自动全乳腺超声在乳腺癌中的应用进展
Application Progress of Automated Breast Ultrasound in Breast Cancer
DOI: 10.12677/acm.2025.1592562, PDF, HTML, XML,    科研立项经费支持
作者: 张靖茹, 王胜利, 贾红娥*:延安大学附属医院超声医学科,陕西 延安
关键词: 自动全乳腺超声乳腺癌Automated Breast Ultrasound Breast Cancer
摘要: 自动全乳腺超声是一种新型高分辨率乳腺三维超声成像技术,可以克服常规手持超声对操作者依赖性大、缺乏标准化操作、可重复性差等缺点,其特有的冠状面视角可以提供额外的影像资料,在鉴别诊断乳腺良恶性病变方面表现出较高的价值。本文将对自动全乳腺超声辅助乳腺癌诊断的应用现状进行综述。
Abstract: Automated breast ultrasound is a new high-resolution breast three-dimensional ultrasound imaging technology that can overcome the disadvantages of conventional hand-held ultrasound, such as high operator dependence, lack of standardized operation, and poor repeatability. Its unique coronal view angle can provide additional imaging data, showing high value in the differential diagnosis of benign and malignant breast lesions. This article will review the application status of automated breast ultrasound assisted diagnosis of breast cancer.
文章引用:张靖茹, 王胜利, 贾红娥. 自动全乳腺超声在乳腺癌中的应用进展[J]. 临床医学进展, 2025, 15(9): 825-832. https://doi.org/10.12677/acm.2025.1592562

1. 引言

近年来,乳腺癌发病率日益上升,已成为女性癌症性死亡的首要原因[1],在过去20年中,中国的乳腺癌发病率以每年3%~5%的速度增长,远远快于世界平均每年0.5%的增长速度[2],对多为致密性乳腺的中国女性,超声检测乳腺病变的能力可能优于MG (mammography, MG) [3]。ABUS (automated breast ultrasound, ABUS)是一种能够克服传统HHUS (hand-held ultrasound, HHUS)受操作者经验和主观判断限制,通过标准化的扫描方法,提高扫描的一致性和可重复性的检查方法[4],本文旨在概述ABUS在乳腺癌中的临床应用价值。

2. ABUS设备简介

自动乳腺超声的概念可以追溯到70年代[5],最初被提出的目的是克服HHUS的操作员依赖性,提高检查的可重复性。GE公司研发的最新一代Invenia ABUS超声诊断仪,配备特有的大尺寸高频探头(15 × 17 cm),扫查速度更快,分辨率更高,与旧系统相比,弯曲探头和乳房曲面之间产生的耦合伪影更少[6]。扫查时患者取仰卧位,双手置于头顶,移动机械臂,将探头放置在乳房上给予一定压力后开始采集。通常,三次1分钟的扫描可扫描整个乳房,不包括腋窝。图像采集后,将数据存储在系统的硬盘上,然后传输到专用工作站,在该工作站中,可以查看原始轴向平面和重建的冠状面和矢状面中显示的图像,以进行进一步的分析。冠状面,也称为“手术视图”,引入了新的诊断信息,即汇聚征[7]

3. ABUS的诊断效能

3.1. 与HHUS相比

最近,各种研究对ABUS诊断方面的应用进行了评价。然而,ABUS的诊断能力仍然存在争议,特别是与HHUS相比。Liu等人[8]的研究表明,ABUS和HHUS诊断乳腺癌的灵敏度分别为92.8%和96.3%,特异度为93.0%和89.6%,ABUS的特异度较HHUS更高(P < 0.01),而HHUS的灵敏度更高(P = 0.01)。在Zhang等人[9]的研究中,HHUS与ABUS的灵敏度、特异度、准确性分别为97.33% vs 90.67%、89.79% vs 92.49%、90.74% vs 92.26%,ABUS的特异度明显优于HHUS (P = 0.024),HHUS的AUC高于ABUS (0.936 vs 0.916),但差异无统计学意义(P > 0.05)。在2019年的一篇纳入9项研究、1376名患者的mate分析中[10],Zhang等人认为ABUS在检测癌症方面与HHUS具有相同的检出率(100%),ABUS在数值上具有更高的灵敏度(93% vs 90%)和特异度(86% vs 82%),但差异无统计学意义(P = 0.0771)。综上所述,在包含上文的共8项研究中[11]-[15]。ABUS和HHUS的灵敏度范围分别为(93.3%~84.2%)和(84.2%~100%),特异度范围分别为(80.5%~93.0%)和(81.0%~89.8%),并且以上文章均得出了ABUS与HHUS具有相当的诊断效能的结论。然而也有研究表明[16] [17] ABUS诊断非肿块型乳腺癌的敏感度、特异性和准确性均显著优于HHUS (P < 0.05)。在宋灿许等人[18]的研究中,在诊断触诊阴性乳腺癌患者时,ABUS的灵敏度高于HHUS,可减少肿块较小引起的漏诊,特别是当病灶直径 < 5 mm时,其诊断效能显著提升[19]

