[1]
|
Marsee, A., Roos, F.J.M., Verstegen, M.M.A., Gehart, H., de Koning, E., Lemaigre, F., et al. (2021) Building Consensus on Definition and Nomenclature of Hepatic, Pancreatic, and Biliary Organoids. Cell Stem Cell, 28, 816-832. https://doi.org/10.1016/j.stem.2021.04.005
|
[2]
|
Yan, H.H.N., Chan, A.S., Lai, F.P. and Leung, S.Y. (2023) Organoid Cultures for Cancer Modeling. Cell Stem Cell, 30, 917-937. https://doi.org/10.1016/j.stem.2023.05.012
|
[3]
|
Sauter, M.M., Noel, H.R., Sinha, D., Nelson, E.C., Xiong, M.N., Gamm, D.M., et al. (2025) AAV2.7m8 Transduction of Stage 2 Human Retinal Organoids Induces Highly Variable Responses in Innate and Inflammatory Gene Expression and Cytokine Secretion. Experimental Eye Research, 258, Article ID: 110478. https://doi.org/10.1016/j.exer.2025.110478
|
[4]
|
Baghdadi, M.B., Houtekamer, R.M., Perrin, L., Rao-Bhatia, A., Whelen, M., Decker, L., et al. (2024) Piezo-Dependent Mechanosensing Is Essential for Intestinal Stem Cell Fate Decision and Maintenance. Science, 386, eadj7615. https://doi.org/10.1126/science.adj7615
|
[5]
|
Wijnakker, J.J.A.P.M., van Son, G.J.F., Krueger, D., van de Wetering, W.J., Lopez-Iglesias, C., Schreurs, R., et al. (2024) Integrin-Activating Yersinia Protein Invasin Sustains Long-Term Expansion of Primary Epithelial Cells as 2D Organoid Sheets. Proceedings of the National Academy of Sciences of the United States of America, 122, e2420595121. https://doi.org/10.1073/pnas.2420595121
|
[6]
|
Chalard, A.E., Dixon, A.W., Taberner, A.J. and Malmström, J. (2022) Visible-light Stiffness Patterning of Gelma Hydrogels Towards in Vitro Scar Tissue Models. Frontiers in Cell and Developmental Biology, 10, Article 946754. https://doi.org/10.3389/fcell.2022.946754
|
[7]
|
Rijal, G. and Li, W. (2017) A Versatile 3D Tissue Matrix Scaffold System for Tumor Modeling and Drug Screening. Science Advances, 3, e1700764. https://doi.org/10.1126/sciadv.1700764
|
[8]
|
Saiki, N., Nio, Y., Yoneyama, Y., Kawamura, S., Iwasawa, K., Kawakami, E., Araki, K., Fukumura, J., Sakairi, T., Kono, T., et al. (2024) Self-Organization of Sinusoidal Vessels in Pluripotent Stem Cell-Derived Human Liver Bud Organoids. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.07.02.601804
|
[9]
|
Cakir, B., Xiang, Y., Tanaka, Y., Kural, M.H., Parent, M., Kang, Y., et al. (2019) Engineering of Human Brain Organoids with a Functional Vascular-Like System. Nature Methods, 16, 1169-1175. https://doi.org/10.1038/s41592-019-0586-5
|
[10]
|
Zhang, X., Jiang, W., Wu, X., Xie, C., Zhang, Y., Li, L., et al. (2025) Divide-and-Conquer Strategy with Engineered Ossification Center Organoids for Rapid Bone Healing through Developmental Cell Recruitment. Nature Communications, 16, Article No. 6200. https://doi.org/10.1038/s41467-025-61619-y
|
[11]
|
Ingber, D.E. (1997) Tensegrity: The Architectural Basis of Cellular Mechanotransduction. Annual Review of Physiology, 59, 575-599. https://doi.org/10.1146/annurev.physiol.59.1.575
|
[12]
|
Meng, F., Shen, C., Yang, L., Ni, C., Huang, J., Lin, K., et al. (2022) Mechanical Stretching Boosts Expansion and Regeneration of Intestinal Organoids through Fueling Stem Cell Self-Renewal. Cell Regeneration, 11, Article No. 39. https://doi.org/10.1186/s13619-022-00137-4
