|
[1]
|
Zandaryaa, S., Fares, A. and Eckstein, G. (2025) Introduction—Emerging Pollutants in Water: Threats, Challenges, and Research Needs. In: Emerging Pollutants: Protecting Water Quality for the Health of People and the Environment, Springer, 1-7.
|
|
[2]
|
Yu, Z., Chen, H., Zhang, J., Sun, W., Li, T., Qiu, Z., et al. (2025) Ultra-High Selective Removal of Congo Red and Ciprofloxacin Using Unusual LDO Modified Biochar: Influence of Emerging Pollutants and Application Attempts. Separation and Purification Technology, 352, Article 128108. https://doi.org/10.1016/j.seppur.2024.128108
|
|
[3]
|
Hong, X. (2025) Combined Molecular Toxicity Mechanism of Emerging Pollutant Mixtures. In: Toxicological Assessment of Combined Chemicals in the Environment, Wiley, 195-208.
|
|
[4]
|
Zang, N., He, P., Zhang, H., Zhang, X. and Lü, F. (2025) Recycling Process of Decoration and Demolition Waste Is a Neglected Source for Emerging Concerns in Particulate Phase: PAHs as an Example. Environment International, 198, Article 109393. https://doi.org/10.1016/j.envint.2025.109393
|
|
[5]
|
Rajagopalan, P., Tripathi, M. and Sunhare, R. (2025) Emerging Pollutants and Their Bioremediation with the Help of Fungi. In: Environmental Science and Engineering, Springer, 565-579. https://doi.org/10.1007/978-3-031-62660-9_22
|
|
[6]
|
Talreja, N., Hegde, C., Kumar, E.M., et al. (2025) Emerging Environmental Contaminants: Sources, Consequences and Future Challenges. In: Green Technologies for Industrial Contaminants, Wiley, 119-149.
|
|
[7]
|
Marizzi del Olmo, A., López-Doval, J.C., Hidalgo, M., Serra, T., Colomer, J., Salvadó, V., et al. (2025) Holistic Assessment of Chemical and Biological Pollutants in a Mediterranean Wastewater Effluent-Dominated Stream: Interactions and Ecological Impacts. Environmental Pollution, 370, Article 125833. https://doi.org/10.1016/j.envpol.2025.125833
|
|
[8]
|
Hou, Y., Ren, B., Li, X., Buque, A.L. and Zhao, Y. (2025) Constructed Wetlands for Emerging Pollutants Removal: A Decade of Advances and Future Directions (2014-2024). Journal of Water Process Engineering, 69, Article 106533. https://doi.org/10.1016/j.jwpe.2024.106533
|
|
[9]
|
Pal, D. and Sen, S. (2025) Toxicity and Health Impacts of Emerging Pollutants. In: Biotechnological Interventions in the Removal of Emerging Pollutants, Springer, 55-79.