3.2. 与其他检查联合诊断

在乳腺癌的实际诊断中,使用ABUS联合HHUS、彩色多普勒血流技术、弹性成像技术等可提高对乳腺病变分类判断的准确性[20],有利于良恶性肿瘤的鉴别。Li [21]等人将ABUS、弹性成像和彩色多普勒血流技术联合用于鉴别诊断硬化性腺病和浸润性导管癌时表现出了最高的准确率,AUC (area under the ROC curve, AUC)为0.895,显著高于单独使用3种影像学方法(P < 0.05)。Wang等人[22]证明,声触诊组织量化技术(virtual touch tissue quantification, VTQ)和ABUS的联合使用可能提高乳腺癌诊断的准确性和特异性。

ABUS还可与MG联用提升对乳腺肿块的诊断效能。在一项多中心临床研究中[23],937名乳房致密的女性分别接受了ABUS、HHUS和MG检查,结果显示在乳腺组织致密且MG结果阴性的情况下,联合ABUS筛查可提高癌症的检出率为42.8/1000次。Ren等人[24]也得出了相似的结论,他们评估了第二眼ABUS检查辅助MG与单独使用MG在无症状女性中的作用,并将其与HHUS进行了比较,结果显示HHUS和ABUS联合筛查MG阴性病例时,病变检出率为3.66/1000,高于单独使用MG的检出率(2.69/1000)。故而认为ABUS能有效弥补MG的不足,提高MG的病灶检出率,降低其假阴性结果[19] [25] [26]

3.3. ABUS冠状面成像优势

与HHUS相比,ABUS不能使用彩色多普勒成像、弹性成像等技术,之所以能获得与HHUS相当的诊断效能,这归功于其独特的冠状面视角,后者引入了新的诊断信息,即汇聚征[27]。有研究表明[16] ABUS的汇聚征比MG更敏感地揭示结构异常。Liu等人[28]的研究表明,汇聚征在检测乳腺癌中具有100.0%的特异度和80.0%的灵敏度,在区分乳腺良恶性病变中具有91.4%的高准确性。Amir等人[29]的研究表明,HHUS联合ABUS的特异度与单独使用“汇聚征”无显著性差异(P > 0.05),但灵敏度优于单纯应用“汇聚征“(P = 0.002)。然而,有文献表明[30] [31],汇聚征的特异度可能在98.4%到100%之间,而其灵敏度可能只有39.1%到70%,这意味着大多数冠状面上具有汇聚征的乳腺病变是恶性的,而只有部分恶性乳腺病变表现出汇聚征。Zhang等人[27]也提出,ABUS在鉴别诊断中的独立价值限制是由汇聚征的低灵敏度(37.0%)引起的。究其原因,一方面,这种低灵敏度是由汇聚征的非特异性引起,少部分良性乳腺病变如硬化性腺病、手术疤痕、导管内乳头状瘤等也可出现汇聚征[32],在Nakhlis等人[33]的研究中,硬化性腺病在冠状面显示汇聚征的可能性虽然显著低于浸润性导管癌(P < 0.05),但其增殖组织挤压小叶出现假浸润现象,仍然可能被误诊为浸润性导管癌;另外一方面,汇聚征在影像学上的主观性和缺乏标准化定义可能会影响其敏感度[34]

4. ABUS预测乳腺癌分子亚型的能力

乳腺癌蛋白分子标志物的表达与患者的治疗及预后密切相关[35]。MRI定量分析已被尝试应用于预测乳腺癌的分子分型[36],但是其价格昂贵且费时并未在临床普及。ABUS冠状面声像图可为术前预测乳腺癌分子分型提供重要信息[37]。黄思等人[38]的研究显示汇聚征是Luminal A型乳腺癌的独立相关因素。Xu等人[39]认为生长缓慢,预后较好的Luminal A型有充足的时间累积出汇聚征。范莉芳等人[40]认为Luminal B型乳腺癌在肿瘤增殖速率和恶性程度方面均高于Luminal A型,所以更易出现汇聚征。Chen等人[41]表明,汇聚征与高回声晕较少出现在三阴型和人表皮生长因子受体-2 (Human epidermal growth factor receptor 2, Her-2)阳性型乳腺癌中,而肿块内微钙化是Her-2阳性型乳腺癌的独立相关因素。Giuliano [42]提出乳腺癌边缘毛刺征与雌、孕激素受体阳性呈正相关,而肿块内微钙化与Her-2阳性呈正相关。综上所述,Luminal型乳腺癌更易出现汇聚征,究其原因可能是,Luminal型乳腺癌组织学分级低,肿瘤细胞容易与相邻正常组织交错浸润,而三阴型乳腺癌肿瘤组织学分级高,肿瘤较少诱发周边反应,因此较少出现汇聚征[43]。然而也有研究证明[44]采用汇聚征预测分子分型的平均准确率仅为40.6%。