|
[13]
|
Zhou, L., Shi, Z., Yang, X., Zeng, J., You, Z., Zhang, Y., et al. (2025) Tension-Induced Directional Migration of Hepatic Stellate Cells Potentially Coordinates Liver Fibrosis Progression. Nature Biomedical Engineering. https://doi.org/10.1038/s41551-025-01381-0
|
[14]
|
Usman, O.H., Zhang, L., Xie, G., Kocher, H.M., Hwang, C., Wang, Y.J., et al. (2022) Genomic Heterogeneity in Pancreatic Cancer Organoids and Its Stability with Culture. NPJ Genomic Medicine, 7, Article No. 71. https://doi.org/10.1038/s41525-022-00342-9
|
[15]
|
Klaasen, S.J., Truong, M.A., van Jaarsveld, R.H., Koprivec, I., Štimac, V., de Vries, S.G., et al. (2022) Nuclear Chromosome Locations Dictate Segregation Error Frequencies. Nature, 607, 604-609. https://doi.org/10.1038/s41586-022-04938-0
|
[16]
|
Dekkers, J.F., van Vliet, E.J., Sachs, N., Rosenbluth, J.M., Kopper, O., Rebel, H.G., et al. (2021) Long-Term Culture, Genetic Manipulation and Xenotransplantation of Human Normal and Breast Cancer Organoids. Nature Protocols, 16, 1936-1965. https://doi.org/10.1038/s41596-020-00474-1
|
[17]
|
Koch, L.S., Choy Buentello, D. and Broersen, K. (2023) Robust Tissue Fabrication for Long-Term Culture of iPSC-Derived Brain Organoids for Aging Research. Journal of Visualized Experiments, 195, e64586. https://doi.org/10.3791/64586
|
[18]
|
Cai, H., Tian, C., Chen, L., Yang, Y., Sun, A.X., McCracken, K., et al. (2025) Vascular Network-Inspired Diffusible Scaffolds for Engineering Functional Midbrain Organoids. Cell Stem Cell, 32, 824-837.e5. https://doi.org/10.1016/j.stem.2025.02.010
|
[19]
|
Hou, Q., Jia, J., Lin, J., Zhu, L., Xie, S., Yu, Q., et al. (2022) Bacillus Subtilis Programs the Differentiation of Intestinal Secretory Lineages to Inhibit Salmonella Infection. Cell Reports, 40, Article ID: 111416. https://doi.org/10.1016/j.celrep.2022.111416
|
[20]
|
Zhang, J., Hernandez-Gordillo, V., Trapecar, M., Wright, C., Taketani, M., Schneider, K., et al. (2021) Coculture of Primary Human Colon Monolayer with Human Gut Bacteria. Nature Protocols, 16, 3874-3900. https://doi.org/10.1038/s41596-021-00562-w
|
[21]
|
Yao, W., Song, W., Deng, X., Lin, Y., Meng, R., Wang, J., et al. (2024) Harnessing the Engineered Probiotic‐Nanosystem to Remodulate Tumor Extracellular Matrix and Regulate Tumor‐Colonizing Bacteria for Improving Pancreatic Cancer Chemo‐Immunotherapy. Small, 21, e2406837. https://doi.org/10.1002/smll.202406837
|
[22]
|
Volta, V., Pérez-Baos, S., de la Parra, C., Katsara, O., Ernlund, A., Dornbaum, S., et al. (2021) A DAP5/eIF3d Alternate mRNA Translation Mechanism Promotes Differentiation and Immune Suppression by Human Regulatory T Cells. Nature Communications, 12, Article No. 6979. https://doi.org/10.1038/s41467-021-27087-w
|
[23]
|
Smith, T.J., Sundarraman, D., Melancon, E., Desban, L., Parthasarathy, R. and Guillemin, K. (2023) A Mucin-Regulated Adhesin Determines the Spatial Organization and Inflammatory Character of a Bacterial Symbiont in the Vertebrate Gut. Cell Host & Microbe, 31, 1371-1385.e6. https://doi.org/10.1016/j.chom.2023.07.003
|
[24]
|