|
|
[10]
|
Nava-Castro, K.E., Garay-Canales, C.A., Mendoza, M.S., del Sol Ríos Avila, M., De León, V.V. and Morales-Montor, J. (2025) The Neuroimmune Endocrine Network and Emerging Pollutants during Mental Disorders. In: Integrated Science, Springer, 47-89. https://doi.org/10.1007/978-3-031-72079-6_3
|
|
[11]
|
Behera, S.S., Nivedita, S., Giri, S., Parwez, Z., Behera, P.K., Pradhan, S., et al. (2025) Microbial-Based Systems for Emerging Pollutant Removal from Sewage Waste: A Comprehensive Overview. In: Advances in Wastewater Research, Springer, 245-283. https://doi.org/10.1007/978-981-96-3945-8_11
|
|
[12]
|
Suresh, A., Soman, V., K R, A., A, R. and Rahman K, H. (2025) Sources, Toxicity, Fate and Transport of Polyaromatic Hydrocarbons (PAHs) in the Aquatic Environment: A Review. Environmental Forensics, 26, 1-23. https://doi.org/10.1080/15275922.2024.2366801
|
|
[13]
|
Hadibarata, T., Syafrudin, M., Fitriyani, N.L. and Lee, S.W. (2025) Advancements in Composting Technologies for Efficient Soil Remediation of Polycyclic Aromatic Hydrocarbons (PAHs): A Mini Review. Sustainability, 17, Article 5881. https://doi.org/10.3390/su17135881
|
|
[14]
|
Montano, L., Baldini, G.M., Piscopo, M., Liguori, G., Lombardi, R., Ricciardi, M., et al. (2025) Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics, 13, Article 151. https://doi.org/10.3390/toxics13030151
|
|
[15]
|
Sharma, P., Saha, S., Chatterjee, S., Mandal, A.H., Ghosh, S., Saha, N.C., et al. (2025) Toxicological and Physiological Impact and Bioremediation Strategies for Polycyclic Aromatic Hydrocarbons (PAHs). Chemistry and Ecology, 41, 843-866. https://doi.org/10.1080/02757540.2025.2490035
|
|
[16]
|
Ahlimanova, P. and Civan, M. (2025) Children’s Exposure to Persistent Organic Pollutants in Playground Dust: A Comparative Study of Artificial and Natural Playground. Water, Air, & Soil Pollution, 236, Article No. 589. https://doi.org/10.1007/s11270-025-08254-x
|
|
[17]
|
Ren, B., Geng, J., Qin, D., Yang, B. and Wang, P. (2025) Distribution of Polycyclic Aromatic Hydrocarbons in Key Fishing Ports of Hainan Island, China. Marine Pollution Bulletin, 218, Article 118162. https://doi.org/10.1016/j.marpolbul.2025.118162
|
|
[18]
|
Zhang, J., White, J.C., Lowry, G.V., He, J., Yu, X., Yan, C., et al. (2025) Advanced Enzyme-Assembled Hydrogels for the Remediation of Contaminated Water. Nature Communications, 16, Article No. 3050. https://doi.org/10.1038/s41467-025-58338-9
|
|
[19]
|
Feng, Y., Li, Z. and Li, W. (2025) Polycyclic Aromatic Hydrocarbons (PAHs): Environmental Persistence and Human Health Risks. Natural Product Communications, 20, 1-8. https://doi.org/10.1177/1934578x241311451
|
|
[20]
|
Ferreira Azevedo, L., de Souza Rocha, C.C., Souza, M.C.O., Machado, A.R.T., Devóz, P.P., Rocha, B.A., et al. (2025) High Molecular Weight Polycyclic Aromatic Hydrocarbon (HMW-PAH) Isomers: Unveiling Distinct Toxic Effects from Cytotoxicity to Oxidative Stress-Induced DNA Damage. Archives of Toxicology, 99, 679-687. https://doi.org/10.1007/s00204-024-03917-w
|
|
[21]
|
Sivasamy, S., Rajangam, S., Kanagasabai, T., Bisht, D., Prabhakaran, R. and Dhandayuthapani, S. (2024) Biocatalytic Potential of Pseudomonas Species in the Degradation of Polycyclic Aromatic Hydrocarbons. Journal of Basic Microbiology, 65, e2400448. https://doi.org/10.1002/jobm.202400448
