[1]
|
Zhou, R., Tian, X., Wang, X., Zeng, Y., Ke, L., Wu, Q., et al. (2024) Microwave Pyrolysis of Choerospondias Axillaris Seeds with Their Derived Biochar for Comprehensive Utilization of the Biomass. Chemical Engineering Journal, 501, Article ID: 157727. https://doi.org/10.1016/j.cej.2024.157727
|
[2]
|
Jiang, Z., Liang, Y., Guo, F., Wang, Y., Li, R., Tang, A., et al. (2024) Microwave‐Assisted Pyrolysis—A New Way for the Sustainable Recycling and Upgrading of Plastic and Biomass: A Review. ChemSusChem, 17, e202400129. https://doi.org/10.1002/cssc.202400129
|
[3]
|
Liu, J., Hou, Q., Ju, M., Ji, P., Sun, Q. and Li, W. (2020) Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review. Catalysts, 10, Article 742. https://doi.org/10.3390/catal10070742
|
[4]
|
Skumiel, A., Kopcansky, P., Timko, M., Molcan, M., Paulovicova, K. and Wojciechowski, R. (2022) The Influence of a Rotating Magnetic Field on the Thermal Effect in Magnetic Fluid. International Journal of Thermal Sciences, 171, Article ID: 107258. https://doi.org/10.1016/j.ijthermalsci.2021.107258
|
[5]
|
Raje, A., Bhise, A.A., Surya, D.V. and Kulkarni, A. (2024) Understanding the Role of CFD in Microwave-Assisted Pyrolysis for Biomass Conversion. Journal of Analytical and Applied Pyrolysis, 179, Article ID: 106477. https://doi.org/10.1016/j.jaap.2024.106477
|
[6]
|
Qiu, T., Liu, C., Cui, L., Liu, H., Muhammad, K. and Zhang, Y. (2023) Comparison of Corn Straw Biochars from Electrical Pyrolysis and Microwave Pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45, 636-649. https://doi.org/10.1080/15567036.2023.2172484
|
[7]
|
Potnuri, R., Surya, D.V., Rao, C.S., Yadav, A., Sridevi, V. and Remya, N. (2023) A Review on Analysis of Biochar Produced from Microwave-Assisted Pyrolysis of Agricultural Waste Biomass. Journal of Analytical and Applied Pyrolysis, 173, Article ID: 106094. https://doi.org/10.1016/j.jaap.2023.106094
|
[8]
|
Chen, Y., Wu, X., Chen, H., Chen, W., Hu, J., Chang, C., et al. (2024) Production of Mah-Rich Bio-Oil from Co-Pyrolysis of Biomass and Plastics Using Carbonized MOF Catalysts under Microwave Irradiation. Energy, 313, Article ID: 134049. https://doi.org/10.1016/j.energy.2024.134049
|
[9]
|
张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708.
|
[10]
|
董庆. 基于微波加热的竹材生物质热解机理及特性研究[D]: [博士学位论文]. 南京: 东南大学, 2015.
|
[11]
|
Nzediegwu, C., Arshad, M., Ulah, A., Naeth, M.A. and Chang, S.X. (2021) Fuel, Thermal and Surface Properties of Microwave-Pyrolyzed Biochars Depend on Feedstock Type and Pyrolysis Temperature. Bioresource Technology, 320, Article ID: 124282. https://doi.org/10.1016/j.biortech.2020.124282
|
[12]
|
林宇豪, 丁焘, 胡宏志, 等. 种植业废弃物制备生物炭及其复合材料研究进展[J]. 复合材料学报, 2025, 42(5): 2501-2513.
