[1]
|
朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6): 1510-1524.
|
[2]
|
祁国华, 马晓双, 何诗瑜, 等. 基于多源遥感数据的巢湖水华长时序时空变化(2009-2018年)分析与发生概率预测[J]. 湖泊科学, 2021, 33(2): 414-427.
|
[3]
|
Smith, V.H. and Schindler, D.W. (2009) Eutrophication Science: Where Do We Go from Here? Trends in Ecology & Evolution, 24, 201-207. https://doi.org/10.1016/j.tree.2008.11.009
|
[4]
|
Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J., et al. (2008) Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Sciences of the United States of America, 105, 11254-11258. https://doi.org/10.1073/pnas.0805108105
|
[5]
|
Schindler, D.W., Carpenter, S.R., Chapra, S.C., Hecky, R.E. and Orihel, D.M. (2016) Reducing Phosphorus to Curb Lake Eutrophication Is a Success. Environmental Science & Technology, 50, 8923-8929. https://doi.org/10.1021/acs.est.6b02204
|
[6]
|
Mackay, E., Maberly, S., Pan, G., Reitzel, K., Bruere, A., Corker, N., et al. (2014) Geoengineering in Lakes: Welcome Attraction or Fatal Distraction? Inland Waters, 4, 349-356. https://doi.org/10.5268/iw-4.4.769
|
[7]
|
张巧颖, 杜瑛珣, 罗春燕, 刘正文. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展[J]. 湖泊科学, 2019, 31(6): 1499-1509.
|
[8]
|
Dithmer, L., Lipton, A.S., Reitzel, K., Warner, T.E., Lundberg, D. and Nielsen, U.G. (2015) Characterization of Phosphate Sequestration by a Lanthanum Modified Bentonite Clay: A Solid-State NMR, EXAFS, and PXRD Study. Environmental Science & Technology, 49, 4559-4566. https://doi.org/10.1021/es506182s
|
[9]
|
Woolway, R.I., Albergel, C., Frölicher, T.L. and Perroud, M. (2022) Severe Lake Heatwaves Attributable to Human‐induced Global Warming. Geophysical Research Letters, 49, e2021GL097031. https://doi.org/10.1029/2021gl097031
|
[10]
|
Woolway, R.I., Jennings, E., Shatwell, T., Golub, M., Pierson, D.C. and Maberly, S.C. (2021) Lake Heatwaves under Climate Change. Nature, 589, 402-407. https://doi.org/10.1038/s41586-020-03119-1
|
[11]
|
Tassone, S.J., Besterman, A.F., Buelo, C.D., Ha, D.T., Walter, J.A. and Pace, M.L. (2022) Increasing Heatwave Frequency in Streams and Rivers of the United States. Limnology and Oceanography Letters, 8, 295-304. https://doi.org/10.1002/lol2.10284
|
[12]
|
Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., et al. (2018) Internal Phosphorus Loading from Sediments Causes Seasonal Nitrogen Limitation for Harmful Algal Blooms. Science of the Total Environment, 625, 872-884. https://doi.org/10.1016/j.scitotenv.2017.12.348
|
[13]
|
Yindong, T., Xiwen, X., Miao, Q., Jingjing, S., Yiyan, Z., Wei, Z., et al. (2021) Lake Warming Intensifies the Seasonal Pattern of Internal Nutrient Cycling in the Eutrophic Lake and Potential Impacts on Algal Blooms. Water Research, 188, Article ID: 116570. https://doi.org/10.1016/j.watres.2020.116570
|
[14]
|
Jeppesen, E., Kronvang, B., Meerhoff, M., Søndergaard, M., Hansen, K.M., Andersen, H.E., et al. (2009) Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. Journal of Environmental Quality, 38, 1930-1941. https://doi.org/10.2134/jeq2008.0113
|
[15]
|
Qin, B., Deng, J., Shi, K., Wang, J., Brookes, J., Zhou, J., et al. (2021) Extreme Climate Anomalies Enhancing Cyanobacterial Blooms in Eutrophic Lake Taihu, China. Water Resources Research, 57, e2020WR029371. https://doi.org/10.1029/2020wr029371
|
[16]
|
Kraemer, B.M., Anneville, O., Chandra, S., Dix, M., Kuusisto, E., Livingstone, D.M., et al. (2015) Morphometry and Average Temperature Affect Lake Stratification Responses to Climate Change. Geophysical Research Letters, 42, 4981-4988. https://doi.org/10.1002/2015gl064097
|
[17]
|
尹大强, 覃秋荣, 阎航. 环境因子对五里湖沉积物磷释放的影响[J]. 湖泊科学, 1994, 6(3): 240-244.