|
|
[22]
|
Huang, L., Zhou, Y., Xiao, H., Li, Y., Zhou, Z., Xiao, Z., et al. (2025) Emerging Contaminants: An Important but Ignored Risk Factor for Psoriasis. Clinical Reviews in Allergy & Immunology, 68, Article No. 33. https://doi.org/10.1007/s12016-025-09043-4
|
|
[23]
|
Souza, M.C.O., Rocha, B.A., Cruz, J.C., Palir, N., Campíglia, A.D., Domingo, J.L., et al. (2023) Risk Characterization of Human Exposure to Polycyclic Aromatic Hydrocarbons in Vulnerable Groups. Science of the Total Environment, 892, Article 164219. https://doi.org/10.1016/j.scitotenv.2023.164219
|
|
[24]
|
Tang, L., Wang, P., Yu, C., Jiang, N., Hou, J., Cui, J., et al. (2025) Adsorption of Polycyclic Aromatic Hydrocarbons (PAHs) in Soil and Water on Pyrochars: A Review. Journal of Environmental Chemical Engineering, 13, Article 116081. https://doi.org/10.1016/j.jece.2025.116081
|
|
[25]
|
Ejileugha, C. and Otu, E. (2025) Climate Change, Pollution, and Mental Health: Concerns on Rising Temperatures and Polycyclic Aromatic Hydrocarbon Risks. Discover Environment, 3, Article No. 44. https://doi.org/10.1007/s44274-025-00240-8
|
|
[26]
|
Muir, D., Gunnarsdóttir, M.J., Koziol, K., von Hippel, F.A., Szumińska, D., Ademollo, N., et al. (2025) Local Sources versus Long-Range Transport of Organic Contaminants in the Arctic: Future Developments Related to Climate Change. Environmental Science: Advances, 4, 355-408. https://doi.org/10.1039/d4va00240g
|
|
[27]
|
Ma, X. and Yu, F. (2014) Seasonal Variability of Aerosol Vertical Profiles over East US and West Europe: GEOS-Chem/APM Simulation and Comparison with CALIPSO Observations. Atmospheric Research, 140, 28-37. https://doi.org/10.1016/j.atmosres.2014.01.001
|
|
[28]
|
Xian, J., Qiu, Z., Rao, H., et al. (2025) Characteristics of Boundary Layer Turbulence Energy Budget in Shenzhen Area Based on Coherent Wind Lidar Observations. EGUsphere, 2025, 1-20. https://doi.org/10.5194/egusphere-2025-157
|
|
[29]
|
Yang, M., Wang, Y., Li, H., Li, T., Nie, X., Cao, F., et al. (2018) Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 within Boundary Layer: Cloud/Fog and Regional Transport. Science of the Total Environment, 627, 613-621. https://doi.org/10.1016/j.scitotenv.2018.01.014
|
|
[30]
|
Yang, S., Ma, Y., Zhang, W., Lin, Z., Lu, Z., Zhou, X., et al. (2025) The Interaction of Atmospheric Boundary Layer and PM Pollution in Mongolian Plateau: Implication for the Threshold Control Strategy. Atmospheric Research, 316, Article 107937. https://doi.org/10.1016/j.atmosres.2025.107937
|
|
[31]
|
Hu, X.M., Xue, M., Qian, T., Li, X., Novoa, H.M., Ticona Jara, J.L., et al. (2025) Mountain-Facilitated Lee-Slope Transport and Daytime Boundary Layer Mixing of Volcano Plumes Exacerbates Air Pollution over Arequipa, Peru. Journal of Geophysical Research: Atmospheres, 130, e2024JD042905. https://doi.org/10.1029/2024jd042905
|
|
[32]
|
Altarawneh, M. and Ali, L. (2024) Formation of Polycyclic Aromatic Hydrocarbons (PAHs) in Thermal Systems: A Comprehensive Mechanistic Review. Energy & Fuels, 38, 21735-21792. https://doi.org/10.1021/acs.energyfuels.4c03513
|
|
[33]
|
Bandowe, B.A.M. and Meusel, H. (2017) Nitrated Polycyclic Aromatic Hydrocarbons (Nitro-PAHs) in the Environment—A Review. Science of the Total Environment, 581, 237-257. https://doi.org/10.1016/j.scitotenv.2016.12.115
