al. (2025) Accessible Homeostatic Gastric Organoids Reveal Secondary Cell Type-Specific Host-Pathogen Interactions in Helicobacter pylori Infections. Nature Communications, 16, Article No. 2767.
https://doi.org/10.1038/s41467-025-57131-y
[32] 中华医学会消化病学分会医工交叉协作组. 中国经内镜消化系统常见恶性肿瘤组织取样及类器官培养专家共识(2024, 成都) [J]. 中华消化内镜杂志, 2024, 41(5): 337-350.
[33] Liu, J., Wu, G., Wu, D., Wu, L., Sun, C., Zhang, W., et al. (2025) Microfluidic Organoid-Slice-On-A-Chip System for Studying Anti-Cholangiocarcinoma Drug Efficacy and Hepatorenal Toxicity. Lab on a Chip, 25, 2839-2850.
https://doi.org/10.1039/d4lc00902a
[34] Huang, Y., Liu, T., Huang, Q. and Wang, Y. (2024) From Organ-On-A-Chip to Human-On-A-Chip: A Review of Research Progress and Latest Applications. ACS Sensors, 9, 3466-3488.
https://doi.org/10.1021/acssensors.4c00004
[35] He, C., Kalafut, N.C., Sandoval, S.O., Risgaard, R., Sirois, C.L., Yang, C., et al. (2023) BOMA, a Machine-Learning Framework for Comparative Gene Expression Analysis across Brains and Organoids. Cell Reports Methods, 3, Article ID: 100409.
https://doi.org/10.1016/j.crmeth.2023.100409
[36] Zheng, C., Wang, P., Zhang, D., Fang, Z., Feng, Y., Chen, J., et al. (2025) A Novel Organoid Model Retaining the Glioma Microenvironment for Personalized Drug Screening and Therapeutic Evaluation. Bioactive Materials, 53, 205-217.
https://doi.org/10.1016/j.bioactmat.2025.07.015