|
[13]
|
Ke, L., Zhou, N., Wu, Q., Zeng, Y., Tian, X., Zhang, J., et al. (2024) Microwave Catalytic Pyrolysis of Biomass: A Review Focusing on Absorbents and Catalysts. NPJ Materials Sustainability, 2, Article No. 24. https://doi.org/10.1038/s44296-024-00027-7
|
[14]
|
Motasemi, F., Afzal, M.T., Salema, A.A., Mouris, J. and Hutcheon, R.M. (2014) Microwave Dielectric Characterization of Switchgrass for Bioenergy and Biofuel. Fuel, 124, 151-157. https://doi.org/10.1016/j.fuel.2014.01.085
|
[15]
|
Ma, R., Yuan, N., Sun, S., Zhang, P., Fang, L., Zhang, X., et al. (2017) Preliminary Investigation of the Microwave Pyrolysis Mechanism of Sludge Based on High Frequency Structure Simulator Simulation of the Electromagnetic Field Distribution. Bioresource Technology, 234, 370-379. https://doi.org/10.1016/j.biortech.2017.02.076
|
[16]
|
Hossan, M.R. and Dutta, P. (2012) Effects of Temperature Dependent Properties in Electromagnetic Heating. International Journal of Heat and Mass Transfer, 55, 3412-3422. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.072
|
[17]
|
Pattanayak, S.S., Laskar, S.H. and Sahoo, S. (2020) Microwave Absorption Performance Enhancement of Corn Husk-Based Microwave Absorber. Journal of Materials Science: Materials in Electronics, 32, 1150-1160. https://doi.org/10.1007/s10854-020-04888-1
|
[18]
|
Torkhov, N.A., Babak, L.I., Budnyaev, V.A., Kareva, K.V. and Novikov, V.A. (2022) Conversion of the Anomalous Skin Effect to the Normal One in Thin-Film Metallic Microwave Systems. Physica Scripta, 97, Article ID: 095809. https://doi.org/10.1088/1402-4896/ac837d
|
[19]
|
Zhang, F., Ikeda, M., Zhou, R., Liu, J., Zhang, S., Tian, A., et al. (2019) Polarization Relaxation in InGaN/(In)GaN Multiple Quantum Wells. Japanese Journal of Applied Physics, 58, SCCB12. https://doi.org/10.7567/1347-4065/ab09d4
|
[20]
|
Yuan, L., Huang, J., Fan, W., Wang, Z., Zhang, K., Pei, H., et al. (2023) Measurement and Analysis of Polarization Gradient Relaxation in the Atomic Comagnetometer. Measurement, 217, Article ID: 113043. https://doi.org/10.1016/j.measurement.2023.113043
|
[21]
|
Bi, W., Li, L., Tian, G., Hao, J., Zhai, X., Bai, H., et al. (2023) Comprehensive Energy-Storage Performance Enhancement in Relaxor Anti-Ferroelectrics via Strengthening Local Polarization. Chemical Engineering Journal, 478, Article ID: 147383. https://doi.org/10.1016/j.cej.2023.147383
|
[22]
|
Soren, D., Mehena, G., Pattojoshi, P. and Deheri, P.K. (2023) Dielectric Relaxation and Polaron Hopping in Biomass Derived Activated Carbon. Fullerenes, Nanotubes and Carbon Nanostructures, 31, 940-952. https://doi.org/10.1080/1536383x.2023.2226270
|
[23]
|
Karmakar, S., Joshi, R., Kumar, K. and Rawat, R. (2024) On Hysteresis and Magnetocaloric Effect in Cos1.76Se0.24. Journal of Superconductivity and Novel Magnetism, 37, 1229-1233. https://doi.org/10.1007/s10948-024-06755-0
|
[24]
|
Bernabeu, J. and Cortijo, A. (2024) Hysteresis of Axionic Charge Density Waves. Physical Review B, 110, L081101. https://doi.org/10.1103/physrevb.110.l081101
|
[25]
|
Mimura, H. (2024) Invention of the Split-Anode Magnetron. Proceedings of the Japan Academy, Series B, 100, 281-292. https://doi.org/10.2183/pjab.100.018
|
[26]
|
Alpomishev, E.K., Adamian, G.G. and Antonenko, N.V. (2024) Quantum Hall Effect in Alternating Electric Field. Physical Review B, 110, Article ID: 174308. https://doi.org/10.1103/physrevb.110.174308
|
[27]
|
Cao, W., Deb, S., Stern, M.V., Raab, N., Urbakh, M., Hod, O., et al. (2024) Polarization Saturation in Multilayered Interfacial Ferroelectrics. Advanced Materials, 36, Article ID: 2400750. https://doi.org/10.1002/adma.202400750