|
|
[34]
|
Cheng, W.C. and Fu, T.M. (2025) Turbulent Transport and Dry Deposition of Air Pollutants over Real Urban Surfaces: A Building-Resolving Large-Eddy Simulation Study. Sustainable Cities and Society, 129, Article 106448. https://doi.org/10.1016/j.scs.2025.106448
|
|
[35]
|
Chen, W., Lu, X., Xian, C., Sun, X., Chen, Y., Hu, M., et al. (2025) Estimation of Ca2+ Wet Deposition in the Northern Hemisphere by Use of CNN Deep-Learning Model. Ecological Indicators, 176, Article 113684. https://doi.org/10.1016/j.ecolind.2025.113684
|
|
[36]
|
Wang, F., Zhao, D., Lu, P., Zhang, D., Guo, Z., Rose, N.L., et al. (2024) Air-Plant Interaction and Air-Soil Exchange of Polycyclic Aromatic Hydrocarbons in a Large Human-Influenced Reservoir in Southwest China. Environmental Pollution, 355, Article 124216. https://doi.org/10.1016/j.envpol.2024.124216
|
|
[37]
|
Zhang, F. (2025) Nano-Biochar in Soil Ecosystems: Occurrence, Transport, and Negative Environmental Risks. Ecotoxicology and Environmental Safety, 298, Article 118312. https://doi.org/10.1016/j.ecoenv.2025.118312
|
|
[38]
|
Jiang, L., Ma, X., Wang, Y., Gao, W., Liao, C., Gong, Y., et al. (2022) Land-Ocean Exchange Mechanism of Chlorinated Paraffins and Polycyclic Aromatic Hydrocarbons with Diverse Sources in a Coastal Zone Boundary Area, North China: The Role of Regional Atmospheric Transmission. Environmental Science & Technology, 56, 12852-12862. https://doi.org/10.1021/acs.est.2c00742
|
|
[39]
|
Tarigholizadeh, S., Sushkova, S., Rajput, V.D., Ranjan, A., Arora, J., Dudnikova, T., et al. (2023) Transfer and Degradation of PAHs in the Soil–plant System: A Review. Journal of Agricultural and Food Chemistry, 72, 46-64. https://doi.org/10.1021/acs.jafc.3c05589
|
|
[40]
|
Liu, X., Dong, Z., Baccolo, G., Gao, W., Li, Q., Wei, T., et al. (2023) Distribution, Composition and Risk Assessment of PAHs and PCBs in Cryospheric Watersheds of the Eastern Tibetan Plateau. Science of the Total Environment, 890, Article 164234. https://doi.org/10.1016/j.scitotenv.2023.164234
|
|
[41]
|
Noynoo, L., Tekasakul, P., Limna, T., Choksuchat, C., Wichitsa-Nguan Jetwanna, K., Tsai, C., et al. (2025) Hybrid Machine Learning to Enhance PM2.5 Forecasting Performance by the WRF-Chem Model. Atmospheric Pollution Research, 16, Article 102558. https://doi.org/10.1016/j.apr.2025.102558
|
|
[42]
|
Kim, G., Lee, J., Lee, M. I. and Kim, D. (2021) Impacts of Urbanization on Atmospheric Circulation and Aerosol Transport in a Coastal Environment Simulated by the WRF-Chem Coupled with Urban Canopy Model. Atmospheric Environment, 249, 118253. https://doi.org/10.1016/j.atmosenv.2021.118253
|
|
[43]
|
Wang, Y., Ma, Y.F., Muñoz-Esparza, D., Dai, J., Li, C.W.Y., Lichtig, P., et al. (2023) Coupled Mesoscale-Microscale Modeling of Air Quality in a Polluted City Using WRF-LES-Chem. Atmospheric Chemistry and Physics, 23, 5905-5927. https://doi.org/10.5194/acp-23-5905-2023
|
|
[44]
|
Gao, C., Zhang, X., Xiu, A., et al. (2024) Intercomparison of Multiple Two-Way Coupled Meteorology and Air Quality Models (WRF v4. 1.1-CMAQ v5. 3.1, WRF-Chem v4. 1.1, and WRF v3. 7.1-CHIMERE v2020r1) in Eastern China. Geoscientific Model Development, 17, 2471-2492.