|
[18]
|
Han, Y., Zhang, Y., He, H., Ning, X., Zhang, L. and Li, K. (2025) External Nitrogen Influxes Hinder the Efficacy of Lanthanum-Modified Bentonite (LMB) on Phosphorus and Algae Control in Shallow Lakes. Environmental Research, 264, Article ID: 120364. https://doi.org/10.1016/j.envres.2024.120364
|
[19]
|
Waajen, G., van Oosterhout, F., Douglas, G. and Lürling, M. (2016) Management of Eutrophication in Lake De Kuil (the Netherlands) Using Combined Flocculant—Lanthanum Modified Bentonite Treatment. Water Research, 97, 83-95. https://doi.org/10.1016/j.watres.2015.11.034
|
[20]
|
Han, Y., Li, Q., He, H., Gu, J., Wu, Z., Huang, X., et al. (2021) Effect of Juvenile Omni-Benthivorous Fish (Carassius carassius) Disturbance on the Efficiency of Lanthanum-Modified Bentonite (LMB) for Eutrophication Control: A Mesocosm Study. Environmental Science and Pollution Research, 28, 21779-21788. https://doi.org/10.1007/s11356-020-12045-8
|
[21]
|
Copetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., et al. (2016) Eutrophication Management in Surface Waters Using Lanthanum Modified Bentonite: A Review. Water Research, 97, 162-174. https://doi.org/10.1016/j.watres.2015.11.056
|
[22]
|
Han, Y., Zhang, Y., Li, Q., Lürling, M., Li, W., He, H., et al. (2021) Submerged Macrophytes Benefit from Lanthanum Modified Bentonite Treatment under Juvenile Omni‐Benthivorous Fish Disturbance: Implications for Shallow Lake Restoration. Freshwater Biology, 67, 672-683. https://doi.org/10.1111/fwb.13871
|
[23]
|
Kang, L., Mucci, M. and Lürling, M. (2022) Influence of Temperature and Ph on Phosphate Removal Efficiency of Different Sorbents Used in Lake Restoration. Science of the Total Environment, 812, Article ID: 151489. https://doi.org/10.1016/j.scitotenv.2021.151489
|
[24]
|
Ross, G., Haghseresht, F. and Cloete, T.E. (2008) The Effect of Ph and Anoxia on the Performance of Phoslock®, a Phosphorus Binding Clay. Harmful Algae, 7, 545-550. https://doi.org/10.1016/j.hal.2007.12.007
|
[25]
|
Mucci, M., Maliaka, V., Noyma, N.P., Marinho, M.M. and Lürling, M. (2018) Assessment of Possible Solid-Phase Phosphate Sorbents to Mitigate Eutrophication: Influence of pH and Anoxia. Science of the total Environment, 619, 1431-1440. https://doi.org/10.1016/j.scitotenv.2017.11.198
|
[26]
|
郭禹慧, 黄晓军, 郑殿元, 李艳雨. 极端高温胁迫下中国城市脆弱性格局与影响因素[J]. 热带地理, 2021, 41(3): 596-608.
|
[27]
|
张玉星, 黄晓军, 郑殿元. 长江经济带高温热浪时空特征及脆弱性评价[J]. 长江流域资源与环境, 2023, 32(2): 440-450.
|
[28]
|
Guo, G., Wang, D., Ren, Z., Yin, Q. and Gao, Y. (2021) A New Method to Estimate Heat Exposure Days and Its Impacts in China. Atmosphere, 12, Article 1294. https://doi.org/10.3390/atmos12101294
|
[29]
|
Sun, Y., Zhang, X., Zwiers, F.W., Song, L., Wan, H., Hu, T., et al. (2014) Rapid Increase in the Risk of Extreme Summer Heat in Eastern China. Nature Climate Change, 4, 1082-1085. https://doi.org/10.1038/nclimate2410
|
[30]
|
谢志清, 杜银, 曾燕, 苗茜. 长江三角洲城市集群化发展对极端高温事件空间格局的影响[J]. 科学通报, 2017, 62(Z1): 233-244.
|