5. ABUS预测腋窝淋巴结转移

脉管浸润(Lymphovascular invasion, LVI)阳性与腋窝淋巴结(Axillary lymph node, ALN)状态和远处转移的风险增加有关[45]。LVI可促进乳腺癌局部复发[46],ALN是决定乳腺癌患者N分期、判断其预后及决定后续治疗方案的重要参考指标[47],故而术前了解LVI与ALN状态有助于临床决策。

Li等人[48]基于ABUS的放射组学特征开发用于确定乳腺癌中LVI状态的模型,在验证队列中,融合模型达到了0.879的最高AUC和85.00%的准确度,在乳腺癌术前无创预测LVI方面表现出良好的性能,与范莉芳[49]等人研究结果一致。王美晨等人[50]发现汇聚征是乳腺癌腋窝淋巴结转移的独立危险因素,并且病灶距乳头与距皮肤距离越近,转移负荷越高,而ABUS可自动获得病灶距乳头距离与距皮肤距离,定位客观准确,故而ABUS对乳腺癌腋窝淋巴结转移有一定临床预测价值。Yang等人[51]提出以上结论可能与乳腺中央区淋巴管丰富有关。然而,Li等人[52]的研究结果与上述研究有差别:他认为肿瘤距皮肤距离是腋窝淋巴结转移的独立预测因子,但病灶接近乳头不会增加腋窝淋巴结转移的风险,这与Lewis等人[53]研究结果一致。除此之外,乳腺肿瘤的大小与腋窝淋巴结转移密切相关[54]。在Li等人[52]的研究中,乳腺肿瘤的体积在非转移组为3.42 cm3,在转移组为8.78 cm3,差异有统计学意义(P < 0.05)。故认为乳腺肿瘤越大,发生腋窝淋巴结转移风险越高,这可能是因为:乳腺癌越大,浸润到周围淋巴管的可能性就越大,最终导致腋窝淋巴结转移的风险就越高。

6. ABUS在评估新辅助治疗中的应用

新辅助治疗(Neoadjuvant therapy, NAT)通过促进肿瘤体积缩小,将不可手术病灶转化为可手术病灶,增加保乳手术的机会,在治疗乳腺癌中起着至关重要的作用[55]。然而,NAT的治疗效果对许多患者来说并不理想,只有20%~40%的患者在治疗后达到病理完全缓解(Pathologic complete response, pCR)。超声检查在NAT评估中具有较多优势,在测量肿瘤大小方面比临床触诊或MG更准确[56],有研究表明,ABUS在测量肿瘤大小方面与MRI相当[57]

ABUS通过生成对病变的完整体积分析,消除了一些HHUS的可变性,在评估NAT疗效方面比HHUS具有更高的准确率[58],Elen等[59]研究表明,ABUS在预测pCR方面的特异度达到100%,能够准确预测NAT后最终病理肿瘤大小。Wei等人[60]提出两个NAC周期后ABUS图像的放射组学特征可提供最有效的预测。使用基于MRI的放射组学也报告了类似的发现[61] [62]。Wang等人[63]发现,NAC治疗后ABUS最大肿瘤直径减少50%可以高度预测pCR,该研究的AUC为0.89。Xie等人[64]研究结果显示,在NAT前后pCR组和非pCR组之间的直径变化和体积变化存在统计学上的显著差异(P < 0.001)。然而,将这两个参数纳入二元logistic回归分析后,只有体积变化是pCR的独立预测因子,故而他们认为体积变化反映了整个肿块的减少,而直径的变化只影响肿瘤内的特定部分,并且更难测量。然而,Murakami等人[65]表明,ABUS在三阴型乳腺癌中预测残余肿瘤大小和pCR的可靠性低,且有低估残余肿瘤的倾向,这提示ABUS在鉴别NAC后化疗诱导的纤维化和低回声肿瘤时可能不够敏感。除此之外,病灶周围存有导管原位癌将影响ABUS对肿瘤变化的评估[66],并且ABUS在某些情况下可能会出现误判,在病理检查中显示为pCR或最小残留病变的情况下,超声通常会显示为残留肿块[67]

7. 未来展望

相较HHUS,ABUS在临床实践中会导致更多的召回、随访和活检[68],未来需要统一ABUS图像的诊断标准,减少人为因素造成的误诊。

8. 总结

ABUS作为一种三维超声,在克服HHUS局限性的同时拥有与其相当的诊断效能,在联合其他检查时可表现出更出色的诊断能力。此外,ABUS在预测乳腺癌的分子分型、腋窝淋巴结转移以及评估新辅助治疗疗效方面表现出了极大的潜能。