|
|
[45]
|
Tang, W., Pfister, G.G., Kumar, R., Barth, M., Edwards, D.P., Emmons, L.K., et al. (2023) Capturing High‐Resolution Air Pollution Features Using the Multi‐Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAv0) Global Modeling System. Journal of Geophysical Research: Atmospheres, 128, e2022JD038345. https://doi.org/10.1029/2022jd038345
|
|
[46]
|
Tang, W., Emmons, L.K., Worden, H.M., Kumar, R., He, C., Gaubert, B., et al. (2023) Application of the Multi-Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAv0) for Air Quality Research in Africa. Geoscientific Model Development, 16, 6001-6028. https://doi.org/10.5194/gmd-16-6001-2023
|
|
[47]
|
Baker, B., Yang, F., Huang, J., et al. (2025) Current and Future Advances in NOAA’s Air Quality Predictions from a Regional to Global Perspective.
|
|
[48]
|
Efstathiou, C.I., Adams, E., Coats, C.J., Zelt, R., Reed, M., McGee, J., et al. (2024) Enabling High-Performance Cloud Computing for the Community Multiscale Air Quality Model (CMAQ) Version 5.3.3: Performance Evaluation and Benefits for the User Community. Geoscientific Model Development, 17, 7001-7027. https://doi.org/10.5194/gmd-17-7001-2024
|
|
[49]
|
Lee, J.A., Alessandrini, S., Kim, J., Meech, S., Kumar, R., Djalalova, I.V., et al. (2024) Comparison of CAMS and CMAQ Analyses of Surface-Level PM2.5 and O3 over the Conterminous United States (CONUS). Atmospheric Environment, 338, Article 120833. https://doi.org/10.1016/j.atmosenv.2024.120833
|
|
[50]
|
Couvidat, F., Lugon, L., Messina, P., Sartelet, K. and Colette, A. (2025) Optimizing Computation Time in 3D Air Quality Models by Using Aerosol Superbins within a Sectional Size Distribution Approach: Application to the CHIMERE Model. Journal of Aerosol Science, 187, Article 106572. https://doi.org/10.1016/j.jaerosci.2025.106572
|
|
[51]
|
Friedman, C.L., Zhang, Y. and Selin, N.E. (2013) Climate Change and Emissions Impacts on Atmospheric PAH Transport to the Arctic. Environmental Science & Technology, 48, 429-437. https://doi.org/10.1021/es403098w
|
|
[52]
|
Friedman, C.L. and Selin, N.E. (2016) PCBs in the Arctic Atmosphere: Determining Important Driving Forces Using a Global Atmospheric Transport Model. Atmospheric Chemistry and Physics, 16, 3433-3448. https://doi.org/10.5194/acp-16-3433-2016
|
|
[53]
|
Vohra, K., Vodonos, A., Schwartz, J., Marais, E.A., Sulprizio, M.P. and Mickley, L.J. (2021) Global Mortality from Outdoor Fine Particle Pollution Generated by Fossil Fuel Combustion: Results from GEOS-Chem. Environmental Research, 195, 110754. https://doi.org/10.1016/j.envres.2021.110754
|
|
[54]
|
Dedoussi, I.C., Henze, D.K., Eastham, S.D., Speth, R.L. and Barrett, S.R.H. (2024) Development of the Adjoint of the Unified Tropospheric-Stratospheric Chemistry Extension (UCX) in GEOS-Chem Adjoint V36. Geoscientific Model Development, 17, 5689-5703. https://doi.org/10.5194/gmd-17-5689-2024
|
|
[55]
|