|
[28]
|
Wang, J., Feng, X., Li, W., Wu, Y. and Shen, J. (2024) Investigation of Filling Amount and Particle Size on Electrical Conductivity of Silver Conductive Composite. Colloid and Polymer Science, 303, 119-128. https://doi.org/10.1007/s00396-024-05336-w
|
[29]
|
Chen, F., Zhao, Y., Saxena, A., Zhao, C., Niu, M., Aluru, N.R., et al. (2023) Inducing Electric Current in Graphene Using Ionic Flow. Nano Letters, 23, 4464-4470. https://doi.org/10.1021/acs.nanolett.3c00821
|
[30]
|
Kitao, J., Takahashi, Y., Fujiwara, K., Ahagon, A., Matsuo, T. and Daikoku, A. (2017) Hysteresis Loss Analysis of Laminated Iron Core by Using Homogenization Method Taking Account of Hysteretic Property. IEEE Transactions on Magnetics, 53, 1-4. https://doi.org/10.1109/tmag.2017.2658541
|
[31]
|
Frljić, S., Trkulja, B. and Drandić, A. (2023) Eddy Current Losses in Power Voltage Transformer Open-Type Cores. COMPEL—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 42, 1039-1051. https://doi.org/10.1108/compel-01-2023-0016
|
[32]
|
Géhanne, P., Rohart, S., Thiaville, A. and Jeudy, V. (2020) Strength and Length Scale of the Interaction between Domain Walls and Pinning Disorder in Thin Ferromagnetic Films. Physical Review Research, 2, Article ID: 043134. https://doi.org/10.1103/physrevresearch.2.043134
|
[33]
|
Zhou, Y., Chen, G., Zhao, X., Tat, T., Duan, Z. and Chen, J. (2025) Theory of Giant Magnetoelastic Effect in Soft Systems. Science Advances, 11, eads0071. https://doi.org/10.1126/sciadv.ads0071
|
[34]
|
Ding, C., Bai, Y., Ji, Y. and Ma, P. (2024) Neural Network Modeling of Complex Hysteresis Loops in Ferromagnetic Materials. IEEJ Transactions on Electrical and Electronic Engineering, 20, 373-384. https://doi.org/10.1002/tee.24194
|
[35]
|
Teshigahara, A., Enomoto, T., Yamada, H. and Yoshida, S. (2024) Reduction Mechanism of Loss Tangent of Scandium-Doped Aluminum Nitride Thin Film by Post-Deposition Annealing. Japanese Journal of Applied Physics, 63, Article ID: 095501. https://doi.org/10.35848/1347-4065/ad7343
|
[36]
|
Qin, M., Zhang, L. and Wu, H. (2022) Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Advanced Science, 9, Article ID: 2105553. https://doi.org/10.1002/advs.202105553
|
[37]
|
Luo, J., Gong, G., Ma, R., Sun, S., Cui, C., Cui, H., et al. (2023) Study on High-Value Products of Waste Plastics from Microwave Catalytic Pyrolysis: Construction and Performance Evaluation of Advanced Microwave Absorption-Catalytic Bifunctional Catalysts. Fuel, 346, Article ID: 128296. https://doi.org/10.1016/j.fuel.2023.128296
|
[38]
|
Sun, Z., Wei, H., Guo, F., Dong, K., Huang, X., You, X., et al. (2024) Study on the Characteristics of Microwave Pyrolysis of Pine Wood Catalyzed by Bimetallic Catalysts Prepared with Microwave-Assisted Hydrothermal Char. Journal of Analytical and Applied Pyrolysis, 181, Article ID: 106597. https://doi.org/10.1016/j.jaap.2024.106597
|
[39]
|
Khelfa, A., Rodrigues, F.A., Koubaa, M. and Vorobiev, E. (2020) Microwave-Assisted Pyrolysis of Pine Wood Sawdust Mixed with Activated Carbon for Bio-Oil and Bio-Char Production. Processes, 8, Article 1437. https://doi.org/10.3390/pr8111437
|
[40]
|
An, Y., Tahmasebi, A., Zhao, X., Matamba, T. and Yu, J. (2020) Catalytic Reforming of Palm Kernel Shell Microwave Pyrolysis Vapors over Iron-Loaded Activated Carbon: Enhanced Production of Phenol and Hydrogen. Bioresource Technology, 306, Article ID: 123111. https://doi.org/10.1016/j.biortech.2020.123111
|
[41]
|