基金项目

延安市科技计划项目,项目编号:2023-SFGG-085。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Zeng, H., Zheng, R., Zhang, S., Zou, X. and Chen, W. (2014) Female Breast Cancer Statistics of 2010 in China: Estimates Based on Data from 145 Population-Based Cancer Registries. Journal of Thoracic Disease, 6, 466-470.
[3] Tagliafico, A.S., Calabrese, M., Mariscotti, G., et al. (2016) Giovanna, M., Manuela, D., Simona, T., et al. (2016) Adjunct Screening with Tomosynthesis or Ultrasound in Women With Mammography-Negative Dense Breasts: Interim Report of a Prospective Comparative Trial. Journal of Clinical Oncology, 34, 1882-1888.
[4] van Zelst, J.C.M. and Mann, R.M. (2018) Automated Three-Dimensional Breast US for Screening: Technique, Artifacts, and Lesion Characterization. RadioGraphics, 38, 663-683.
https://doi.org/10.1148/rg.2018170162
[5] Jackson, V.P., Kelly-Fry, E., Rothschild, P.A., Holden, R.W. and Clark, S.A. (1986) Automated Breast Sonography Using a 7.5-Mhz PVDF Transducer: Preliminary Clinical Evaluation. Work in Progress. Radiology, 159, 679-684.
https://doi.org/10.1148/radiology.159.3.3517952
[6] Shin, H.J., Kim, H.H. and Cha, J.H. (2015) Current Status of Automated Breast Ultrasonography. Ultrasonography, 34, 165-172.
https://doi.org/10.14366/usg.15002
[7] Wang, H., Jiang, Y., Zhu, Q., Zhang, J., Dai, Q., Liu, H., et al. (2012) Differentiation of Benign and Malignant Breast Lesions: A Comparison between Automatically Generated Breast Volume Scans and Handheld Ultrasound Examinations. European Journal of Radiology, 81, 3190-3200.
https://doi.org/10.1016/j.ejrad.2012.01.034
[8] Lin, X., Jia, M., Zhou, X., Bao, L., Chen, Y., Liu, P., et al. (2020) The Diagnostic Performance of Automated versus Handheld Breast Ultrasound and Mammography in Symptomatic Outpatient Women: A Multicenter, Cross-Sectional Study in China. European Radiology, 31, 947-957.
https://doi.org/10.1007/s00330-020-07197-7
[9] Zhang, L., Bao, L., Tan, Y., Zhu, L., Xu, X., Zhu, Q., et al. (2019) Diagnostic Performance Using Automated Breast Ultrasound System for Breast Cancer in Chinese Women Aged 40 Years or Older: A Comparative Study. Ultrasound in Medicine & Biology, 45, 3137-3144.
https://doi.org/10.1016/j.ultrasmedbio.2019.08.016
[10] Zhang, X., Chen, J., Zhou, Y., Mao, F., Lin, Y., Shen, S., et al. (2019) Diagnostic Value of an Automated Breast Volume Scanner Compared with a Hand-Held Ultrasound: A Meta-Analysis. Gland Surgery, 8, 698-711.
https://doi.org/10.21037/gs.2019.11.18
[11] Liu, J., Zhou, Y., Wu, J., Li, P., Liang, X., Duan, H., et al. (2021) Diagnostic Performance of Combined Use of Automated Breast Volume Scanning & Hand-Held Ultrasound for Breast Lesions. Indian Journal of Medical Research, 154, 347-354.
https://doi.org/10.4103/ijmr.ijmr_836_19
[12] Choi, E.J., Choi, H., Park, E.H., Song, J.S. and Youk, J.H. (2018) Evaluation of an Automated Breast Volume Scanner According to the Fifth Edition of BI-RADS for Breast Ultrasound Compared with Hand-Held Ultrasound. European Journal of Radiology, 99, 138-145.
https://doi.org/10.1016/j.ejrad.2018.01.002
[13] Schmachtenberg, C., Fischer, T., Hamm, B. and Bick, U. (2017) Diagnostic Performance of Automated Breast Volume Scanning (ABVS) Compared to Handheld Ultrasonography with Breast MRI as the Gold Standard. Academic Radiology, 24, 954-961.
https://doi.org/10.1016/j.acra.2017.01.021
[14] Meng, Z., Chen, C., Zhu, Y., Zhang, S., Wei, C., Hu, B., et al. (2015) Diagnostic Performance of the Automated Breast Volume Scanner: A Systematic Review of Inter-Rater Reliability/Agreement and Meta-Analysis of Diagnostic Accuracy for Differentiating Benign and Malignant Breast Lesions. European Radiology, 25, 3638-3647.