Shandilya, R., Chaudhari, P. and Balasubramanian, S. (2024) Assessment of the Statistical Performance of Chemical Transport Model Studies in India. ACS ES&T Air, 1, 1519-1530. https://doi.org/10.1021/acsestair.4c00072
|
|
[56]
|
Zhang, H., Zhou, X., Ren, C., Li, M., Liu, T. and Huang, X. (2024) A Systematic Review of Reactive Nitrogen Simulations with Chemical Transport Models in China. Atmospheric Research, 309, Article 107586. https://doi.org/10.1016/j.atmosres.2024.107586
|
|
[57]
|
Chan, Y.C., Jaeglé, L., Campuzano‐Jost, P., et al. (2025) Global Model of Atmospheric Chlorate on Earth. Journal of Geophysical Research: Atmospheres, 130, e2024JD042162. https://doi.org/10.1029/2024jd042162
|
|
[58]
|
Qu, G., Zhou, J., Shi, Y., Yang, Y., Su, M., Wu, W., et al. (2025) Assessment of the Impacts of Different Carbon Sources and Sinks on Atmospheric CO2 Concentrations Based on GEOS-Chem. Remote Sensing, 17, Article 1009. https://doi.org/10.3390/rs17061009
|
|
[59]
|
An, Y., Wang, X., Ye, H., Shi, H., Wu, S., Li, C., et al. (2024) Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere. Remote Sensing, 16, Article 1335. https://doi.org/10.3390/rs16081335
|
|
[60]
|
Hu, K., Feng, X., Zhang, Q., Shao, P., Liu, Z., Xu, Y., et al. (2024) Review of Satellite Remote Sensing of Carbon Dioxide Inversion and Assimilation. Remote Sensing, 16, Article 3394. https://doi.org/10.3390/rs16183394
|
|
[61]
|
Lin, H., Jacob, D.J., Lundgren, E.W., Sulprizio, M.P., Keller, C.A., Fritz, T.M., et al. (2021) Harmonized Emissions Component (HEMCO) 3.0 as a Versatile Emissions Component for Atmospheric Models: Application in the Geos-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS Models. Geoscientific Model Development, 14, 5487-5506. https://doi.org/10.5194/gmd-14-5487-2021
|
|
[62]
|
Liu, X., Wang, Y., Wasti, S., Lee, T., Li, W., Zhou, S., et al. (2024) Impacts of Anthropogenic Emissions and Meteorology on Spring Ozone Differences in San Antonio, Texas between 2017 and 2021. Science of the Total Environment, 914, Article 169693. https://doi.org/10.1016/j.scitotenv.2023.169693
|
|
[63]
|
Lin, H., Emmons, L.K., Lundgren, E.W., Yang, L.H., Feng, X., Dang, R., et al. (2024) Intercomparison of GEOS-Chem and CAM-Chem Tropospheric Oxidant Chemistry within the Community Earth System Model Version 2 (CESM2). Atmospheric Chemistry and Physics, 24, 8607-8624. https://doi.org/10.5194/acp-24-8607-2024
|
|
[64]
|
Wang, K., Ma, X., Tian, R. and Yu, F. (2023) Analysis of New Particle Formation Events and Comparisons to Simulations of Particle Number Concentrations Based on GEOS-Chem-Advanced Particle Microphysics in Beijing, China. Atmospheric Chemistry and Physics, 23, 4091-4104. https://doi.org/10.5194/acp-23-4091-2023
|
|
[65]
|
Feng, X., Lin, H., Fu, T.M., et al. (2021) WRF-GC (v2. 0): Online Two-Way Coupling of WRF (v3. 9.1. 1) and GEOS-Chem (v12. 7.2) for Modeling Regional Atmospheric Chemistry-Meteorology Interactions. Geoscientific Model Development Discussions, 2021, 1-48.