Dong, Q., Niu, M., Bi, D., Liu, W., Gu, X. and Lu, C. (2018) Microwave-Assisted Catalytic Pyrolysis of Moso Bamboo for High Syngas Production. Bioresource Technology, 256, 145-151. https://doi.org/10.1016/j.biortech.2018.02.018
|
[42]
|
Wang, B., Chen, Y., Chen, W., Hu, J., Chang, C., Pang, S., et al. (2024) Enhancement of Aromatics and Syngas Production by Co-Pyrolysis of Biomass and Plastic Waste Using Biochar-Based Catalysts in Microwave Field. Energy, 293, Article ID: 130711. https://doi.org/10.1016/j.energy.2024.130711
|
[43]
|
Huang, M., Zhu, L., Zhang, W., Zhu, L., Ma, Z. and Chen, D. (2022) Insight into the Synergistic Reaction Mechanism of Biomass Pseudo Components and Low-Density Polyethylene for the Production of Light Aromatics through Co-Catalytic Fast Pyrolysis over Hierarchical Hzsm-5. Fuel, 324, Article ID: 124699. https://doi.org/10.1016/j.fuel.2022.124699
|
[44]
|
Ansari, K.B., Hassan, S.Z., Bhoi, R. and Ahmad, E. (2021) Co-pyrolysis of Biomass and Plastic Wastes: A Review on Reactants Synergy, Catalyst Impact, Process Parameter, Hydrocarbon Fuel Potential, Covid-19. Journal of Environmental Chemical Engineering, 9, Article ID: 106436. https://doi.org/10.1016/j.jece.2021.106436
|
[45]
|
Sebestyén, Z., Barta-Rajnai, E., Bozi, J., Blazsó, M., Jakab, E., Miskolczi, N., et al. (2017) Thermo-Catalytic Pyrolysis of Biomass and Plastic Mixtures Using HZSM-5. Applied Energy, 207, 114-122. https://doi.org/10.1016/j.apenergy.2017.06.032
|
[46]
|
Wang, Y., Dai, L., Wang, R., Fan, L., Liu, Y., Xie, Q., et al. (2016) Hydrocarbon Fuel Production from Soapstock through Fast Microwave-Assisted Pyrolysis Using Microwave Absorbent. Journal of Analytical and Applied Pyrolysis, 119, 251-258. https://doi.org/10.1016/j.jaap.2016.01.008
|
[47]
|
樊永胜, 卢东升, 熊永莲, 蔡忆昔, 赵卫东. 复合吸波剂对油菜籽壳微波热解液化的影响[J]. 高校化学工程学报, 2021, 35(5): 807-813.
|
[48]
|
Zhou, N., Liu, S., Zhang, Y., Fan, L., Cheng, Y., Wang, Y., et al. (2018) Silicon Carbide Foam Supported ZSM-5 Composite Catalyst for Microwave-Assisted Pyrolysis of Biomass. Bioresource Technology, 267, 257-264. https://doi.org/10.1016/j.biortech.2018.07.007
|
[49]
|
Abdelsayed, V., Shekhawat, D. and Tempke, R.S. (2021) Zeolites Interactions with Microwaves during Methane Non-Oxidative Coupling. Catalysis Today, 365, 88-102. https://doi.org/10.1016/j.cattod.2020.06.022
|
[50]
|
Yassin, M.M., Anderson, J.A., Dimitrakis, G.A. and Martín, C.F. (2021) Effects of the Heating Source on the Regeneration Performance of Different Adsorbents under Post-Combustion Carbon Capture Cyclic Operations. a Comparative Analysis. Separation and Purification Technology, 276, Article ID: 119326. https://doi.org/10.1016/j.seppur.2021.119326
|
[51]
|
Zhang, B., Tan, G., Zhong, Z. and Ruan, R. (2017) Microwave-assisted Catalytic Fast Pyrolysis of Spent Edible Mushroom Substrate for Bio-Oil Production Using Surface Modified Zeolite Catalyst. Journal of Analytical and Applied Pyrolysis, 123, 92-98. https://doi.org/10.1016/j.jaap.2016.12.022
|
[52]
|
Li, X., Dong, L., Zhang, J., Hu, C., Zhang, X., Cai, Y., et al. (2019) In-Situ Catalytic Upgrading of Biomass-Derived Vapors Using HZSM-5 and MCM-41: Effects of Mixing Ratios on Bio-Oil Preparation. Journal of the Energy Institute, 92, 136-143. https://doi.org/10.1016/j.joei.2017.10.015
|
[53]
|
Liu, H., Ma, X., Li, L., Hu, Z., Guo, P. and Jiang, Y. (2014) The Catalytic Pyrolysis of Food Waste by Microwave Heating. Bioresource Technology, 166, 45-50. https://doi.org/10.1016/j.biortech.2014.05.020
|
[54]
|
周杨. 不同催化剂对微波热解污泥产物分布规律的影响研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2016.