https://doi.org/10.1007/s00330-015-3759-3
[15] Wang, L. and Qi, Z. (2019) Automatic Breast Volume Scanner versus Handheld Ultrasound in Differentiation of Benign and Malignant Breast Lesions: A Systematic Review and Meta-Analysis. Ultrasound in Medicine & Biology, 45, 1874-1881.
https://doi.org/10.1016/j.ultrasmedbio.2019.04.028
[16] Zhang, J., Cai, L., Chen, L., Pang, X., Chen, M., Yan, D., et al. (2021) Re-Evaluation of High-Risk Breast Mammography Lesions by Target Ultrasound and ABUS of Breast Non-Mass-Like Lesions. BMC Medical Imaging, 21, Article No. 156.
https://doi.org/10.1186/s12880-021-00665-6
[17] Xiang, H., Huang, Y.S., Lee, C.H., et al. (2021) 3-D Res-CapsNet Convolutional Neural Network on Automated Breast Ultrasound Tumor Diagnosis. European Journal of Radiology, 138, Article 109608.
https://doi.org/10.1016/j.ejrad.2021.109608
[18] 宋灿许, 马菁菁, 李逢生, 袁权, 李林, 刘瑞. 自动乳腺容积成像与手持超声对触诊阴性乳腺的诊断价值比较[J]. 中国医学影像学杂志, 2021, 29(1): 39-41.
[19] Mostafa, A.A.E., Eltomey, M.A., Elaggan, A.M. and Hashish, A.A. (2019) Automated Breast Ultrasound (ABUS) as a Screening Tool: Initial Experience. Egyptian Journal of Radiology and Nuclear Medicine, 50, Article No. 37.
https://doi.org/10.1186/s43055-019-0032-9
[20] Li, X., Lu, F., Zhu, A., Du, D., Zhang, Y., Guo, L., et al. (2020) Multimodal Ultrasound Imaging in Breast Imaging-Reporting and Data System 4 Breast Lesions: A Prediction Model for Malignancy. Ultrasound in Medicine & Biology, 46, 3188-3199.
https://doi.org/10.1016/j.ultrasmedbio.2020.08.003
[21] Li, W., Zheng, Y., Liu, H., Tai, Z., Zhu, H., Li, Z., et al. (2024) Multimodal Ultrasound Imaging for Diagnostic Differentiation of Sclerosing Adenosis from Invasive Ductal Carcinoma. Quantitative Imaging in Medicine and Surgery, 14, 877-887.
https://doi.org/10.21037/qims-23-524
[22] Wang, J., Fan, H., Zhu, Y., Shen, C. and Qiang, B. (2021) The Value of Automated Breast Volume Scanner Combined with Virtual Touch Tissue Quantification in the Differential Diagnosis of Benign and Malignant Breast Lesions. Medicine, 100, e25568.
https://doi.org/10.1097/md.0000000000025568
[23] Jia, M., Lin, X., Zhou, X., Yan, H., Chen, Y., Liu, P., et al. (2020) Diagnostic Performance of Automated Breast Ultrasound and Handheld Ultrasound in Women with Dense Breasts. Breast Cancer Research and Treatment, 181, 589-597.
https://doi.org/10.1007/s10549-020-05625-2
[24] Ren, W., Yan, H., Zhao, X., Jia, M., Zhang, S., Zhang, J., et al. (2023) Integration of Handheld Ultrasound or Automated Breast Ultrasound among Women with Negative Mammographic Screening Findings: A Multi-Center Population-Based Study in China. Academic Radiology, 30, S114-S126.
https://doi.org/10.1016/j.acra.2023.02.026
[25] Brem, R.F., Tabár, L., Duffy, S.W., Inciardi, M.F., Guingrich, J.A., Hashimoto, B.E., et al. (2015) Assessing Improvement in Detection of Breast Cancer with Three-Dimensional Automated Breast US in Women with Dense Breast Tissue: The Somoinsight Study. Radiology, 274, 663-673.
https://doi.org/10.1148/radiol.14132832
[26] Gatta, G., Cappabianca, S., La Forgia, D., Massafra, R., Fanizzi, A., Cuccurullo, V., et al. (2021) Second-Generation 3D Automated Breast Ultrasonography (prone ABUS) for Dense Breast Cancer Screening Integrated to Mammography: Effectiveness, Performance and Detection Rates. Journal of Personalized Medicine, 11, Article 875.
https://doi.org/10.3390/jpm11090875
[27] Zhang, X., Lin, X., Tan, Y., Zhu, Y., Wang, H., Feng, R., et al. (2018) A Multicenter Hospital-Based Diagnosis Study of Automated Breast Ultrasound System in Detecting Breast Cancer among Chinese Women. Chinese Journal of Cancer Research, 30, 231-239.