|
|
[66]
|
Gao, W., Xiao, T., Zou, L., Li, H. and Gu, S. (2024) Analysis and Prediction of Atmospheric Environmental Quality Based on the Autoregressive Integrated Moving Average Model (ARIMA Model) in Hunan Province, China. Sustainability, 16, Article 8471. https://doi.org/10.3390/su16198471
|
|
[67]
|
Sharma, V., Ghosh, S., Mishra, V.N. and Kumar, P. (2025) Spatio-Temporal Variations and Forecast of PM2.5 Concentration around Selected Satellite Cities of Delhi, India Using ARIMA Model. Physics and Chemistry of the Earth, Parts A/B/C, 138, Article 103849. https://doi.org/10.1016/j.pce.2024.103849
|
|
[68]
|
Önder, G.T. (2025) Tracking the Future of Global N2O Gas Emissions with Data-Driven Forecasts. Journal of Atmospheric and Solar-Terrestrial Physics, 274, Article 106577. https://doi.org/10.1016/j.jastp.2025.106577
|
|
[69]
|
Sudarmaji, E., Yatim, M.R., Harsono, H., Masrio, H. and Azizah, W. (2024) Quantifying Drivers of GHG Emissions in ASEAN: Modeling CO2 Emissions Using LMDI and ARIMAX Approaches. International Journal of Energy Economics and Policy, 14, 426-435. https://doi.org/10.32479/ijeep.17186
|
|
[70]
|
Zheng, X., Chen, Q., Sun, M., Zhou, Q., Shi, H., Zhang, X., et al. (2024) Exploring the Influence of Environmental Indicators and Forecasting Influenza Incidence Using ARIMAX Models. Frontiers in Public Health, 12, Article 1441240. https://doi.org/10.3389/fpubh.2024.1441240
|
|
[71]
|
Cáceres-Tello, J. and Galán-Hernández, J.J. (2024) Analysis and Prediction of PM2.5 Pollution in Madrid: The Use of Prophet–long Short-Term Memory Hybrid Models. Applied Math, 4, 1428-1452. https://doi.org/10.3390/appliedmath4040076
|
|
[72]
|
Zhao, N., Liu, Y., Vanos, J.K. and Cao, G. (2018) Day-of-Week and Seasonal Patterns of PM2.5 Concentrations over the United States: Time-Series Analyses Using the Prophet Procedure. Atmospheric Environment, 192, 116-127. https://doi.org/10.1016/j.atmosenv.2018.08.050
|
|
[73]
|
Rushton, C.E. and Tate, J.E. (2025) Quantifying the Contribution of Periodicity and National Holidays to Air Pollution Levels in the United Kingdom Using a Decomposable Time Series Model. Atmospheric Pollution Research, 16, Article 102533. https://doi.org/10.1016/j.apr.2025.102533
|
|
[74]
|
Balogun, A.L. and Tella, A. (2022) Modelling and Investigating the Impacts of Climatic Variables on Ozone Concentration in Malaysia Using Correlation Analysis with Random Forest, Decision Tree Regression, Linear Regression, and Support Vector Regression. Chemosphere, 299, Article 134250. https://doi.org/10.1016/j.chemosphere.2022.134250
|
|
[75]
|
Ahmed, S.F., Alam, M.S.B., Hassan, M., Rozbu, M.R., Ishtiak, T., Rafa, N., et al. (2023) Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artificial Intelligence Review, 56, 13521-13617. https://doi.org/10.1007/s10462-023-10466-8
|
|
[76]
|
Chen, Y., Zhang, S., Zhang, W., Peng, J. and Cai, Y. (2019) Multifactor Spatio-Temporal Correlation Model Based on a Combination of Convolutional Neural Network and Long Short-Term Memory Neural Network for Wind Speed Forecasting. Energy Conversion and Management, 185, 783-799. https://doi.org/10.1016/j.enconman.2019.02.018
|
|
[77]
|
Sreenivasulu, T. and Rayalu, G.M. (2024) Enhanced PM2.5 Prediction in Delhi Using a Novel Optimized STL-CNN-BILSTM-AM Hybrid Model. Asian Journal of Atmospheric Environment, 18, 1-17. https://doi.org/10.1007/s44273-024-00048-7
|
|
[78]
|
Hamer, S., Sleeman, J. and Stajner, I. (2023) Forecast-Aware Model Driven LSTM. 2023. https://doi.org/10.48550/arXiv.2303.12963
|
|
[79]
|