Tan, J.K., Macia, L. and Mackay, C.R. (2023) Dietary Fiber and SCFAs in the Regulation of Mucosal Immunity. Journal of Allergy and Clinical Immunology, 151, 361-370. https://doi.org/10.1016/j.jaci.2022.11.007
|
[25]
|
Yao, N., Jing, N., Lin, J., Niu, W., Yan, W., Yuan, H., et al. (2025) Patient-Derived Tumor Organoids for Cancer Immunotherapy: Culture Techniques and Clinical Application. Investigational New Drugs, 43, 394-404. https://doi.org/10.1007/s10637-025-01523-w
|
[26]
|
Yang, R., Qi, Y., Zhang, X., Gao, H. and Yu, Y. (2024) Living Biobank: Standardization of Organoid Construction and Challenges. Chinese Medical Journal, 137, 3050-3060. https://doi.org/10.1097/cm9.0000000000003414
|
[27]
|
Wang, X., Xia, T., Tang, H., Liu, X., Han, R., Zou, X., et al. (2022) Establishment of a Patient-Derived Organoid Model and Living Biobank for Nasopharyngeal Carcinoma. Annals of Translational Medicine, 10, 526-526. https://doi.org/10.21037/atm-22-1076
|
[28]
|
Gong, S., He, K., Liu, Y., Luo, X., Ashraf, K., He, J., et al. (2025) Scalable Matrigel‐Free Suspension Culture for Generating High‐Quality Human Liver Ductal Organoids. Cell Proliferation, 58, e70033. https://doi.org/10.1111/cpr.70033
|
[29]
|
Ong, H.T., Karatas, E., Poquillon, T., Grenci, G., Furlan, A., Dilasser, F., et al. (2025) Digitalized Organoids: Integrated Pipeline for High-Speed 3D Analysis of Organoid Structures Using Multilevel Segmentation and Cellular Topology. Nature Methods, 22, 1343-1354. https://doi.org/10.1038/s41592-025-02685-4
|
[30]
|
Hong, F., Wang, X., Zhong, N., Zhang, Z., Lin, S., Zhang, M., et al. (2025) The Critical Role of BMP Signaling in Gastric Epithelial Cell Differentiation Revealed by Organoids. Cell Regeneration, 14, Article No. 18. https://doi.org/10.1186/s13619-025-00237-x
|
[31]
|
Hofer, M., Kim, Y., Broguiere, N., Gorostidi, F., Klein, J.A., Amieva, M.R., et al. (2025) Accessible Homeostatic Gastric Organoids Reveal Secondary Cell Type-Specific Host-Pathogen Interactions in Helicobacter pylori Infections. Nature Communications, 16, Article No. 2767. https://doi.org/10.1038/s41467-025-57131-y
|
[32]
|
中华医学会消化病学分会医工交叉协作组. 中国经内镜消化系统常见恶性肿瘤组织取样及类器官培养专家共识(2024, 成都) [J]. 中华消化内镜杂志, 2024, 41(5): 337-350.
|
[33]
|
Liu, J., Wu, G., Wu, D., Wu, L., Sun, C., Zhang, W., et al. (2025) Microfluidic Organoid-Slice-On-A-Chip System for Studying Anti-Cholangiocarcinoma Drug Efficacy and Hepatorenal Toxicity. Lab on a Chip, 25, 2839-2850. https://doi.org/10.1039/d4lc00902a
|
[34]
|
Huang, Y., Liu, T., Huang, Q. and Wang, Y. (2024) From Organ-On-A-Chip to Human-On-A-Chip: A Review of Research Progress and Latest Applications. ACS Sensors, 9, 3466-3488. https://doi.org/10.1021/acssensors.4c00004
|
[35]
|
He, C., Kalafut, N.C., Sandoval, S.O., Risgaard, R., Sirois, C.L., Yang, C., et al. (2023) BOMA, a Machine-Learning Framework for Comparative Gene Expression Analysis across Brains and Organoids. Cell Reports Methods, 3, Article ID: 100409. https://doi.org/10.1016/j.crmeth.2023.100409
|
[36]
|
Zheng, C., Wang, P., Zhang, D., Fang, Z., Feng, Y., Chen, J., et al. (2025) A Novel Organoid Model Retaining the Glioma Microenvironment for Personalized Drug Screening and Therapeutic Evaluation. Bioactive Materials, 53, 205-217. https://doi.org/10.1016/j.bioactmat.2025.07.015
|