https://doi.org/10.21147/j.issn.1000-9604.2018.02.06
[28] Lin, X., Wang, J., Han, F., Fu, J. and Li, A. (2012) Analysis of Eighty-One Cases with Breast Lesions Using Automated Breast Volume Scanner and Comparison with Handheld Ultrasound. European Journal of Radiology, 81, 873-878.
https://doi.org/10.1016/j.ejrad.2011.02.038
[29] Sherchan, A., Liang, J.T., Sherchan, B., Suwal, S. and Katwal, S. (2024) Comparative Analysis of Automated Breast Volume Scanner (ABVS) Combined with Conventional Hand-Held Ultrasound and Mammography in Female Breast Cancer Detection. Annals of Medicine & Surgery, 86, 159-165.
https://doi.org/10.1097/ms9.0000000000001539
[30] Zheng, F.Y., Yan, L.X., Huang, B.J., et al. (2015) Comparison of Retraction Phenomenon and BI-RADS-US Descriptors in Differentiating Benign and Malignant Breast Masses Using an Automated Breast Volume Scanner. European Journal of Radiology, 84, 2123-2129.
https://doi.org/10.1016/j.ejrad.2015.07.028
[31] Füsun, T., Kutsi, K., Alparslan, U., et al. (2011) Sclerosing Adenosis of the Breast: Radiologic Appearance and Efficiency of Core Needle Biopsy. Diagnostic and Interventional Radiology (Ankara, Turkey), 17, 311-316.
[32] 自动乳腺容积超声技术专家共识(2022版) [J]. 中国超声医学杂志, 2022, 38(3): 241-247.
[33] Nakhlis, F., Lester, S., Denison, C., Wong, S.M., Mongiu, A. and Golshan, M. (2017) Complex Sclerosing Lesions and Radial Sclerosing Lesions on Core Needle Biopsy: Low Risk of Carcinoma on Excision in Cases with Clinical and Imaging Concordance. The Breast Journal, 24, 133-138.
https://doi.org/10.1111/tbj.12859
[34] Tang, G., An, X., Xiang, H., Liu, L., Li, A. and Lin, X. (2020) Automated Breast Ultrasound: Interobserver Agreement, Diagnostic Value, and Associated Clinical Factors of Coronal-Plane Image Features. Korean Journal of Radiology, 21, 550-560.
https://doi.org/10.3348/kjr.2019.0525
[35] Pellegrino, B., Hlavata, Z., Migali, C., De Silva, P., Aiello, M., Willard-Gallo, K., et al. (2021) Luminal Breast Cancer: Risk of Recurrence and Tumor-Associated Immune Suppression. Molecular Diagnosis & Therapy, 25, 409-424.
https://doi.org/10.1007/s40291-021-00525-7
[36] 王海彬, 魏秋良, 崔振华. 不同分子亚型乳腺癌患者动态增强MRI的定量参数变化[J]. 临床与病理杂志, 2018, 38(11): 2453-2460.
[37] 周汇明, 肖际东, 刘梦涵, 聂淼淼, 戴美雪. 基于乳腺二维超声及自动乳腺容积扫描构建影像组学及列线图模型预测乳腺癌分子分型[J]. 中国医学影像技术, 2024, 40(1): 55-61.
[38] 黄思, 肖耀成, 李建, 左文思. 乳腺自动容积成像对乳腺癌分子分型的预判分析[J]. 医学研究杂志, 2022, 51(11): 106-109.
[39] Xu, X., Lu, L., Zhu, L., Tan, Y., Yu, L. and Bao, L. (2022) Predicting the Molecular Subtypes of Breast Cancer Using Nomograms Based on Three-Dimensional Ultrasonography Characteristics. Frontiers in Oncology, 12, Article 838787.
https://doi.org/10.3389/fonc.2022.838787
[40] 范莉芳, 张超学, 黄磊, 吴艺敏, 吴树剑, 朱向明. 病理参数联合ABVS影像特征列线图预测乳腺癌Luminal分型[J]. 中国超声医学杂志, 2024, 40(2): 153-157.
[41] Chen, W., Ru, R., Wang, F. and Li, M. (2021) Automated Breast Volume Scanning Combined with Shear Wave Elastography for Diagnosis of Triple-Negative Breast Cancer and Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Revista da Associação Médica Brasileira, 67, 1167-1171.
https://doi.org/10.1590/1806-9282.20210586
[42] Giuliano, V. and Giuliano, C. (2013) Improved Breast Cancer Detection in Asymptomatic Women Using 3d-Automated Breast Ultrasound in Mammographically Dense Breasts. Clinical Imaging, 37, 480-486.
https://doi.org/10.1016/j.clinimag.2012.09.018
[43] Liao, H., Zhang, W., Sun, J., Li, F., He, Z. and Wu, S. (2018) The Clinicopathological Features and Survival Outcomes of Different Histological Subtypes in Triple-Negative Breast Cancer. Journal of Cancer, 9, 296-303.
https://doi.org/10.7150/jca.22280