Han, Z., Fan, M., Song, S., Liang, X., Song, M., He, G., et al. (2024) An Improved Hybrid GC-LSTM Framework for Hourly Nowcasting of Ground-Level NO2 Concentrations over Beijing-Tianjin-Hebei Region. IEEE Transactions on Geoscience and Remote Sensing, 63, 1-14. https://doi.org/10.1109/tgrs.2024.3514158
|
|
[80]
|
Li, D., Yang, C. and Li, Y. (2024) A Multi-Subsystem Collaborative Bi-LSTM-Based Adaptive Soft Sensor for Global Prediction of Ammonia-Nitrogen Concentration in Wastewater Treatment Processes. Water Research, 254, Article 121347. https://doi.org/10.1016/j.watres.2024.121347
|
|
[81]
|
Sharma, D., Thapar, S. and Sachdeva, K. (2025) Enhancing Particulate Matter Prediction in Delhi: Insights from Statistical and Machine Learning Models. Environmental Monitoring and Assessment, 197, Article No. 723. https://doi.org/10.1007/s10661-025-14121-3
|
|
[82]
|
Jirapornkul, C., Darunikorn, K., Limmongkon, Y., Junggoth, R., Maneenin, N., Sakunkoo, P., et al. (2025) Exploring the Link between Ambient PM2.5 Concentrations and Respiratory Diseases in the Elderly: A Study in the Muang District of Khon Kaen, Thailand. Reviews on Environmental Health, 40, 175-183. https://doi.org/10.1515/reveh-2023-0138
|
|
[83]
|
Ma, Y., Zang, E., Liu, Y., Wei, J., Lu, Y., Krumholz, H.M., et al. (2024) Long-Term Exposure to Wildland Fire Smoke PM 2.5 and Mortality in the Contiguous United States. Proceedings of the National Academy of Sciences, 121, e2403960121. https://doi.org/10.1073/pnas.2403960121
|
|
[84]
|
Gou, A., Tan, G., Ding, X., et al. (2023) Urban-Rural Difference in the Lagged Effects of PM2.5 and PM10 on COPD Mortality in Chongqing, China. BMC Public Health, 23, Article No. 1270.
|
|
[85]
|
Chen, C., Wang, Y., Song, J. and Yan, J. (2024) The Impact of Air Pollution on Hospitalization for COPD Patients in China. European Journal of Public Health, 34, 150-155. https://doi.org/10.1093/eurpub/ckad199
|
|
[86]
|
Khan, I.W., Khan, M.M. and Donato, A. (2025) Deep Neural Networks Reveal Organic Pollutants’ Dominance in Global Inflammatory Bowel Disease. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2025.04.058
|
|
[87]
|
Li, Y., Zhang, Y., Kam, K.W., Chan, P., Liu, D., Zaabaar, E., et al. (2025) Associations of Long-Term Joint Exposure to Multiple Ambient Air Pollutants with the Incidence of Age-Related Eye Diseases. Ecotoxicology and Environmental Safety, 294, Article 118052. https://doi.org/10.1016/j.ecoenv.2025.118052
|
|
[88]
|
Pan, T., Shin, H.H., McGee, G., et al. (2025) Estimating Associations Between Cumulative Exposure and Health via Generalized Distributed Lag Non-Linear Models using Penalized Splines.
|
|
[89]
|
Zhang, D., Ebelt, S.T., Scovronick, N.C. and Chang, H.H. (2025) Modeling Time-Varying Dispersion to Improve Estimation of the Short-Term Health Effect of Environmental Exposure in a Time-Series Design. Epidemiology, 36, 450-457. https://doi.org/10.1097/ede.0000000000001856
|
|
[90]
|
Mohammadi Dashtaki, N., Fararouei, M., Mirahmadizadeh, A. and Hoseini, M. (2025) Association between Exposure to Air Pollutants and Cardiovascular Mortality in Iran: A Case-Crossover Study. Scientific Reports, 15, Article No. 18762. https://doi.org/10.1038/s41598-025-04126-w
|
|
[91]
|
Ji, S., Wu, N., Wang, L., Wang, W., Zhang, P., Qiu, P., et al. (2024) Impact of Air Pollutants on Hospital Admissions and Economic Losses of Elderly Patients with Cardiovascular Diseases in Southwestern China: A Generalized Additive Model. Sustainable Environment, 10, Article 2362515. https://doi.org/10.1080/27658511.2024.2362515
|