|
[55]
|
李攀, 胡秋辉, 胡俊豪, 等. 微波辅助炭基催化剂催化热解生物质的研究进展[J]. 工程科学学报, 2023, 45(9): 1592-1601.
|
[56]
|
Liang, S., Guo, F., Du, S., Tian, B., Dong, Y., Jia, X., et al. (2020) Synthesis of Sargassum Char-Supported Ni-Fe Nanoparticles and Its Application in Tar Cracking during Biomass Pyrolysis. Fuel, 275, Article ID: 117923. https://doi.org/10.1016/j.fuel.2020.117923
|
[57]
|
曾媛, 王允圃, 张淑梅, 等. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162.
|
[58]
|
Zhou, Y., Wang, Y., Fan, L., Dai, L., Duan, D., Liu, Y., et al. (2017) Fast Microwave-Assisted Catalytic Co-Pyrolysis of Straw Stalk and Soapstock for Bio-Oil Production. Journal of Analytical and Applied Pyrolysis, 124, 35-41. https://doi.org/10.1016/j.jaap.2017.02.026
|
[59]
|
Bu, Q., Chen, K., Xie, W., Liu, Y., Cao, M., Kong, X., et al. (2019) Hydrocarbon Rich Bio-Oil Production, Thermal Behavior Analysis and Kinetic Study of Microwave-Assisted Co-Pyrolysis of Microwave-Torrefied Lignin with Low Density Polyethylene. Bioresource Technology, 291, Article ID: 121860. https://doi.org/10.1016/j.biortech.2019.121860
|
[60]
|
李攀, 师晓鹏, 宋建德, 等. 生物质微波催化热解制备高值产品的研究进展[J]. 化工进展, 2022, 41(1): 133-145.
|
[61]
|
Idris, R., Chong, C.T., Asik, J.A. and Ani, F.N. (2020) Optimization Studies of Microwave-Induced Co-Pyrolysis of Empty Fruit Bunches/waste Truck Tire Using Response Surface Methodology. Journal of Cleaner Production, 244, Article ID: 118649. https://doi.org/10.1016/j.jclepro.2019.118649
|
[62]
|
Miller, D.D., Smith, M.W. and Shekhawat, D. (2021) Microwave-Induced Selective Decomposition of Cellulose: Computational and Experimental Mechanistic Study. Journal of Physics and Chemistry of Solids, 150, Article ID: 109858. https://doi.org/10.1016/j.jpcs.2020.109858
|
[63]
|
Adam, M., Beneroso, D., Katrib, J., Kingman, S. and Robinson, J.P. (2017) Microwave Fluidized Bed for Biomass Pyrolysis. Part I: Process Design. Biofuels, Bioproducts and Biorefining, 11, 601-612. https://doi.org/10.1002/bbb.1780
|
[64]
|
Zhou, C., Zhang, Y., Liu, Y., Deng, Z., Li, X., Wang, L., et al. (2021) Co-Pyrolysis of Textile Dyeing Sludge and Red Wood Waste in a Continuously Operated Auger Reactor under Microwave Irradiation. Energy, 218, Article ID: 119398. https://doi.org/10.1016/j.energy.2020.119398
|