[44] van Zelst, J.C.M., Balkenhol, M., Tan, T., Rutten, M., Imhof-Tas, M., Bult, P., et al. (2017) Sonographic Phenotypes of Molecular Subtypes of Invasive Ductal Cancer in Automated 3-D Breast Ultrasound. Ultrasound in Medicine & Biology, 43, 1820-1828.
https://doi.org/10.1016/j.ultrasmedbio.2017.03.019
[45] Huang, Y., Liu, Y., Wang, Y., Zheng, X., Han, J., Li, Q., et al. (2021) Quantitative Analysis of Shear Wave Elastic Heterogeneity for Prediction of Lymphovascular Invasion in Breast Cancer. The British Journal of Radiology, 94, Article 20210682.
https://doi.org/10.1259/bjr.20210682
[46] Zhou, P., Jin, C., Lu, J., Xu, L., Zhu, X., Lian, Q., et al. (2020) The Value of Nomograms in Pre-Operative Prediction of Lymphovascular Invasion in Primary Breast Cancer Undergoing Modified Radical Surgery: Based on Multiparametric Ultrasound and Clinicopathologic Indicators. Ultrasound in Medicine & Biology, 47, 517-526.
https://doi.org/10.1016/j.ultrasmedbio.2020.11.007
[47] Li, J., Ma, W., Jiang, X., Cui, C., Wang, H., Chen, J., et al. (2019) Development and Validation of Nomograms Predictive of Axillary Nodal Status to Guide Surgical Decision-Making in Early-Stage Breast Cancer. Journal of Cancer, 10, 1263-1274.
https://doi.org/10.7150/jca.32386
[48] Li, Y., Wu, X., Yan, Y. and Zhou, P. (2023) Automated Breast Volume Scanner Based Radiomics for Non-Invasively Prediction of Lymphovascular Invasion Status in Breast Cancer. BMC Cancer, 23, Article No. 813.
https://doi.org/10.1186/s12885-023-11336-w
[49] 范莉芳, 黄磊, 赵劲松, 吴艺敏, 徐争元, 徐晓燕, 傅雨晨. 基于ABVS影像组学联合VTQ术前预测浸润性乳腺癌淋巴血管侵犯[J]. 放射学实践, 2023, 38(3): 342-348.
[50] 王美晨, 史丽群, 李照喜. 基于ABVS联合VTIQ技术构建乳腺癌腋窝淋巴结高转移负荷预测模型的研究[J]. 中国超声医学杂志, 2022, 38(12): 1354-1357.
[51] Yang, J., Yang, Q., Mukherjee, A. and Lv, Q. (2021) Distance between the Tumour and Nipple as a Predictor of Axillary Lymph Node Involvement in Breast Cancer. Cancer Management and Research, 13, 193-199.
https://doi.org/10.2147/cmar.s262413
[52] Li, J.M., Shao, Y.H., Sun, X.M. and Shi, J. (2024) Ultrasonic Features of Automated Breast Volume Scanner (ABVS) and Handheld Ultrasound (HHUS) Combined with Molecular Biomarkers in Predicting Axillary Lymph Node Metastasis of Clinical T1-T2 Breast Cancer. Quantitative Imaging in Medicine and Surgery, 14, 1359-1368.
https://doi.org/10.21037/qims-23-956
[53] Lewis, E.I., Ozonoff, A., Nguyen, C.P., Kim, M. and Slanetz, P.J. (2011) Breast Cancer Close to the Nipple: Does This Increase the Risk of Nodal Metastasis at Diagnosis? Canadian Association of Radiologists Journal, 62, 209-214.
https://doi.org/10.1016/j.carj.2010.03.007
[54] Zhu, A., Li, X., An, L., Guo, L., Fu, H., Sun, L., et al. (2020) Predicting Axillary Lymph Node Metastasis in Patients with Breast Invasive Ductal Carcinoma with Negative Axillary Ultrasound Results Using Conventional Ultrasound and contrast-Enhanced Ultrasound. Journal of Ultrasound in Medicine, 39, 2059-2070.
https://doi.org/10.1002/jum.15314
[55] Montemurro, F., Nuzzolese, I. and Ponzone, R. (2020) Neoadjuvant or Adjuvant Chemotherapy in Early Breast Cancer? Expert Opinion on Pharmacotherapy, 21, 1071-1082.
https://doi.org/10.1080/14656566.2020.1746273
[56] Slanetz, P.J., Moy, L., Baron, P., diFlorio, R.M., Green, E.D., Heller, S.L., et al. (2017) ACR Appropriateness Criteria Monitoring Response to Neoadjuvant Systemic Therapy for Breast Cancer. Journal of the American College of Radiology, 14, S462-S475.
https://doi.org/10.1016/j.jacr.2017.08.037
[57] D’Angelo, A., Orlandi, A., Bufi, E., Mercogliano, S., Belli, P. and Manfredi, R. (2021) Automated Breast Volume Scanner (ABVS) Compared to Handheld Ultrasound (HHUS) and Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI) in the Early Assessment of Breast Cancer during Neoadjuvant Chemotherapy: An Emerging Role to Monitoring Tumor Response? La radiologia medica, 126, 517-526.
https://doi.org/10.1007/s11547-020-01319-3
[58] D’Angelo, A., Rinaldi, P., Belli, P., et al. (2019) Usefulness of Automated Breast Volume Scanner (ABVS) for Monitoring Tumor Response to Neoadjuvant Treatment in Breast Cancer Patients: Preliminary Results. European Review for Medical and Pharmacological Sciences, 23, 225-231.
[59] Hatzipanagiotou, M.E., Huber, D., Gerthofer, V., Hetterich, M., Ripoll, B.R., Ortmann, O., et al. (2022) Feasibility of ABUS as an Alternative to Handheld Ultrasound for Response Control in Neoadjuvant Breast Cancer Treatment. Clinical Breast Cancer, 22, e142-e146.
https://doi.org/10.1016/j.clbc.2021.05.010
[60] Jiang, W., Deng, X., Zhu, T., Fang, J. and Li, J. (2023) ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers. Breast Cancer: Targets and Therapy, 15, 625-636.
https://doi.org/10.2147/bctt.s418376
[61] McAnena, P., Moloney, B.M., Browne, R., O’Halloran, N., Walsh, L., Walsh, S., et al. (2022) A Radiomic Model to Classify Response to Neoadjuvant Chemotherapy in Breast Cancer. BMC Medical Imaging, 22, Article No. 225.
https://doi.org/10.1186/s12880-022-00956-6
[62] Li, Y., Fan, Y., Xu, D., Li, Y., Zhong, Z., Pan, H., et al. (2023) Deep Learning Radiomic Analysis of DCE-MRI Combined with Clinical Characteristics Predicts Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Frontiers in Oncology, 12, Article 1041142.
https://doi.org/10.3389/fonc.2022.1041142
[63] Wang, X., Huo, L., He, Y., Fan, Z., Wang, T., Xie, Y., et al. (2016) Early Prediction of Pathological Outcomes to Neoadjuvant Chemotherapy in Breast Cancer Patients Using Automated Breast Ultrasound. Chinese Journal of Cancer Research, 28, 478-485.
https://doi.org/10.21147/j.issn.1000-9604.2016.05.02
[64] Xie, Y., Chen, Y., Wang, Q., Li, B., Shang, H. and Jing, H. (2023) Early Prediction of Response to Neoadjuvant Chemotherapy Using Quantitative Parameters on Automated Breast Ultrasound Combined with Contrast-Enhanced Ultrasound in Breast Cancer. Ultrasound in Medicine & Biology, 49, 1638-1646.
https://doi.org/10.1016/j.ultrasmedbio.2023.03.017
[65] Murakami, R., Tani, H., Kumita, S. and Uchiyama, N. (2021) Diagnostic Performance of Digital Breast Tomosynthesis for Predicting Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients: A Comparison with Magnetic Resonance Imaging, Ultrasound, and Full-Field Digital Mammography. Acta Radiologica Open, 10, 1-8.
https://doi.org/10.1177/20584601211063746
[66] van Egdom, L.S.E., Lagendijk, M., Heijkoop, E.H.M., Koning, A.H.J., van Deurzen, C.H.M., Jager, A., et al. (2018) Three-Dimensional Ultrasonography of the Breast; an Adequate Replacement for MRI in Neoadjuvant Chemotherapy Tumour Response Evaluation—Responder Trial. European Journal of Radiology, 104, 94-100.
https://doi.org/10.1016/j.ejrad.2018.05.005
[67] Lim, H.F., Sharma, A., Gallagher, C. and Hall, P. (2023) Value of Ultrasound in Assessing Response to Neoadjuvant Chemotherapy in Breast Cancer. Clinical Radiology, 78, 912-918.
https://doi.org/10.1016/j.crad.2023.07.010
[68] Tutar, B., Esen Icten, G., Guldogan, N., Kara, H., Arıkan, A.E., Tutar, O., et al. (2020) Comparison of Automated versus Hand-Held Breast US in Supplemental Screening in Asymptomatic Women with Dense Breasts: Is There a Difference Regarding Woman Preference, Lesion Detection and Lesion Characterization? Archives of Gynecology and Obstetrics, 301, 1257-1265.
https://doi.org/10.1007/s00404-020-05501-w